2
|
Zwir I, Arnedo J, Del-Val C, Pulkki-Råback L, Konte B, Yang SS, Romero-Zaliz R, Hintsanen M, Cloninger KM, Garcia D, Svrakic DM, Rozsa S, Martinez M, Lyytikäinen LP, Giegling I, Kähönen M, Hernandez-Cuervo H, Seppälä I, Raitoharju E, de Erausquin GA, Raitakari O, Rujescu D, Postolache TT, Sung J, Keltikangas-Järvinen L, Lehtimäki T, Cloninger CR. Uncovering the complex genetics of human temperament. Mol Psychiatry 2020; 25:2275-2294. [PMID: 30279457 PMCID: PMC7515831 DOI: 10.1038/s41380-018-0264-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/21/2018] [Accepted: 08/15/2018] [Indexed: 11/11/2022]
Abstract
Experimental studies of learning suggest that human temperament may depend on the molecular mechanisms for associative conditioning, which are highly conserved in animals. The main genetic pathways for associative conditioning are known in experimental animals, but have not been identified in prior genome-wide association studies (GWAS) of human temperament. We used a data-driven machine learning method for GWAS to uncover the complex genotypic-phenotypic networks and environmental interactions related to human temperament. In a discovery sample of 2149 healthy Finns, we identified sets of single-nucleotide polymorphisms (SNPs) that cluster within particular individuals (i.e., SNP sets) regardless of phenotype. Second, we identified 3 clusters of people with distinct temperament profiles measured by the Temperament and Character Inventory regardless of genotype. Third, we found 51 SNP sets that identified 736 gene loci and were significantly associated with temperament. The identified genes were enriched in pathways activated by associative conditioning in animals, including the ERK, PI3K, and PKC pathways. 74% of the identified genes were unique to a specific temperament profile. Environmental influences measured in childhood and adulthood had small but significant effects. We confirmed the replicability of the 51 Finnish SNP sets in healthy Korean (90%) and German samples (89%), as well as their associations with temperament. The identified SNPs explained nearly all the heritability expected in each sample (37-53%) despite variable cultures and environments. We conclude that human temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term memory.
Collapse
Affiliation(s)
- Igor Zwir
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA ,grid.4489.10000000121678994Department of Computer Science, University of Granada, Granada, Spain
| | - Javier Arnedo
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA ,grid.4489.10000000121678994Department of Computer Science, University of Granada, Granada, Spain
| | - Coral Del-Val
- grid.4489.10000000121678994Department of Computer Science, University of Granada, Granada, Spain
| | - Laura Pulkki-Råback
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Bettina Konte
- grid.9018.00000 0001 0679 2801Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Sarah S. Yang
- grid.31501.360000 0004 0470 5905Department of Epidemiology, School of Public Health, Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Rocio Romero-Zaliz
- grid.4489.10000000121678994Department of Computer Science, University of Granada, Granada, Spain
| | - Mirka Hintsanen
- grid.10858.340000 0001 0941 4873Unit of Psychology, Faculty of Education, University of Oulu, Oulu, Finland
| | | | - Danilo Garcia
- grid.8761.80000 0000 9919 9582Department of Psychology, University of Gothenburg, Gothenburg, Sweden ,grid.435885.70000 0001 0597 1381Blekinge Centre of Competence, Blekinge County Council, Karlskrona, Sweden
| | - Dragan M. Svrakic
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Sandor Rozsa
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Maribel Martinez
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA
| | - Leo-Pekka Lyytikäinen
- grid.502801.e0000 0001 2314 6254Fimlab Laboratories, Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, Finnish Cardiovascular Research Center-Tampere, University of Tampere, Tampere, Finland
| | - Ina Giegling
- grid.9018.00000 0001 0679 2801Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany ,grid.5252.00000 0004 1936 973XUniversity Clinic, Ludwig-Maximilian University, Munich, Germany
| | - Mika Kähönen
- grid.502801.e0000 0001 2314 6254Department of Clinical Physiology, Faculty of Medicine and Life Sciences, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Helena Hernandez-Cuervo
- grid.170693.a0000 0001 2353 285XDepartment of Psychiatry and Neurosurgery, University of South Florida, Tampa, FL USA
