1
|
Gandit B, Posani L, Zhang CL, Saha S, Ortiz C, Allegra M, Schmidt-Hieber C. Transformation of spatial representations along hippocampal circuits. iScience 2024; 27:110361. [PMID: 39071886 PMCID: PMC11277690 DOI: 10.1016/j.isci.2024.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/01/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024] Open
Abstract
The hippocampus is thought to provide the brain with a cognitive map of the external world by processing various types of spatial information. To understand how essential spatial variables such as direction, position, and distance are transformed along its circuits to construct this global map, we perform single-photon widefield microendoscope calcium imaging in the dentate gyrus and CA3 of mice freely navigating along a narrow corridor. We find that spatial activity maps in the dentate gyrus, but not in CA3, are correlated after aligning them to the running directions, suggesting that they represent the distance traveled along the track in egocentric coordinates. Together with population activity decoding, our data suggest that while spatial representations in the dentate gyrus and CA3 are anchored in both egocentric and allocentric coordinates, egocentric distance coding is more prevalent in the dentate gyrus than in CA3, providing insights into the assembly of the cognitive map.
Collapse
Affiliation(s)
- Bérénice Gandit
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Lorenzo Posani
- Center for Theoretical Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Chun-Lei Zhang
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
| | - Soham Saha
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
| | - Cantin Ortiz
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
- Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Manuela Allegra
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
| | - Christoph Schmidt-Hieber
- Institut Pasteur, Université Paris Cité, Neural Circuits for Spatial Navigation and Memory, Department of Neuroscience, F-75015 Paris, France
- Institute for Physiology I, Jena University Hospital, 07743 Jena, Germany
| |
Collapse
|
2
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
3
|
Bein O, Davachi L. Event Integration and Temporal Differentiation: How Hierarchical Knowledge Emerges in Hippocampal Subfields through Learning. J Neurosci 2024; 44:e0627232023. [PMID: 38129134 PMCID: PMC10919070 DOI: 10.1523/jneurosci.0627-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Everyday life is composed of events organized by changes in contexts, with each event containing an unfolding sequence of occurrences. A major challenge facing our memory systems is how to integrate sequential occurrences within events while also maintaining their details and avoiding over-integration across different contexts. We asked if and how distinct hippocampal subfields come to hierarchically and, in parallel, represent both event context and subevent occurrences with learning. Female and male human participants viewed sequential events defined as sequences of objects superimposed on shared color frames while undergoing high-resolution fMRI. Importantly, these events were repeated to induce learning. Event segmentation, as indexed by increased reaction times at event boundaries, was observed in all repetitions. Temporal memory decisions were quicker for items from the same event compared to across different events, indicating that events shaped memory. With learning, hippocampal CA3 multivoxel activation patterns clustered to reflect the event context, with more clustering correlated with behavioral facilitation during event transitions. In contrast, in the dentate gyrus (DG), temporally proximal items that belonged to the same event became associated with more differentiated neural patterns. A computational model explained these results by dynamic inhibition in the DG. Additional similarity measures support the notion that CA3 clustered representations reflect shared voxel populations, while DG's distinct item representations reflect different voxel populations. These findings suggest an interplay between temporal differentiation in the DG and attractor dynamics in CA3. They advance our understanding of how knowledge is structured through integration and separation across time and context.
