1
|
Balcerek E, Włodkowska U, Czajkowski R. FOS mapping reveals two complementary circuits for spatial navigation in mouse. Sci Rep 2024; 14:21252. [PMID: 39261637 PMCID: PMC11391074 DOI: 10.1038/s41598-024-72272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/04/2024] [Indexed: 09/13/2024] Open
Abstract
Here, we show that during continuous navigation in a dynamic external environment, mice are capable of developing a foraging strategy based exclusively on changing distal (allothetic) information and that this process may involve two alternative components of the spatial memory circuit: the hippocampus and retrosplenial cortex. To this end, we designed a novel custom apparatus and implemented a behavioral protocol based on the figure-8-maze paradigm with two goal locations associated with distinct contexts. We assessed whether mice are able to learn to retrieve a sequence of rewards guided exclusively by the changing context. We found out that training mice in the apparatus leads to change in strategy from the internal tendency to alternate into navigation based exclusively on visual information. This effect could be achieved using two different training protocols: prolonged alternation training, or a flexible protocol with unpredictable turn succession. Based on the c-FOS mapping we also provide evidence of opposing levels of engagement of hippocampus and retrosplenial cortex after training of mice in these two different regimens. This supports the hypothesis of the existence of parallel circuits guiding spatial navigation, one based on the well-described hippocampal representation, and another, RSC-dependent.
Collapse
Affiliation(s)
- Edyta Balcerek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Urszula Włodkowska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland
| | - Rafał Czajkowski
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warszawa, Poland.
| |
Collapse
|
2
|
Lee JY, Jung D, Royer S. Stochastic characterization of navigation strategies in an automated variant of the Barnes maze. eLife 2024; 12:RP88648. [PMID: 38899521 PMCID: PMC11189626 DOI: 10.7554/elife.88648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Animals can use a repertoire of strategies to navigate in an environment, and it remains an intriguing question how these strategies are selected based on the nature and familiarity of environments. To investigate this question, we developed a fully automated variant of the Barnes maze, characterized by 24 vestibules distributed along the periphery of a circular arena, and monitored the trajectories of mice over 15 days as they learned to navigate towards a goal vestibule from a random start vestibule. We show that the patterns of vestibule visits can be reproduced by the combination of three stochastic processes reminiscent of random, serial, and spatial strategies. The processes randomly selected vestibules based on either uniform (random) or biased (serial and spatial) probability distributions. They closely matched experimental data across a range of statistical distributions characterizing the length, distribution, step size, direction, and stereotypy of vestibule sequences, revealing a shift from random to spatial and serial strategies over time, with a strategy switch occurring approximately every six vestibule visits. Our study provides a novel apparatus and analysis toolset for tracking the repertoire of navigation strategies and demonstrates that a set of stochastic processes can largely account for exploration patterns in the Barnes maze.
Collapse
Affiliation(s)
- Ju-Young Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST)SeoulRepublic of Korea
| | - Dahee Jung
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Sebastien Royer
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST)SeoulRepublic of Korea
| |
Collapse
|
3
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Abd El-Karim SS, Anwar MM, Ahmed NS, Syam YM, Elseginy SA, Aly HF, Younis EA, Khalil WKB, Ahmed KA, Mohammed FF, Rizk M. Discovery of novel benzofuran-based derivatives as acetylcholinesterase inhibitors for the treatment of Alzheimer's disease: Design, synthesis, biological evaluation, molecular docking and 3D-QSAR investigation. Eur J Med Chem 2023; 260:115766. [PMID: 37678141 DOI: 10.1016/j.ejmech.2023.115766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
A series of novel benzofuran-based compounds 7a-s were designed, synthesized, and investigated in vitro as acetylcholinesterase inhibitors (AChEIs). Compounds 7c and 7e displayed promising inhibitory activity with IC50 values of 0.058 and 0.086 μM in comparison to donepezil with an IC50 value of 0.049 μM. The new molecules' antioxidant evaluation revealed that 7c, 7e, 7j, 7n, and 7q produced the strongest DPPH scavenging activity when compared to vitamin C. As it was the most promising AChEI, compound 7c was selected for further biological evaluation. Acute and chronic toxicity studies exhibited that 7c showed no signs of toxicity or adverse events, no significant differences in the blood profile, and an insignificant difference in hepatic enzymes, glucose, urea, creatinine, and albumin levels in the experimental rat group. Furthermore, 7c did not produce histopathological damage to normal liver, kidney, heart, and brain tissues, ameliorated tissue malonaldehyde (MDA) and glutathione (GSH) levels and reduced the expression levels of the APP and Tau genes in AD rats. Molecular docking results of compounds 7c and 7e showed good binding modes in the active site of the acetylcholinesterase enzyme, which are similar to the native ligand donepezil. 3D-QSAR analysis revealed the importance of the alkyl group in positions 2 and 3 of the phenyl moiety for the activity. Overall, these findings suggested that compound 7c could be deemed a promising candidate for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt.