| | - Ilkka Seppälä
- grid.502801.e0000 0001 2314 6254Fimlab Laboratories, Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, Finnish Cardiovascular Research Center-Tampere, University of Tampere, Tampere, Finland
| | - Emma Raitoharju
- grid.502801.e0000 0001 2314 6254Fimlab Laboratories, Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, Finnish Cardiovascular Research Center-Tampere, University of Tampere, Tampere, Finland
| | - Gabriel A. de Erausquin
- grid.449717.80000 0004 5374 269XDepartment of Psychiatry and Neurology, Institute of Neurosciences, University of Texas Rio-Grande Valley School of Medicine, Harlingen, TX USA
| | - Olli Raitakari
- grid.410552.70000 0004 0628 215XDepartment of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Dan Rujescu
- grid.9018.00000 0001 0679 2801Department of Psychiatry, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Teodor T. Postolache
- grid.411024.20000 0001 2175 4264Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD USA ,Rocky Mountain Mental Illness, Research, Education and Clinical Center for Veteran Suicide Prevention, Denver, CO USA
| | - Joohon Sung
- grid.31501.360000 0004 0470 5905Department of Epidemiology, School of Public Health, Institute of Health and Environment, Seoul National University, Seoul, Korea
| | - Liisa Keltikangas-Järvinen
- grid.7737.40000 0004 0410 2071Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Terho Lehtimäki
- grid.502801.e0000 0001 2314 6254Fimlab Laboratories, Department of Clinical Chemistry, Faculty of Medicine and Life Sciences, Finnish Cardiovascular Research Center-Tampere, University of Tampere, Tampere, Finland
| | - C. Robert Cloninger
- grid.4367.60000 0001 2355 7002Department of Psychiatry, Washington University School of Medicine, St. Louis, MO USA ,grid.4367.60000 0001 2355 7002Department of Psychological and Brain Sciences, School of Arts and Sciences, and Department of Genetics, School of Medicine, Washington University School of Medicine, St. Louis, MO USA
| |
Collapse
|
3
|
Cloninger CR, Cloninger KM, Zwir I, Keltikangas-Järvinen L. The complex genetics and biology of human temperament: a review of traditional concepts in relation to new molecular findings. Transl Psychiatry 2019; 9:290. [PMID: 31712636 PMCID: PMC6848211 DOI: 10.1038/s41398-019-0621-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/25/2019] [Accepted: 10/18/2019] [Indexed: 12/14/2022] Open
Abstract
Recent genome-wide association studies (GWAS) have shown that temperament is strongly influenced by more than 700 genes that modulate associative conditioning by molecular processes for synaptic plasticity and long-term learning and memory. The results were replicated in three independent samples despite variable cultures and environments. The identified genes were enriched in pathways activated by behavioral conditioning in animals, including the two major molecular pathways for response to extracellular stimuli, the Ras-MEK-ERK and the PI3K-AKT-mTOR cascades. These pathways are activated by a wide variety of physiological and psychosocial stimuli that vary in positive and negative valence and in consequences for health and survival. Changes in these pathways are orchestrated to maintain cellular homeostasis despite changing conditions by modulating temperament and its circadian and seasonal rhythms. In this review we first consider traditional concepts of temperament in relation to the new genetic findings by examining the partial overlap of alternative measures of temperament. Then we propose a definition of temperament as the disposition of a person to learn how to behave, react emotionally, and form attachments automatically by associative conditioning. This definition provides necessary and sufficient criteria to distinguish temperament from other aspects of personality that become integrated with it across the life span. We describe the effects of specific stimuli on the molecular processes underlying temperament from functional, developmental, and evolutionary perspectives. Our new knowledge can improve communication among investigators, increase the power and efficacy of clinical trials, and improve the effectiveness of treatment of personality and its disorders.
Collapse
Affiliation(s)
- C Robert Cloninger
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA.
- School of Arts and Sciences, Department of Psychological and Brain Sciences, and School of Medicine, Department of Genetics, Washington University, St. Louis, MO, USA.