Collapse
Affiliation(s)
- Oded Bein
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08540
| | - Lila Davachi
- Department of Psychology, Columbia University, New York, New York 10027
- Center for Clinical Research, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| |
Collapse
|
4
|
Borzello M, Ramirez S, Treves A, Lee I, Scharfman H, Stark C, Knierim JJ, Rangel LM. Assessments of dentate gyrus function: discoveries and debates. Nat Rev Neurosci 2023; 24:502-517. [PMID: 37316588 PMCID: PMC10529488 DOI: 10.1038/s41583-023-00710-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2023] [Indexed: 06/16/2023]
Abstract
There has been considerable speculation regarding the function of the dentate gyrus (DG) - a subregion of the mammalian hippocampus - in learning and memory. In this Perspective article, we compare leading theories of DG function. We note that these theories all critically rely on the generation of distinct patterns of activity in the region to signal differences between experiences and to reduce interference between memories. However, these theories are divided by the roles they attribute to the DG during learning and recall and by the contributions they ascribe to specific inputs or cell types within the DG. These differences influence the information that the DG is thought to impart to downstream structures. We work towards a holistic view of the role of DG in learning and memory by first developing three critical questions to foster a dialogue between the leading theories. We then evaluate the extent to which previous studies address our questions, highlight remaining areas of conflict, and suggest future experiments to bridge these theories.
Collapse
Affiliation(s)
- Mia Borzello
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Steve Ramirez
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea
| | - Helen Scharfman
- Departments of Child and Adolescent Psychiatry, Neuroscience and Physiology and Psychiatry and the Neuroscience Institute, New York University Langone Health, New York, NY, USA
- The Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Craig Stark
- Department of Neurobiology and Behaviour, University of California, Irvine, Irvine, CA, USA
| | - James J Knierim
- Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Lara M Rangel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
5
|
Chi CH, Yang FC, Chang YL. Age-related volumetric alterations in hippocampal subiculum region are associated with reduced retention of the “when” memory component. Brain Cogn 2022; 160:105877. [DOI: 10.1016/j.bandc.2022.105877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
|
6
|
Abrous DN, Koehl M, Lemoine M. A Baldwin interpretation of adult hippocampal neurogenesis: from functional relevance to physiopathology. Mol Psychiatry 2022; 27:383-402. [PMID: 34103674 PMCID: PMC8960398 DOI: 10.1038/s41380-021-01172-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Hippocampal adult neurogenesis has been associated to many cognitive, emotional, and behavioral functions and dysfunctions, and its status as a selected effect or an "appendix of the brain" has been debated. In this review, we propose to understand hippocampal neurogenesis as the process underlying the "Baldwin effect", a particular situation in evolution where fitness does not rely on the natural selection of genetic traits, but on "ontogenetic adaptation" to a changing environment. This supports the view that a strong distinction between developmental and adult hippocampal neurogenesis is made. We propose that their functions are the constitution and the lifelong adaptation, respectively, of a basic repertoire of cognitive and emotional behaviors. This lifelong adaptation occurs through new forms of binding, i.e., association or dissociation of more basic elements. This distinction further suggests that a difference is made between developmental vulnerability (or resilience), stemming from dysfunctional (or highly functional) developmental hippocampal neurogenesis, and adult vulnerability (or resilience), stemming from dysfunctional (or highly functional) adult hippocampal neurogenesis. According to this hypothesis, developmental and adult vulnerability are distinct risk factors for various mental disorders in adults. This framework suggests new avenues for research on hippocampal neurogenesis and its implication in mental disorders.
Collapse
Affiliation(s)
- Djoher Nora Abrous
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Neurogenesis and Pathophysiology group, F-33000, Bordeaux, France.
