1
|
Kovlyagina I, Wierczeiko A, Todorov H, Jacobi E, Tevosian M, von Engelhardt J, Gerber S, Lutz B. Leveraging interindividual variability in threat conditioning of inbred mice to model trait anxiety. PLoS Biol 2024; 22:e3002642. [PMID: 38805548 PMCID: PMC11161093 DOI: 10.1371/journal.pbio.3002642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/07/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Trait anxiety is a major risk factor for stress-induced and anxiety disorders in humans. However, animal models accounting for the interindividual variability in stress vulnerability are largely lacking. Moreover, the pervasive bias of using mostly male animals in preclinical studies poorly reflects the increased prevalence of psychiatric disorders in women. Using the threat imminence continuum theory, we designed and validated an auditory aversive conditioning-based pipeline in both female and male mice. We operationalised trait anxiety by harnessing the naturally occurring variability of defensive freezing responses combined with a model-based clustering strategy. While sustained freezing during prolonged retrieval sessions was identified as an anxiety-endophenotype behavioral marker in both sexes, females were consistently associated with an increased freezing response. RNA-sequencing of CeA, BLA, ACC, and BNST revealed massive differences in phasic and sustained responders' transcriptomes, correlating with transcriptomic signatures of psychiatric disorders, particularly post-traumatic stress disorder (PTSD). Moreover, we detected significant alterations in the excitation/inhibition balance of principal neurons in the lateral amygdala. These findings provide compelling evidence that trait anxiety in inbred mice can be leveraged to develop translationally relevant preclinical models to investigate mechanisms of stress susceptibility in a sex-specific manner.
Collapse
Affiliation(s)
- Irina Kovlyagina
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Anna Wierczeiko
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Hristo Todorov
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Eric Jacobi
- Institute of Pathophysiology, and Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Margarita Tevosian
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Jakob von Engelhardt
- Institute of Pathophysiology, and Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| |
Collapse
|
2
|
Blizard DA, Adams N, Boomsma DI. The genetics of neuroticism: Insights from the Maudsley rat model and human studies. PERSONALITY NEUROSCIENCE 2023; 6:e6. [PMID: 38107782 PMCID: PMC10725781 DOI: 10.1017/pen.2023.4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 12/19/2023]
Abstract
We examine some of the genetic features of neuroticism (N) taking as an animal model the Maudsley Reactive (MR) and Maudsley Nonreactive (MNR) rat strains which were selectively bred, respectively, for high and low open-field defecation (OFD) starting in the late 1950s. To draw analogies with human genetic studies, we explore the genetic correlation of N with irritable bowel syndrome (IBS). We review progress with the rat model and developments in the field of human complex trait genetics, including genetic association studies that relate to current understanding of the genetics of N. The widespread differences in the tone of the peripheral sympathetic nervous system that have been found between the Maudsley strains, particularly those observed in the colon, may underly the differences in OFD (MNR, higher sympathetic tone and zero defecation). In humans, a large genome-wide association study (GWAS) reported six genes contributing to IBS, four of which were implicated in mood and anxiety disorders or were expressed in the brain, with three of the four also expressed in the nerve fibers and ganglia of the gut. Heritability of N is estimated at around 50% in twin and family studies, and GWASs identified hundreds of loci, enabling estimation of genome-wide correlations (rg) with other traits. Significantly, the estimate for rg between risk of IBS, anxiety, N, and depression was >0.5 and suggested genetic pleiotropy without evidence for causal mechanisms. Findings on the adrenergic pharmacology of the colon, coupled with new understanding of the role of the locus ceruleus in modifying afferent information from this organ, generate hypotheses that challenge traditional cause/effect notions about the relationship of the central nervous system to peripheral events in response to stress, suggest specific targets for gene action in the Maudsley model and emphasize the value of reciprocal evaluation of genetic architecture underlying N in rodents and humans.