- Anthropedia Foundation, St. Louis, MO, USA.
| | | | - Igor Zwir
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Department of Computer Science, University of Granada, Granada, Spain
| | | |
Collapse
|
4
|
Yates JR, Gunkel BT, Rogers KK, Hughes MN, Prior NA. Effects of N-methyl-D-aspartate receptor ligands on sensitivity to reinforcer magnitude and delayed reinforcement in a delay-discounting procedure. Psychopharmacology (Berl) 2017; 234:461-473. [PMID: 27837332 PMCID: PMC5226882 DOI: 10.1007/s00213-016-4469-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 11/02/2016] [Indexed: 11/26/2022]
Abstract
RATIONALE The N-methyl-D-aspartate (NMDA) receptor has been recently identified as an important mediator of impulsive choice, as assessed in delay discounting. Although discounting is independently influenced by sensitivity to reinforcer magnitude and delayed reinforcement, few studies have examined how NMDA receptor ligands differentially affect these parameters. OBJECTIVES The current study examined the effects of various NMDA receptor ligands on sensitivity to reinforcer magnitude and delayed reinforcement in a delay-discounting procedure. METHODS Following behavioral training, rats received treatments of the following NMDA receptor ligands: the uncompetitive antagonists ketamine (0, 1.0, 5.0, or 10.0 mg/kg; i.p.), MK-801 (0, 0.003, 0.01, or 0.03 mg/kg; s.c.), and memantine (0, 2.5, 5.0, or 10.0 mg/kg; i.p.), the competitive antagonist CGS 19755 (0, 5.0, 10.0, or 20.0 mg/kg; s.c.), the non-competitive NR2B subunit-selective antagonist ifenprodil (0, 1.0, 3.0, or 10.0 mg/kg; i.p), and the partial agonist D-cycloserine (0, 3.25, 15.0, or 30.0 mg/kg; s.c.). RESULTS When an exponential model was used to describe discounting, CGS 19755 (5.0 mg/kg) increased impulsive choice without altering sensitivity to reinforcer magnitude. Conversely, ketamine (10.0 mg/kg), memantine (5.0 mg/kg), and ifenprodil (10.0 mg/kg) decreased sensitivity to reinforcer magnitude without altering impulsive choice. MK-801 and D-cycloserine did not alter delay-discounting performance, although two-way ANOVA analyses indicated D-cycloserine (15.0 mg/kg) decreased impulsive choice. CONCLUSIONS The behavioral changes observed in delay discounting following administration of NMDA receptor antagonists do not always reflect an alteration in impulsive choice. These results emphasize the utility in employing quantitative methods to assess drug effects in delay discounting.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA.
| | - Benjamin T Gunkel
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Katherine K Rogers
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Mallory N Hughes
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| | - Nicholas A Prior
- Department of Psychological Science, Northern Kentucky University, 1 Nunn Drive, Highland Heights, KY, 41099, USA
| |
Collapse
|
5
|
Sullivan KG, Levin M. Neurotransmitter signaling pathways required for normal development in Xenopus laevis embryos: a pharmacological survey screen. J Anat 2016; 229:483-502. [PMID: 27060969 DOI: 10.1111/joa.12467] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2016] [Indexed: 01/08/2023] Open
Abstract
Neurotransmitters are not only involved in brain function but are also important signaling molecules for many diverse cell types. Neurotransmitters are widely conserved, from evolutionarily ancient organisms lacking nervous systems through man. Here, results are reported from a loss- and gain-of-function survey, using pharmacological modulators of several neurotransmitter pathways to examine possible roles for these pathways in normal embryogenesis. Applying reagents targeting the glutamatergic, adrenergic and dopaminergic pathways to embryos of Xenopus laevis from gastrulation to organogenesis stages, we observed and quantified numerous malformations, including craniofacial defects, hyperpigmentation, muscle mispatterning and miscoiling of the gut. These data implicate several key neurotransmitters in new embryonic patterning roles, reveal novel earlier stages for processes involved in eye development, suggest new targets for subsequent molecular-genetic investigation, and highlight the necessity for in-depth toxicology studies of psychoactive compounds to which human embryos might be exposed during pregnancy.