| | - Muriel Koehl
- grid.412041.20000 0001 2106 639XUniv. Bordeaux, INSERM, Neurocentre Magendie, U1215, Neurogenesis and Pathophysiology group, F-33000 Bordeaux, France
| | - Maël Lemoine
- grid.412041.20000 0001 2106 639XUniversity Bordeaux, CNRS, ImmunoConcEpT, UMR 5164, Bordeaux, France
| |
Collapse
|
7
|
Randall PA, Lovelock DF, VanVoorhies K, Agan VE, Kash TL, Besheer J. Low-dose alcohol: Interoceptive and molecular effects and the role of dentate gyrus in rats. Addict Biol 2021; 26:e12965. [PMID: 33015936 DOI: 10.1111/adb.12965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 01/24/2023]
Abstract
Alcohol abuse and dependence are world-wide health problems. Most research on alcohol use focuses on the consequences of moderate to high levels of alcohol. However, even at low concentrations, alcohol is capable of producing effects in the brain that can ultimately affect behavior. The current studies seek to understand the effects of low-dose alcohol (blood alcohol levels of ≤10mM). To do so, these experiments utilize a combination of behavioral and molecular techniques to (1) assess the ability of the interoceptive effects of a low dose of alcohol to gain control over goal-tracking behavior in a Pavlovian discrimination task, (2) determine brain regional differences in cellular activity via expression of immediate early genes (IEGs), and (3) assess the role of the dentate gyrus in modulating sensitivity to the interoceptive effects of a low dose of alcohol. Here, we show that intragastric administration of a dose of 0.8 g/kg alcohol produces blood alcohol levels ≤10mM in both male and female Long-Evans rats and can readily be trained as a Pavlovian interoceptive drug cue. In rats trained on this procedure, this dose of alcohol also modulates expression of the IEGs c-Fos and Arc in brain regions known to modulate expression of alcohol interoceptive effects. Finally, pharmacological inactivation of the dentate gyrus with GABA agonists baclofen and muscimol disrupted the ability of a low dose of alcohol to serve as an interoceptive cue. Together, these findings demonstrate behavioral and molecular consequences of low-dose alcohol.
Collapse
Affiliation(s)
- Patrick A. Randall
- Department of Anesthesiology and Perioperative Medicine Penn State College of Medicine Hershey Pennsylvania USA
- Department of Pharmacology Penn State College of Medicine Hershey Pennsylvania USA
| | - Dennis F. Lovelock
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Kalynn VanVoorhies
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Verda E. Agan
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Thomas L. Kash
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Pharmacology University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| | - Joyce Besheer
- Bowles Center for Alcohol Studies University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
- Department of Psychiatry University of North Carolina at Chapel Hill Chapel Hill North Carolina USA
| |
Collapse
|
8
|
Modeling of Brain-Like Concept Coding with Adulthood Neurogenesis in the Dentate Gyrus. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2019; 2019:2367075. [PMID: 31814816 PMCID: PMC6877936 DOI: 10.1155/2019/2367075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/26/2019] [Accepted: 09/07/2019] [Indexed: 12/02/2022]
Abstract
Mammalian brains respond to new concepts via a type of neural coding termed “concept coding.” During concept coding, the dentate gyrus (DG) plays a vital role in pattern separation and pattern integration of concepts because it is a brain region with substantial neurogenesis in adult mammals. Although concept coding properties of the brain have been extensively studied by experimental work, modeling of the process to guide both further experimental studies and applications such as natural language processing is scarce. To model brain-like concept coding, we built a spiking neural network inspired by adulthood neurogenesis in the DG. Our model suggests that neurogenesis may facilitate integration of closely related concepts and separation of less relevant concepts. Such pattern agrees with the previous experimental observations in classification tasks and place cells in the hippocampus. Therefore, our simulation provides insight for future experimental studies on the neural coding difference between perception and cognition. By presenting 14 contexts each containing 4 concepts to the network, we found that neural responses of the DG changed dynamically as the context repetition time increased and were eventually consistent with the category organization of humans. Thus, our work provides a new framework of word representation for the construction of brain-like knowledge map.