Collapse
Affiliation(s)
- David A. Blizard
- Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - Nelson Adams
- Department of Psychological Sciences, Winston Salem State University, North Carolina, USA
| | - Dorret I. Boomsma
- Netherlands Twin Register, Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Macêdo-Souza C, Maisonnette SS, Hallak JE, Crippa JA, Zuardi AW, Landeira-Fernandez J, Leite-Panissi CRA. Systemic Chronic Treatment with Cannabidiol in Carioca High- and Low-Conditioned Freezing Rats in the Neuropathic Pain Model: Evaluation of Pain Sensitivity. Pharmaceuticals (Basel) 2023; 16:1003. [PMID: 37513915 PMCID: PMC10383663 DOI: 10.3390/ph16071003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Studies have shown high comorbidity of anxiety disorder and chronic pain; generalized anxiety disorder (GAD) and neuropathic pain are among these pathologies. Cannabidiol (CBD) has been considered a promising treatment for these conditions. This study investigated whether chronic systemic treatment with CBD alters pain in high- (CHF) and low-freezing (CLF) Carioca rats (GAD model) and control rats (CTL) submitted to chronic neuropathic pain. The rats were evaluated in the sensory aspects (von Frey, acetone, and hot plate tests) before the chronic constriction injury of the ischiatic nerve (CCI) or not (SHAM) and on days 13 and 23 after surgery. Chronic treatment with CBD (5 mg/kg daily) was used for ten days, starting the 14th day after surgery. The open field test on the 22nd also evaluated locomotion and anxiety-like behavior. CBD treatment had an anti-allodynic effect on the mechanical and thermal threshold in all lineages; however, these effects were lower in the CHF and CLF lineages. Considering emotional evaluation, we observed an anxiolytic effect in CTL+CCI and CHF+CCI after CBD treatment and increased mobility in CLF+SHAM rats. These results suggest that the CBD mechanical anti-allodynic and emotional effects can depend on anxiety level.
Collapse
Affiliation(s)
- Carolina Macêdo-Souza
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
| | - Silvia Soares Maisonnette
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Jaime E Hallak
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José A Crippa
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Antônio W Zuardi
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro 22451-900, Brazil
| | - Christie Ramos Andrade Leite-Panissi
- Department of Psychology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
- National Institute for Translational Medicine (INCT-TM; CNPq), São Paulo 14049-900, Brazil
| |
Collapse
|
4
|
Mäkinen E, Wikgren J, Pekkala S, Koch LG, Britton SL, Nokia MS, Lensu S. Genotype determining aerobic exercise capacity associates with behavioral plasticity in middle-aged rats. Behav Brain Res 2023; 443:114331. [PMID: 36774999 DOI: 10.1016/j.bbr.2023.114331] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023]
Abstract
Good aerobic fitness associates positively with cognitive performance and brain health and conversely, low aerobic fitness predisposes to neurodegenerative diseases. To study how genotype together with exercise, started at older age, affects brain and behavior, we utilized rats that differ in inherited aerobic fitness. Rats bred for Low Capacity for Running (LCR) are shown to display less synaptic plasticity and more inflammation in the hippocampus and perform worse than rats bred for a High Capacity for Running (HCR) in tasks requiring flexible cognition. Here we used middle-aged (∼ 16 months) HCR and LCR rats to study how genotype and sex associate with anxiety and neural information filtering, termed sensory gating. Further, we assessed how inherited aerobic capacity associates with hippocampus-dependent learning, measured with contextual fear conditioning task. In females, we also investigated the effects of voluntary wheel running (5 weeks) on these characteristics. Our results indicate that independent of sex or voluntary running, HCR rats were more anxious in open-field tasks, exhibited lower sensory gating and learned more efficiently in contextual fear conditioning task than LCR rats. Voluntary running did not markedly affect innate behavior but slightly decreased the differences between female LCR and HCR rats in fear learning. In conclusion, inherited fitness seems to determine cognitive and behavioral traits independent of sex. Although the traits proved to be rather resistant to change at adult age, learning was slightly improved following exercise in LCR females, prone to obesity and poor fitness.