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt.
| | - Nesreen S Ahmed
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| | - Yasmin M Syam
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| | - Samia A Elseginy
- Green Chemistry Department, Chemical Industries Research Division, National Research Centre, P. O. Box 12622, El-Bohouth St, Dokki, Cairo, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| | - Eman A Younis
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| | - Wagdy K B Khalil
- Department of Cell Biology, National Research Centre, P.O. Box 12262 El-Bohouth St, Dokki, Cairo, Egypt
| | - Kawkab A Ahmed
- Pathology Departments, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Faten F Mohammed
- Pathology Departments, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Maha Rizk
- Department of Therapeutic Chemistry, National Research Centre, P.O. Box 12262 El-Bohouth St, Cairo, Egypt
| |
Collapse
|
5
|
Allen LM, Murphy DA, Roldan V, Moussa MN, Draper A, Delgado A, Aguiar M, Capote MA, Jarome TJJ, Lee K, Mattfeld AT, Prather R, Allen TA. Testing spatial working memory in pigs using an automated T-maze. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad010. [PMID: 38596242 PMCID: PMC10913826 DOI: 10.1093/oons/kvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 04/11/2024]
Abstract
Pigs are an important large animal model for translational clinical research but underutilized in behavioral neuroscience. This is due, in part, to a lack of rigorous neurocognitive assessments for pigs. Here, we developed a new automated T-maze for pigs that takes advantage of their natural tendency to alternate. The T-maze has obvious cross-species value having served as a foundation for cognitive theories across species. The maze (17' × 13') was constructed typically and automated with flanking corridors, guillotine doors, cameras, and reward dispensers. We ran nine pigs in (1) a simple alternation task and (2) a delayed spatial alternation task. Our assessment focused on the delayed spatial alternation task which forced pigs to wait for random delays (5, 60, 120, and 240 s) and burdened spatial working memory. We also looked at self-paced trial latencies, error types, and coordinate-based video tracking. We found pigs naturally alternated but performance declined steeply across delays (R2 = 0.84). Self-paced delays had no effect on performance suggestive of an active interference model of working memory. Positional and head direction data could differentiate subsequent turns on short but not long delays. Performance levels were stable over weeks in diverse strains and sexes, and thus provide a benchmark for future neurocognitive assessments in pigs.
Collapse
Affiliation(s)
- L M Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - D A Murphy
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - V Roldan
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - M N Moussa
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - A Draper
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - A Delgado
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - M Aguiar
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - M A Capote
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - T J J Jarome
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- School of Animal Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - K Lee
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - A T Mattfeld
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
| | - R Prather
- Division of Animal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA
| | - T A Allen
- Cognitive Neuroscience Program, Department of Psychology, Florida International University, Miami, FL, 33199, USA
- Department of Environmental Health Sciences, Robert Stempel College of Public Health, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
6
|
Ho H, Kejzar N, Sasaguri H, Saito T, Saido TC, De Strooper B, Bauza M, Krupic J. A fully automated home cage for long-term continuous phenotyping of mouse cognition and behavior. CELL REPORTS METHODS 2023; 3:100532. [PMID: 37533650 PMCID: PMC10391580 DOI: 10.1016/j.crmeth.2023.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 03/17/2023] [Accepted: 06/20/2023] [Indexed: 08/04/2023]
Abstract
Automated home-cage monitoring systems present a valuable tool for comprehensive phenotyping of natural behaviors. However, current systems often involve complex training routines, water or food restriction, and probe a limited range of behaviors. Here, we present a fully automated home-cage monitoring system for cognitive and behavioral phenotyping in mice. The system incorporates T-maze alternation, novel object recognition, and object-in-place recognition tests combined with monitoring of locomotion, drinking, and quiescence patterns, all carried out over long periods. Mice learn the tasks rapidly without any need for water or food restrictions. Behavioral characterization employs a deep convolutional neural network image analysis. We show that combined statistical properties of multiple behaviors can be used to discriminate between mice with hippocampal, medial entorhinal, and sham lesions and predict the genotype of an Alzheimer's disease mouse model with high accuracy. This technology may enable large-scale behavioral screening for genes and neural circuits underlying spatial memory and other cognitive processes.