Collapse
|
9
|
Kirk RA, Kesner RP, Wang LM, Wu Q, Towner RA, Hoffman JM, Morton KA. Lipopolysaccharide exposure in a rat sepsis model results in hippocampal amyloid-β plaque and phosphorylated tau deposition and corresponding behavioral deficits. GeroScience 2019; 41:467-481. [PMID: 31473912 DOI: 10.1007/s11357-019-00089-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Sepsis is a severe systemic inflammatory response to infection associated with acute and chronic neurocognitive consequences, including an increased risk of later-life dementia. In a lipopolysaccharide-induced rat sepsis model, we have demonstrated neuroinflammation, cortical amyloid-beta plaque deposition, and increased whole brain levels of phosphorylated tau. Hippocampal abnormalities, particularly those of the dentate gyrus, are seen in Alzheimer's disease and age-related memory loss. The focus of this study was to determine whether Aβ plaques and phosphorylated tau aggregates occur in the hippocampus as a consequence of lipopolysaccharide administration, and whether behavioral abnormalities related to the hippocampus, particularly the dentate gyrus, can be demonstrated. Male Sprague Dawley rats received an intraperitoneal injection of 10 mg/kg of lipopolysaccharide endotoxin. Control animals received a saline injection. Seven days post injection, Aβ plaques and phosphorylated tau in the hippocampus were quantified following immunostaining. Behavioral tests that have previously been shown to result in specific deficits in dentate gyrus-lesioned rats were administered. Lipopolysaccharide treatment results in the deposition of beta amyloid plaques and intracellular phosphorylated tau in the hippocampus, including the dorsal dentate gyrus. Lipopolysaccharide treatment resulted in behavioral deficits attributable to the dorsal dentate gyrus, including episodic-like memory function that primarily involves spatial, contextual, and temporal orientation and integration. Lipopolysaccharide administration results in hippocampal deposition of amyloid-beta plaques and intracellular phosphorylated tau and results in specific behavioral deficits attributable to the dorsal dentate gyrus. These findings, if persistent, could provide a basis for the higher rate of dementia in longitudinal studies of sepsis survivors.
Collapse
Affiliation(s)
- Ryan A Kirk
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Raymond P Kesner
- Department of Psychology (Professor Emeritus), University of Utah, Salt Lake City, UT, USA
| | - Li-Ming Wang
- Department of Radiology and Imaging Sciences, University of Utah, 20 N 1900 E, Room 1A071, Salt Lake City, UT, 84132, USA
| | - Qi Wu
- Department of Radiology and Imaging Sciences, University of Utah, 20 N 1900 E, Room 1A071, Salt Lake City, UT, 84132, USA
| | - Rheal A Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.,Oklahoma Nathan Shock Aging Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - John M Hoffman
- Center for Quantitative Cancer Imaging, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Radiology and Imaging Sciences, University of Utah, 20 N 1900 E, Room 1A071, Salt Lake City, UT, 84132, USA
| | - Kathryn A Morton
- Department of Radiology and Imaging Sciences, University of Utah, 20 N 1900 E, Room 1A071, Salt Lake City, UT, 84132, USA.
| |
Collapse
|
10
|
Targeted deletion of HYBID (hyaluronan binding protein involved in hyaluronan depolymerization/ KIAA1199/CEMIP) decreases dendritic spine density in the dentate gyrus through hyaluronan accumulation. Biochem Biophys Res Commun 2018; 503:1934-1940. [DOI: 10.1016/j.bbrc.2018.07.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 11/20/2022]
|
11
|
Baptista P, Andrade JP. Adult Hippocampal Neurogenesis: Regulation and Possible Functional and Clinical Correlates. Front Neuroanat 2018; 12:44. [PMID: 29922131 PMCID: PMC5996050 DOI: 10.3389/fnana.2018.00044] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/11/2018] [Indexed: 01/19/2023] Open
Abstract
The formation of new neurons in the adult central nervous system (CNS) has been recognized as one of the major findings in neuroanatomical research. The hippocampal formation (HF), one of the main targets of these investigations, holds a neurogenic niche widely recognized among several mammalian species and whose existence in the human brain has sparked controversy and extensive debate. Many cellular features from this region emphasize that hippocampal neurogenesis suffers changes with normal aging and, among regulatory factors, physical exercise and chronic stress provoke opposite effects on cell proliferation, maturation and survival. Considering the numerous functions attributable to the HF, increasing or decreasing the integration of new neurons in the delicate neuronal network might be significant for modulation of cognition and emotion. The role that immature and mature adult-born neurons play in this circuitry is still mostly unknown but it could prove fundamental to understand hippocampal-dependent cognitive processes, the pathophysiology of depression, and the therapeutic effects of antidepressant medication in modulating behavior and mental health.