Collapse
Affiliation(s)
- Elina Mäkinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | - Jan Wikgren
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Satu Pekkala
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Lauren G Koch
- Department of Physiology and Pharmacology, The University of Toledo, OH, USA
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, USA
| | - Miriam S Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Sanna Lensu
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Lages YV, Balthazar L, Krahe TE, Landeira-Fernandez J. Pharmacological and Physiological Correlates of the Bidirectional Fear Phenotype of the Carioca Rats and Other Bidirectionally Selected Lines. Curr Neuropharmacol 2023; 21:1864-1883. [PMID: 36237160 PMCID: PMC10514533 DOI: 10.2174/1570159x20666221012121534] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
The Carioca rat lines originated from the selective bidirectional breeding of mates displaying extreme defense responses to contextual conditioned fear. After three generations, two distinct populations could be distinguished: the Carioca High- and Low-conditioned Freezing rats, CHF, and CLF, respectively. Later studies identified strong anxiety-like behaviors in the CHF line, while indications of impulsivity and hyperactivity were prominent in the CLF animals. The present review details the physiological and pharmacological-related findings obtained from these lines. The results discussed here point towards a dysfunctional fear circuitry in CHF rats, including alterations in key brain structures and the serotoninergic system. Moreover, data from these animals highlight important alterations in the stress-processing machinery and its associated systems, such as energy metabolism and antioxidative defense. Finally, evidence of an alteration in the dopaminergic pathway in CLF rats is also debated. Thus, accumulating data gathered over the years, place the Carioca lines as significant animal models for the study of psychiatric disorders, especially fear-related ones like anxiety.
Collapse
Affiliation(s)
- Yury V. Lages
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Balthazar
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Physiological Sciences, Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas. E. Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Lelos MJ. Investigating cell therapies in animal models of Parkinson's and Huntington's disease: Current challenges and considerations. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:159-189. [PMID: 36424091 DOI: 10.1016/bs.irn.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell therapeutics have entered into an exciting era, with first-in-person clinical trials underway for Parkinson's disease and novel cell therapies in development for other neurodegenerative diseases. In the hope of ensuring successful translation of these novel cell products to the clinic, a significant amount of preclinical work continues to be undertaken. Rodent models of neural transplantation are required to thoroughly assess the survival, safety and efficacy of novel therapeutics. It is critical to produce robust and reliable preclinical data, in order to increase the likelihood of clinical success. As a result, significant effort has been driven into generating ever more relevant model systems, from genetically modified disease models to mice with humanized immune systems. Despite this, several challenges remain in the quest to assess human cells in the rodent brain long-term. Here, with a focus on models of Parkinson's and Huntington's disease, we discuss key considerations for choosing an appropriate rodent model for neural transplantation. We also consider the challenges associated with long-term survival and assessment of functional efficacy in these models, as well as the need to consider the clinical relevance of the model. While the choice of model will be dependent on the scientific question, by considering the caveats associated with each model, we identify opportunities to optimize the preclinical assessment and generate reliable data on our novel cell therapeutics.
Collapse
Affiliation(s)
- Mariah J Lelos
- Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
7
|
Non-human contributions to personality neuroscience – from fish through primates. An introduction to the special issue. PERSONALITY NEUROSCIENCE 2022; 5:e11. [PMID: 36258777 PMCID: PMC9549393 DOI: 10.1017/pen.2022.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/10/2022]
Abstract
The most fundamental emotional systems that show trait control are evolutionarily old and extensively conserved. Psychology in general has benefited from non-human neuroscience and from the analytical simplicity of behaviour in those with simpler nervous systems. It has been argued that integration between personality, psychopathology, and neuroscience is particularly promising if we are to understand the neurobiology of human experience. Here, we provide some general arguments for a non-human approach being at least as productive in relation to personality, psychopathology, and their interface. Some early personality theories were directly linked to psychopathology (e.g., Eysenck, Panksepp, and Cloninger). They shared a common interest in brain systems that naturally led to the use of non-human data; behavioural, neural, and pharmacological. In Eysenck’s case, this also led to the selective breeding, at the Maudsley Institute, of emotionally reactive and non-reactive strains of rat as models of trait neuroticism or trait emotionality. Dimensional personality research and categorical approaches to clinical disorder then drifted apart from each other, from neuropsychology, and from non-human data. Recently, the conceptualizations of both healthy personality and psychopathology have moved towards a common hierarchical trait perspective. Indeed, the proposed two sets of trait dimensions appear similar and may even be eventually the same. We provide, here, an introduction to this special issue of Personality Neuroscience, where the authors provide overviews of detailed areas where non-human data inform human personality and its psychopathology or provide explicit models for translation to human neuroscience. Once all the papers in the issue have appeared, we will also provide a concluding summary of them.