Collapse
Affiliation(s)
- Hinze Ho
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Nejc Kejzar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan
- Department of Neurology and Neurological Science, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako, Japan
| | - Bart De Strooper
- UK-Dementia Research Institute, University College London, London, UK
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- VIB Center for Brain & Disease Research, Leuven, Belgium
| | - Marius Bauza
- Sainsbury Wellcome Centre, University College London, London, UK
| | - Julija Krupic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Bakhsh HT, Mokhtar FA, Elmaidomy AH, Aly HF, Younis EA, Alzubaidi MA, Altemani FH, Algehainy NA, Majrashi MAA, Alsenani F, Bringmann G, Abdelmohsen UR, Abdelhafez OH. Abelmoschus eculentus Seed Extract Exhibits In Vitro and In Vivo Anti-Alzheimer's Potential Supported by Metabolomic and Computational Investigation. PLANTS (BASEL, SWITZERLAND) 2023; 12:2382. [PMID: 37376007 DOI: 10.3390/plants12122382] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023]
Abstract
Abelmoschus esculentus Linn. (okra, F. Malvaceae) is a fruit widely consumed all over the world. In our study, the anti-Alzheimer's potential of A. esculentus was evaluated. An in vitro DPPH free radical assay on A. esculentus seed's total extract and AChE inhibition potential screening indicated a significant anti-Alzheimer's activity of the extract, which was confirmed through an in vivo study in an aluminum-intoxicated rat model. Additionally, in vivo results demonstrated significant improvement in Alzheimer's rats, which was confirmed by improving T-maze, beam balance tests, lower serum levels of AChE, norepinephrine, glycated end products, IL-6, and MDA. The levels of dopamine, BDNF, GSH, and TAC returned to normal values during the study. Moreover, histological investigations of brain tissue revealed that the destruction in collagen fiber nearly returns back to the normal pattern. Metabolomic analysis of the ethanolic extract of A. esculentus seeds via LC-HR-ESI-MS dereplicated ten compounds. A network pharmacology study displayed the relation between identified compounds and 136 genes, among which 84 genes related to Alzheimer's disorders, and focused on AChE, APP, BACE1, MAPT and TNF genes with interactions to all Alzheimer's disorders. Consequently, the results revealed in our study grant potential dietary elements for the management of Alzheimer's disorders.