Collapse
Affiliation(s)
- Pedro Baptista
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal
| | - José P Andrade
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine of University of Porto, Porto, Portugal.,Center of Health Technology and Services Research (CINTESIS), Faculty of Medicine of University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Delorme JE, Kodoth V, Aton SJ. Sleep loss disrupts Arc expression in dentate gyrus neurons. Neurobiol Learn Mem 2018; 160:73-82. [PMID: 29635031 DOI: 10.1016/j.nlm.2018.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/24/2023]
Abstract
Sleep loss affects many aspects of cognition, and memory consolidation processes occurring in the hippocampus seem particularly vulnerable to sleep loss. The immediate-early gene Arc plays an essential role in both synaptic plasticity and memory formation, and its expression is altered by sleep. Here, using a variety of techniques, we have characterized the effects of brief (3-h) periods of sleep vs. sleep deprivation (SD) on the expression of Arc mRNA and Arc protein in the mouse hippocampus and cortex. By comparing the relative abundance of mature Arc mRNA with unspliced pre-mRNA, we see evidence that during SD, increases in Arc across the cortex, but not hippocampus, reflect de novo transcription. Arc increases in the hippocampus during SD are not accompanied by changes in pre-mRNA levels, suggesting that increases in mRNA stability, not transcription, drives this change. Using in situ hybridization (together with behavioral observation to quantify sleep amounts), we find that in the dorsal hippocampus, SD minimally affects Arc mRNA expression, and decreases the number of dentate gyrus (DG) granule cells expressing Arc. This is in contrast to neighboring cortical areas, which show large increases in neuronal Arc expression after SD. Using immunohistochemistry, we find that Arc protein expression is also differentially affected in the cortex and DG with SD - while larger numbers of cortical neurons are Arc+, fewer DG granule cells are Arc+, relative to the same regions in sleeping mice. These data suggest that with regard to expression of plasticity-regulating genes, sleep (and SD) can have differential effects in hippocampal and cortical areas. This may provide a clue regarding the susceptibility of performance on hippocampus-dependent tasks to deficits following even brief periods of sleep loss.
Collapse
Affiliation(s)
- James E Delorme
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, United States
| | - Varna Kodoth
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
13
|
An analysis of dentate gyrus function (an update). Behav Brain Res 2017; 354:84-91. [PMID: 28756212 DOI: 10.1016/j.bbr.2017.07.033] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 01/14/2023]
Abstract
In this review there will be a description of the dentate gyrus (DG) neural circuitry that mediates the operation of a variety of mnemonic processes associated with dorsal and ventral DG function in rats. Dysfunction of the dorsal DG can be shown to mediate mnemonic processing of spatially based information including a) the operation of conjunctive encoding of multiple sensory inputs to determine spatial representations, b) pattern separation based on reducing interference between similar spatial locations and spatial contexts for horizontal distance between objects, vertical distance for height of objects, slope or angle of motor movements, c) importance of spatial context in object recognition and processing of shades of grey associated with the walls of the box d) temporal integration in the creation of remote memory based in part on DG neurogenesis and function of the CA3 subregion of the hippocampus. Dysfunction of the ventral DG can be shown to mediate mnemonic processing of odor and reward value based information including a) pattern separation for odors and reward value, and b) social recognition.