Collapse
|
8
|
Acquisition and extinction of contextual fear conditioning in Carioca high- and low-conditioned freezing rats. LEARNING AND MOTIVATION 2021. [DOI: 10.1016/j.lmot.2021.101744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Hasanpour M, Mitricheva E, Logothetis N, Noori HR. Intensive longitudinal characterization of multidimensional biobehavioral dynamics in laboratory rats. Cell Rep 2021; 35:108987. [PMID: 33852865 DOI: 10.1016/j.celrep.2021.108987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022] Open
Abstract
Rats have been used as animal models for human diseases for more than a century, yet a systematic understanding of basal biobehavioral phenotypes of laboratory rats is still missing. In this study, we utilize wireless tracking technology and videography, collect and analyze more than 130 billion data points to fill this gap, and characterize the evolution of behavior and physiology of group-housed male and female rats (n = 114) of the most commonly used strains (Lister Hooded, Long-Evans, Sprague-Dawley, and Wistar) throughout their development. The resulting intensive longitudinal data suggest the existence of strain and sex differences and bi-stable developmental states. Under standard laboratory 12-h light/12-h dark conditions, our study found the presence of multiple oscillations such as circatidal-like rhythms in locomotor activity. The overall findings further suggest that frequent movement along cage walls or thigmotaxic activity may be a physical feature of motion in constrained spaces, critically affecting the interpretation of basal behavior of rats in cages.
Collapse
Affiliation(s)
- Mehrdad Hasanpour
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Ekaterina Mitricheva
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)/Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China
| | - Nikos Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)/Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China; Imaging Science and Biomedical Engineering, University of Manchester, Manchester, UK
| | - Hamid R Noori
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany; International Center for Primate Brain Research, Center for Excellence in Brain Science and Intelligence Technology (CEBSIT)/Institute of Neuroscience (ION), Chinese Academy of Sciences, Shanghai, China; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
10
|
Macêdo-Souza C, Maisonnette SS, Filgueiras CC, Landeira-Fernandez J, Krahe TE. Cued Fear Conditioning in Carioca High- and Low-Conditioned Freezing Rats. Front Behav Neurosci 2020; 13:285. [PMID: 32038188 PMCID: PMC6992609 DOI: 10.3389/fnbeh.2019.00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 12/12/2019] [Indexed: 02/03/2023] Open
Abstract
Anxiety disorders (AD) comprise a broad range of psychiatric conditions, including general anxiety (GAD) and specific phobias. For the last decades, the use of animal models of anxiety has offered important insights into the understanding of the association between these psychopathologies. Here, we investigate whether Carioca high- and low-conditioned freezing rats (CHF and CLF, respectively), a GAD animal model of anxiety, show similar high- and low-freezing behavioral phenotypes for cued auditory fear conditioning. Adult CHF (n = 16), CLF (n = 16) and normal age-matched Wistar rats (control, CTL, n = 16) were tested in a classical auditory-cued fear conditioning paradigm over 3 days (Tone + Shock and Tone only groups, n = 8 per treatment). Freezing responses were measured and used as evidence of fear conditioning. Overall, both CHF and CLF rats, as well as CTL animals displayed fear conditioning to the auditory CS. However, CLF animals showed a rapid extinction to the auditory conditioned stimulus compared to CHF and CTL rats. We discuss these findings in the context of the behavioral and neuronal differences observed in rodent lines of high and low anxiety traits.
Collapse
Affiliation(s)
- Carolina Macêdo-Souza
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Silvia S Maisonnette
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Landeira-Fernandez
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thomas E Krahe
- Laboratório de Neurociência do Comportamento, Departamento de Psicologia, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Animals, anxiety, and anxiety disorders: How to measure anxiety in rodents and why. Behav Brain Res 2018; 352:81-93. [DOI: 10.1016/j.bbr.2017.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/12/2017] [Accepted: 10/14/2017] [Indexed: 12/31/2022]
|
12
|
Abstract
Rodents (especially Mus musculus and Rattus norvegicus) have been the most widely used models in biomedical research for many years. A notable shift has taken place over the last two decades, with mice taking a more and more prominent role in biomedical science compared to rats. This shift was primarily instigated by the availability of a much larger genetic toolbox for mice, particularly embryonic-stem-cell-based targeting technology for gene disruption. With the recent emergence of tools for altering the rat genome, notably genome-editing technologies, the technological gap between the two organisms is closing, and it is becoming more important to consider the physiological, anatomical, biochemical and pharmacological differences between rats and mice when choosing the right model system for a specific biological question. The aim of this short review and accompanying poster is to highlight some of the most important differences, and to discuss their impact on studies of human diseases, with a special focus on neuropsychiatric disorders.