Collapse
Affiliation(s)
- Hussain T Bakhsh
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fatma A Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia 44813, Egypt
| | - Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre (NRC), El-Bouth St., Cairo 12622, Egypt
| | - Eman A Younis
- Department of Therapeutic Chemistry, National Research Centre (NRC), El-Bouth St., Cairo 12622, Egypt
| | - Mubarak A Alzubaidi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Faisal H Altemani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Naseh A Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Mohammed Ali A Majrashi
- Department of Pharmacology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Faisal Alsenani
- Department of Pharmacognosy, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| | - Omnia Hesham Abdelhafez
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, 7 Universities Zone, New Minia 61111, Egypt
| |
Collapse
|
8
|
Bathini P, Dupanloup I, Zenaro E, Terrabuio E, Fischer A, Ballabani E, Doucey MA, Alberi L. Systemic Inflammation Causes Microglial Dysfunction With a Vascular AD phenotype. Brain Behav Immun Health 2022; 28:100568. [PMID: 36704658 PMCID: PMC9871075 DOI: 10.1016/j.bbih.2022.100568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/12/2022] [Accepted: 11/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Studies in rodents and humans have indicated that inflammation outside CNS (systemic inflammation) affects brain homeostasis contributing to neurodevelopmental disorders. Itis becoming increasingly evident that such early insults may also belinked to neurodegenerative diseases like late-onset Alzheimer's disease (AD). Importantly, lifestyle and stress, such as viral or bacterial infection causing chronic inflammation, may contribute to neurodegenerative dementia. Systemic inflammatory response triggers a cascade of neuroinflammatory responses, altering brain transcriptome, cell death characteristic of AD, and vascular dementia. Our study aimed to assess the temporal evolution of the pathological impact of systemic inflammation evoked by prenatal and early postnatal peripheral exposure of viral mimetic Polyinosinic:polycytidylic acid (PolyI:C) and compare the hippocampal transcriptomic changes with the profiles of human post-mortem AD and vascular dementia brain specimens. Methods We have engineered the PolyI:C sterile infection model in wildtype C57BL6 mice to achieve chronic low-grade systemic inflammation. We have conducted a cross-sectional analysis of aging PolyI:C and Saline control mice (3 months, 6 months, 9 months, and 16 months), taking the hippocampus as a reference brain region, and compared the brain aging phenotype to AD progression in humans with mild AD, severe AD, and Controls (CTL), in parallel to Vascular dementia (VaD) patients' specimens. Results We found that PolyI:C mice display both peripheral and central inflammation with a peak at 6 months, associated with memory deficits. The hippocampus is characterized by a pronounced and progressive tauopathy. In PolyI:C brains, microglia undergo aging-dependent morphological shifts progressively adopting a phagocytic phenotype. Transcriptomic analysis reveals a profound change in gene expression throughout aging, with a peak in differential expression at 9 months. We show that the proinflammatory marker Lcn2 is one of the genes with the strongest upregulation in PolyI:C mice upon aging. Validation in brains from patients with increasing severity of AD and VaD shows the reproducibility of some gene targets in vascular dementia specimens as compared to AD ones. Conclusions The PolyI:C model of sterile infection demonstrates that peripheral chronic inflammation causes progressive tau hyperphosphorylation, changes in microglia morphology, astrogliosis and gene reprogramming reflecting increased neuroinflammation, vascular remodeling, and the loss of neuronal functionality seen to some extent in human AD and Vascular dementia suggesting early immune insults could be crucial in neurodegenerative diseases.
Collapse
Affiliation(s)
- Praveen Bathini
- Department of Medicine, University of Fribourg, Fribourg, Switzerland,Corresponding author.
| | | | - Elena Zenaro
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Eleonora Terrabuio
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Amrei Fischer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Edona Ballabani
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | | | - Lavinia Alberi
- Department of Medicine, University of Fribourg, Fribourg, Switzerland,Swiss Integrative Center for Human Health, Fribourg, Switzerland,Corresponding author. Swiss Integrative Centre of Human Health, Passage du Cardinal 13B, CH-1700, Fribourg, Switzerland.
| |
Collapse
|
9
|
Kohler J, Mei J, Banneke S, Winter Y, Endres M, Emmrich JV. Assessing spatial learning and memory in mice: Classic radial maze versus a new animal-friendly automated radial maze allowing free access and not requiring food deprivation. Front Behav Neurosci 2022; 16:1013624. [PMID: 36248032 PMCID: PMC9562048 DOI: 10.3389/fnbeh.2022.1013624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The radial arm maze (RAM) is a common behavioral test to quantify spatial learning and memory in rodents. Prior attempts to refine the standard experimental setup have been insufficient. Previously, we demonstrated the feasibility of a fully automated, voluntary, and stress-free eight-arm RAM not requiring food or water deprivation. Here, we compared this newly developed refined RAM to a classic manual experimental setup using 24 female 10-12 weeks old C57BL/6J mice. We used a lipopolysaccharide (LPS)-induced model of systemic inflammation to examine long-term cognitive impairment for up to 13 weeks following LPS injection. Both mazes demonstrated robust spatial learning performance during the working memory paradigm. The refined RAM detected spatial learning and memory deficits among LPS-treated mice in the working memory paradigm, whereas the classic RAM detected spatial learning and memory deficits only in the combined working/reference memory paradigm. In addition, the refined RAM allowed for quantification of an animal's overall exploratory behavior and day/night activity pattern. While our study highlights important aspects of refinement of the new setup, our comparison of methods suggests that both RAMs have their respective merits depending on experimental requirements.