Collapse
|
14
|
Metabolic Factors and Adult Neurogenesis: Impacts of Chinese Herbal Medicine on Brain Repair in Neurological Diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 135:117-147. [PMID: 28807156 DOI: 10.1016/bs.irn.2017.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adult neurogenesis plays the important roles in animal cognitive and emotional behaviors. Abnormal proliferation and differentiation of neural stem cells (NSCs) usually associate with the neural dysfunctions induced by different brain disorders. Therefore, targeting neurogenic factors could be a promoting strategy for neural regeneration and brain repair. Importantly, epidemiological studies suggest metabolism disorders like diabetes and obesity significantly increase the risk of neurological and psychiatric diseases. A large number of studies indicate that metabolic factors could serve as the modulators to adult neurogenesis, providing the potentials of metabolic factors to regulate NSCs growth and neural regeneration therapy. This chapter reviews the current studies on the roles of metabolic factors in modulating adult neurogenesis and evaluates the potentials of Chinese Herbal Medicine (CHM) for the treatment of neurological or psychiatric disorders by targeting the metabolic factors. Traditional Chinese Medicine (TCM) including CHM and acupuncture is now widely applied for the treatment of metabolic diseases, and neurological diseases in Asia, because its' therapeutic principles meet the multiple targets and complexity characteristics of most neurological disorders. Different studies indicate that there are many active compounds perform the regulations to metabolic factors and promoting neurogenesis. This chapter systematically summarizes the current progress and understanding of the active compounds and their underlying mechanisms of CHM formulas for promoting neurogenesis. Many CHM formulas and their active ingredients that originally used for metabolic disorders show the promising effects on mediating neurogenesis and brain repair for the treatments of neurodegenerative diseases. Therefore, further investigations about the relationship between neurogenesis and metabolic regulations of CHM will bring new insights into understanding the mechanisms of adult neurogenesis and provide great opportunities to develop new therapeutic strategies for neurological diseases. Those studies will provide scientific guidance to develop the drugs from TCM resource.
Collapse
|
15
|
Abstract
The restriction of adult neurogenesis to only a handful of regions of the brain is suggestive of some shared requirement for this dramatic form of structural plasticity. However, a common driver across neurogenic regions has not yet been identified. Computational studies have been invaluable in providing insight into the functional role of new neurons; however, researchers have typically focused on specific scales ranging from abstract neural networks to specific neural systems, most commonly the dentate gyrus area of the hippocampus. These studies have yielded a number of diverse potential functions for new neurons, ranging from an impact on pattern separation to the incorporation of time into episodic memories to enabling the forgetting of old information. This review will summarize these past computational efforts and discuss whether these proposed theoretical functions can be unified into a common rationale for why neurogenesis is required in these unique neural circuits.
Collapse
Affiliation(s)
- James B Aimone
- Data Driven and Neural Computing Group, Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico 87185-1327
| |
Collapse
|
16
|
Jabès A, Nelson CA. 20 years after “The ontogeny of human memory: A cognitive neuroscience perspective,” where are we? INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2015. [DOI: 10.1177/0165025415575766] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In 1995, Nelson published a paper describing a model of memory development during the first years of life. The current article seeks to provide an update on the original work published 20 years ago. Specifically, we review our current knowledge on the relation between the emergence of explicit memory functions throughout development and the maturation of associated brain regions. It is now well established that the brain regions subserving explicit memory functions (i.e. the hippocampal formation) are far from mature at birth, and exhibit important and gradual structural changes during childhood and beyond. Accordingly, explicit memory functions develop progressively. While some functions are present shortly after birth (formerly proposed as pre-explicit memory), others exhibit protracted developmental profiles during the first years of life. We examine the link between the emergence of different memory functions and the maturation of specific hippocampal circuits.