Collapse
Affiliation(s)
- Bart Ellenbroek
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6041, New Zealand
| | - Jiun Youn
- School of Psychology, Victoria University of Wellington, PO Box 600, Wellington 6041, New Zealand
| |
Collapse
|
13
|
León LA, Castro-Gomes V, Zárate-Guerrero S, Corredor K, Mello Cruz AP, Brandão ML, Cardenas FP, Landeira-Fernandez J. Behavioral Effects of Systemic, Infralimbic and Prelimbic Injections of a Serotonin 5-HT 2A Antagonist in Carioca High- and Low-Conditioned Freezing Rats. Front Behav Neurosci 2017; 11:117. [PMID: 28736518 PMCID: PMC5500641 DOI: 10.3389/fnbeh.2017.00117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/31/2017] [Indexed: 12/29/2022] Open
Abstract
The role of serotonin (5-hydroxytryptamine [5-HT]) and 5-HT2A receptors in anxiety has been extensively studied, mostly without considering individual differences in trait anxiety. Our laboratory developed two lines of animals that are bred for high and low freezing responses to contextual cues that are previously associated with footshock (Carioca High-conditioned Freezing [CHF] and Carioca Low-conditioned Freezing [CLF]). The present study investigated whether ketanserin, a preferential 5-HT2A receptor blocker, exerts distinct anxiety-like profiles in these two lines of animals. In the first experiment, the animals received a systemic injection of ketanserin and were exposed to the elevated plus maze (EPM). In the second experiment, these two lines of animals received microinjections of ketanserin in the infralimbic (IL) and prelimbic (PL) cortices and were exposed to either the EPM or a contextual fear conditioning paradigm. The two rat lines exhibited bidirectional effects on anxiety-like behavior in the EPM and opposite responses to ketanserin. Both systemic and intra-IL cortex injections of ketanserin exerted anxiolytic-like effects in CHF rats but anxiogenic-like effects in CLF rats. Microinjections of ketanserin in the PL cortex also exerted anxiolytic-like effects in CHF rats but had no effect in CLF rats. These results suggest that the behavioral effects of 5-HT2A receptor antagonism might depend on genetic variability associated with baseline reactions to threatening situations and 5-HT2A receptor expression in the IL and PL cortices. Highlights -CHF and CLF rats are two bidirectional lines that are based on contextual fear conditioning.-CHF rats have a more "anxious" phenotype than CLF rats in the EPM.-The 5-HT2A receptor antagonist ketanserin had opposite behavioral effects in CHF and CLF rats.-Systemic and IL injections either decreased (CHF) or increased (CLF) anxiety-like behavior.-PL injections either decreased (CHF) anxiety-like behavior or had no effect (CLF).