Collapse
Affiliation(s)
- Kelly G Sullivan
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| | - Michael Levin
- Biology Department, Center for Regenerative and Developmental Biology, Tufts University, Medford, MA, USA
| |
Collapse
|
6
|
Rahati M, Nozari M, Eslami H, Shabani M, Basiri M. Effects of enriched environment on alterations in the prefrontal cortex GFAP- and S100B-immunopositive astrocytes and behavioral deficits in MK-801-treated rats. Neuroscience 2016; 326:105-116. [PMID: 27063100 DOI: 10.1016/j.neuroscience.2016.03.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Revised: 03/17/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
Abstract
A plethora of studies have indicated that enriched environment (EE) paradigm provokes plastic and morphological changes in astrocytes with accompanying increments of their density and positively affects the behavior of rodents. We also previously documented that EE could be employed to preclude several behavioral abnormalities, mainly cognitive deficits, attributed to postnatal N-methyl-d-aspartate (NMDA) receptor antagonist (MK-801) treatment, as a rodent model of schizophrenia (SCH) aspects. Given this, the current study quantitatively investigated the number of cells, presumed to be astrocytes, expressing two astroglia-associated proteins (S100B and glial fibrillary acidic protein (GFAP)) by immunohistochemistry in the prefrontal cortex (PFC), along with anxiety and passive avoidance (PA) learning behaviors by utilizing elevated plus maze (EPM) and shuttle-box tests, in MK-801-treated male wistar rats submitted to EE and non-EE rats. Following a treatment regime of sub-chronic MK-801 (1.0mg/kg i.p. daily for five consecutive days from postnatal day (P) 6), S-100B-positive cells and anxiety level were markedly increased, while the GFAP-positive cells and PA learning were notably attenuated. The trend of diminished GFAP-immunopositive cells and elevated S100B-immunostained cells in the PFC was reversed in the SCH-like rats by exposure of animals to EE, commencing from birth up to the time of experiments on P28-85. Additionally, EE exhibited an ameliorating effect on the behavioral abnormalities evoked by MK-801. Overall, present findings support that improper astrocyte functioning and behavioral changes, reminiscent of the many facets of SCH, occur consequential to repetitive administration of MK-801 and that raising rat pups in an EE mitigates these alterations.
Collapse
Affiliation(s)
- M Rahati
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - M Nozari
- Department of Physiology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - H Eslami
- Department of Pharmacology, Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - M Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - M Basiri
- Department of Anatomical Sciences, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
7
|
Vishnoi S, Raisuddin S, Parvez S. Modulatory effects of an NMDAR partial agonist in MK-801-induced memory impairment. Neuroscience 2015; 311:22-33. [PMID: 26454025 DOI: 10.1016/j.neuroscience.2015.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/29/2015] [Accepted: 10/04/2015] [Indexed: 12/22/2022]
Abstract
RATIONALE Acute administration of the N-methyl-d-aspartate (NMDA) non-competitive antagonist, MK-801, impairs novel object recognition (NOR), locomotor activity in open field (OF) and conditioned taste aversion (CTA) in rodents. NMDAR partial agonist d-cycloserine (DCS) reverses these effects in NOR and CTA via modulation of glutamatergic, cholinergic and dopaminergic systems. OBJECTIVES AND METHODS To test this hypothesis, we investigated the effects of DCS, a partial NMDAR agonist, on NOR memory, locomotor activity, and CTA memory in Wistar rats on NMDA-glutamate receptor antagonism by MK-801. The potential involvement of dopaminergic and cholinergic systems in improving cognitive functions was explored. MK-801-induced cognitive deficits were assessed using NOR, OF and CTA paradigms. MK-801-induced dopamine release increase in acetylcholinesterase (AChE), mono amine oxidase (MAO) activity and increase in c-fos expression were also investigated. RESULTS The effects caused by MK-801 (0.2 mg/kg) were inhibited by administration of the NMDA receptor agonist DCS (15 mg/kg). NOR and CTA paradigms inhibited by MK-801 were attenuated by DCS administration. Moreover, DCS also blocked the MK-801-induced abnormal increase in dopamine content, AChE activity and MAO activity. However, c-fos overexpression was controlled to some extent only. CONCLUSIONS Based on the NMDAR hypo function hypothesis in some neuropsychiatric disorders, our finding suggests that improving NMDAR hypo function by agonist DCS may play a significant role.
Collapse
Affiliation(s)
- S Vishnoi
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - S Raisuddin
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - S Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|