Collapse
Affiliation(s)
- Adeline Jabès
- Harvard Medical School, Boston Children's Hospital, Division of Developmental Medicine, Boston, MA, USA
| | - Charles A Nelson
- Harvard Medical School, Boston Children's Hospital, Division of Developmental Medicine, Boston, MA, USA
- Harvard Graduate School of Education, Cambridge, MA, USA
| |
Collapse
|
17
|
A computational theory of hippocampal function, and tests of the theory: New developments. Neurosci Biobehav Rev 2015; 48:92-147. [DOI: 10.1016/j.neubiorev.2014.11.009] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/24/2014] [Accepted: 11/12/2014] [Indexed: 01/01/2023]
|
18
|
Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH. Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 2014; 94:991-1026. [PMID: 25287858 DOI: 10.1152/physrev.00004.2014] [Citation(s) in RCA: 431] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis in the hippocampus is a notable process due not only to its uniqueness and potential impact on cognition but also to its localized vertical integration of different scales of neuroscience, ranging from molecular and cellular biology to behavior. This review summarizes the recent research regarding the process of adult neurogenesis from these different perspectives, with particular emphasis on the differentiation and development of new neurons, the regulation of the process by extrinsic and intrinsic factors, and their ultimate function in the hippocampus circuit. Arising from a local neural stem cell population, new neurons progress through several stages of maturation, ultimately integrating into the adult dentate gyrus network. The increased appreciation of the full neurogenesis process, from genes and cells to behavior and cognition, makes neurogenesis both a unique case study for how scales in neuroscience can link together and suggests neurogenesis as a potential target for therapeutic intervention for a number of disorders.
Collapse
Affiliation(s)
- James B Aimone
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Yan Li
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Star W Lee
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Gregory D Clemenson
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Wei Deng
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| | - Fred H Gage
- Cognitive Modeling Group, Sandia National Laboratories, Albuquerque, New Mexico; and Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
19
|
Kesner RP, Hui X, Sommer T, Wright C, Barrera VR, Fanselow MS. The role of postnatal neurogenesis in supporting remote memory and spatial metric processing. Hippocampus 2014; 24:1663-71. [PMID: 25112894 DOI: 10.1002/hipo.22346] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2014] [Indexed: 01/15/2023]
Abstract
In this study, we determined the contribution of juvenile neurogenesis to the performance of mice on a remote memory for temporally based association task and in a novelty based spatial pattern separation task. This was accomplished by mating homozygous DNMT1-loxP mice with heterozygous GFAP-Cre mice and comparing Cre+ (no postnatal neurogenesis) to Cre- (wild type) littermate offspring. The results indicate that Cre+ mice are impaired relative to Cre- mice in the remote memory for a temporal based association task and in a novelty based spatial pattern separation task. These results support the temporal integration model of Aimone et al., [(2006) Nat Neurosci 9:723-727] and provide further support for an important role for postnatally born neurons in spatial pattern separation. In contrast, Cre+ mice are not impaired relative to Cre- mice in an object-context recognition task and a spatial location recognition task. These latter data suggest that postnatally derived neurons in the dentate gyrus (DG) do not support all spatial and object recognition functions of the DG.
Collapse
Affiliation(s)
- Raymond P Kesner
- Department of Psychology, University of Utah, Salt Lake City, Utah
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
In the adult mammalian brain, newly generated neurons are continuously incorporated into two networks: interneurons born in the subventricular zone migrate to the olfactory bulb, whereas the dentate gyrus (DG) of the hippocampus integrates locally born principal neurons. That the rest of the mammalian brain loses significant neurogenic capacity after the perinatal period suggests that unique aspects of the structure and function of DG and olfactory bulb circuits allow them to benefit from the adult generation of neurons. In this review, we consider the distinctive features of the DG that may account for it being able to profit from this singular form of neural plasticity. Approaches to the problem of neurogenesis are grouped as "bottom-up," where the phenotype of adult-born granule cells is contrasted to that of mature developmentally born granule cells, and "top-down," where the impact of altering the amount of neurogenesis on behavior is examined. We end by considering the primary implications of these two approaches and future directions.
Collapse
Affiliation(s)
- Liam J Drew
- Division of Integrative Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York 10032, USA
| | | | | |
Collapse
|