Collapse
Affiliation(s)
- Laura A. León
- Laboratory of Neuropsychopharmacology, FFCLRP, São Paulo University, Campus USP, and Behavioral Neuroscience Institute (INeC)Ribeirão Preto, São Paulo, Brazil
- Department of Psychology, Pontifical Catholic University of Rio de JaneiroRio de Janeiro, Brazil
- Programa de Psicología, Universidad Sergio ArboledaBogotá, Colombia
| | - Vitor Castro-Gomes
- Laboratory of Experimental and Computational Neuroscience, Department of Bio-systems Engineering, Federal University of São João del ReiSão João del Rei, Brazil
| | | | - Karen Corredor
- Laboratorio de Neurociencia y Comportamiento, Universidad de los AndesBogotá, Colombia
| | | | - Marcus L. Brandão
- Laboratory of Neuropsychopharmacology, FFCLRP, São Paulo University, Campus USP, and Behavioral Neuroscience Institute (INeC)Ribeirão Preto, São Paulo, Brazil
| | - Fernando P. Cardenas
- Laboratorio de Neurociencia y Comportamiento, Universidad de los AndesBogotá, Colombia
| | - J. Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
14
|
Jaiswal PB, Davenport PW. Intercostal muscle motor behavior during tracheal occlusion conditioning in conscious rats. J Appl Physiol (1985) 2016; 120:792-800. [PMID: 26823339 DOI: 10.1152/japplphysiol.00436.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 01/22/2016] [Indexed: 11/22/2022] Open
Abstract
A respiratory load compensation response is characterized by increases in activation of primary respiratory muscles and/or recruitment of accessory respiratory muscles. The contribution of the external intercostal (EI) muscles, which are a primary respiratory muscle group, during normal and loaded breathing remains poorly understood in conscious animals. Consciousness has a significant role on modulation of respiratory activity, as it is required for the integration of behavioral respiratory responses and voluntary control of breathing. Studies of respiratory load compensation have been predominantly focused in anesthetized animals, which make their comparison to conscious load compensation responses challenging. Using our established model of intrinsic transient tracheal occlusions (ITTO), our aim was to evaluate the motor behavior of EI muscles during normal and loaded breathing in conscious rats. We hypothesized that 1) conscious rats exposed to ITTO will recruit the EI muscles with an increased electromyogram (EMG) activation and 2) repeated ITTO for 10 days would potentiate the baseline EMG activity of this muscle in conscious rats. Our results demonstrate that conscious rats exposed to ITTO respond by recruiting the EI muscle with a significantly increased EMG activation. This response to occlusion remained consistent over the 10-day experimental period with little or no effect of repeated ITTO exposure on the baseline ∫EI EMG amplitude activity. The pattern of activation of the EI muscle in response to an ITTO is discussed in detail. The results from the present study demonstrate the importance of EI muscles during unloaded breathing and respiratory load compensation in conscious rats.
Collapse
Affiliation(s)
- Poonam B Jaiswal
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| | - Paul W Davenport
- Department of Physiological Sciences, University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
Castro-Gomes V, Bergstrom HC, McGuire JL, Parker CC, Coyner J, Landeira-Fernandez J, Ursano RJ, Palmer AA, Johnson LR. A dendritic organization of lateral amygdala neurons in fear susceptible and resistant mice. Neurobiol Learn Mem 2015; 127:64-71. [PMID: 26642919 DOI: 10.1016/j.nlm.2015.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/17/2015] [Accepted: 11/21/2015] [Indexed: 01/05/2023]
Abstract
Subtle differences in neuronal microanatomy may be coded in individuals with genetic susceptibility for neuropsychiatric disorders. Genetic susceptibility is a significant risk factor in the development of anxiety disorders, including post-traumatic stress disorder (PTSD). Pavlovian fear conditioning has been proposed to model key aspects of PTSD. According to this theory, PTSD begins with the formation of a traumatic memory which connects relevant environmental stimuli to significant threats to life. The lateral amygdala (LA) is considered to be a key network hub for the establishment of Pavlovian fear conditioning. Substantial research has also linked the LA to PTSD. Here we used a genetic mouse model of fear susceptibility (F-S) and resistance (F-R) to investigate the dendritic and spine structure of principal neurons located in the LA. F-S and F-R lines were bi-directionally selected based on divergent levels of contextual and cued conditioned freezing in response to fear-evoking footshocks. We examined LA principal neuron dendritic and spine morphology in the offspring of experimentally naive F-S and F-R mice. We found differences in the spatial distribution of dendritic branch points across the length of the dendrite tree, with a significant increase in branch points at more distal locations in the F-S compared with F-R line. These results suggest a genetic predisposition toward differences in fear memory strength associated with a dendritic branch point organization of principal neurons in the LA. These micro-anatomical differences in neuron structure in a genetic mouse model of fear susceptibility and resistance provide important insights into the cellular mechanisms of pathophysiology underlying genetic predispositions to anxiety and PTSD.
Collapse
Affiliation(s)
- Vitor Castro-Gomes
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Department of Biosystems Engineering, Federal University of São João del Rei (UFSJ), São João del Rei, MG 36307-352, Brazil
| | - Hadley C Bergstrom
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Department of Psychology and Neuroscience and Behavior Program, Vassar College, Poughkeepsie, NY 12603, USA
| | - Jennifer L McGuire
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA
| | - Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, VT 05753, USA
| | - Jennifer Coyner
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA
| | - J Landeira-Fernandez
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ 22451-900, Brazil
| | - Robert J Ursano
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress (CSTS), Bethesda, MD 20814, USA
| | - Abraham A Palmer
- Department of Human Genetics, University of Chicago, IL 60637, USA; Department of Psychiatry and Behavioral Neuroscience, University of Chicago, IL 60637, USA
| | - Luke R Johnson
- Program in Neuroscience and Department of Psychiatry, Uniformed Services University (USU), School of Medicine, Bethesda, MD 20814, USA; Center for the Study of Traumatic Stress (CSTS), Bethesda, MD 20814, USA; School of Psychology and Counseling, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; Translational Research Institute (TRI), Brisbane, QLD 4102, Australia.
| |
Collapse
|
16
|
Wong RY, Lamm MS, Godwin J. Characterizing the neurotranscriptomic states in alternative stress coping styles. BMC Genomics 2015; 16:425. [PMID: 26032017 PMCID: PMC4450845 DOI: 10.1186/s12864-015-1626-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/08/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Animals experience stress in many contexts and often successfully cope. Individuals exhibiting the proactive versus reactive stress coping styles display qualitatively different behavioral and neuroendocrine responses to stressors. The predisposition to exhibiting a particular coping style is due to genetic and environmental factors. In this study we explore the neurotranscriptomic and gene network biases that are associated with differences between zebrafish (Danio rerio) lines selected for proactive and reactive coping styles and reared in a common garden environment. RESULTS Using RNA-sequencing we quantified the basal transcriptomes from the brains of wild-derived zebrafish lines selectively bred to exhibit the proactive or reactive stress coping style. We identified 1953 genes that differed in baseline gene expression levels. Weighted gene coexpression network analyses identified one gene module associated with line differences. Together with our previous pharmacological experiment, we identified a core set of 62 genes associated with line differences. Gene ontology analyses reveal that many of these core genes are implicated in neurometabolism (e.g. organic acid biosynthetic and fatty acid metabolic processes). CONCLUSIONS Our results show that proactive and reactive stress coping individuals display distinct basal neurotranscriptomic states. Differences in baseline expression of select genes or regulation of specific gene modules are linked to the magnitude of the behavioral response and the display of a coping style, respectively. Our results expand the molecular mechanisms of stress coping from one focused on the neurotransmitter systems to a more complex system that involves an organism's capability to handle neurometabolic loads and allows for comparisons with other animal taxa to uncover potential conserved mechanisms.
Collapse
Affiliation(s)
- Ryan Y Wong
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
- Current Address: Department of Biology, University of Nebraska at Omaha, Omaha, NE 68182, USA.
| | - Melissa S Lamm
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
| | - John Godwin
- Department of Biological Sciences, W.M. Keck Center for Behavioral Biology, North Carolina State University, Box 7614, Raleigh, NC 27695-7614, USA.
| |
Collapse
|
17
|
Ishikawa J, Nishimura R, Ishikawa A. Early-life stress induces anxiety-like behaviors and activity imbalances in the medial prefrontal cortex and amygdala in adult rats. Eur J Neurosci 2015; 41:442-53. [DOI: 10.1111/ejn.12825] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 12/02/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Junko Ishikawa
- Systems Neuroscience; Department of Neuroscience; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi Ube Yamaguchi 755-8505 Japan
| | - Ryoichi Nishimura
- Systems Neuroscience; Department of Neuroscience; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi Ube Yamaguchi 755-8505 Japan
| | - Akinori Ishikawa
- Systems Neuroscience; Department of Neuroscience; Yamaguchi University Graduate School of Medicine; 1-1-1 Minamikogushi Ube Yamaguchi 755-8505 Japan
| |
Collapse
|
18
|
Schott AL, Zimmerberg B. Effects of Neurokinin-1 Receptor Inhibition on Anxiety Behavior in Neonatal Rats Selectively Bred for an Infantile Affective Trait. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/pp.2014.59096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|