Collapse
Affiliation(s)
- Joel Kohler
- Department of Neurology and Experimental Neurology, Neurocure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jie Mei
- Department of Neurology and Experimental Neurology, Neurocure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada
- Department of Computer Science, University of Western Ontario, London, ON, Canada
| | - Stefanie Banneke
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - York Winter
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Matthias Endres
- Department of Neurology and Experimental Neurology, Neurocure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg School for Regenerative Therapies (BSRT), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Julius Valentin Emmrich
- Department of Neurology and Experimental Neurology, Neurocure Cluster of Excellence, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Center for Stroke Research, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Medical Faculty and University Hospital, Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
10
|
Elmaidomy AH, Abdelmohsen UR, Alsenani F, Aly HF, Eldin Shams SG, Younis EA, Ahmed KA, Sayed AM, Owis AI, Afifi N, El Amir D. The anti-Alzheimer potential of Tamarindus indica: an in vivo investigation supported by in vitro and in silico approaches. RSC Adv 2022; 12:11769-11785. [PMID: 35481086 PMCID: PMC9015909 DOI: 10.1039/d2ra01340a] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 01/06/2023] Open
Abstract
Tamarindus indica Linn. (Tamarind, F. Fabaceae) is one of the most widely consumed fruits in the world. A crude extract and different fractions of T. indica (using n-hexane, dichloromethane, ethyl acetate, and n-butanol) were evaluated in vitro with respect to their DPPH scavenging and AchE inhibition activities. The results showed that the dichloromethane and ethyl acetate fractions showed the highest antioxidant activities, with 84.78 and 86.96% DPPH scavenging at 0.10 μg mL-1. The n-hexane, dichloromethane, and ethyl acetate fractions inhibited AchE activity in a dose-dependent manner, and the n-hexane fraction showed the highest inhibition at 20 μg mL-1. The results were confirmed by using n-hexane, dichloromethane, and ethyl acetate fractions in vivo to regress the neurodegenerative features of Alzheimer's dementia in an aluminum-intoxicated rat model. Phytochemical investigations of those three fractions afforded two new diphenyl ether derivative compounds 1-2, along with five known ones (3-7). The structures of the isolated compounds were confirmed via 1D and 2D NMR and HRESIMS analyses. The isolated compounds were subjected to extensive in silico-based investigations to putatively highlight the most probable compounds responsible for the anti-Alzheimer activity of T. indica. Inverse docking studies followed by molecular dynamics simulation (MDS) and binding free energy (ΔG) investigations suggested that both compounds 1 and 2 could be promising AchE inhibitors. The results presented in this study may provide potential dietary supplements for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Abeer H Elmaidomy
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 7 Universities Zone New Minia 61111 Egypt
| | - Faisal Alsenani
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University Makkah 21955 Saudi Arabia
| | - Hanan F Aly
- Therapeutic Chemistry Department, National Research Centre (NRC) El-Bouth St. P.O. 12622 Cairo Egypt
| | - Shams Gamal Eldin Shams
- Therapeutic Chemistry Department, National Research Centre (NRC) El-Bouth St. P.O. 12622 Cairo Egypt
| | - Eman A Younis
- Therapeutic Chemistry Department, National Research Centre (NRC) El-Bouth St. P.O. 12622 Cairo Egypt
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University Giza 12211 Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University Beni-Suef 62513 Egypt
| | - Asmaa I Owis
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development Cairo Egypt
| | - Naglaa Afifi
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| | - Dalia El Amir
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62514 Egypt
| |
Collapse
|
11
|
McDonald BZ, Gee CC, Kievit FM. The Nanotheranostic Researcher’s Guide for Use of Animal Models of Traumatic Brain Injury. JOURNAL OF NANOTHERANOSTICS 2021; 2:224-268. [PMID: 35655793 PMCID: PMC9159501 DOI: 10.3390/jnt2040014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Traumatic brain injury (TBI) is currently the leading cause of injury-related morbidity and mortality worldwide, with an estimated global cost of USD 400 billion annually. Both clinical and preclinical behavioral outcomes associated with TBI are heterogeneous in nature and influenced by the mechanism and frequency of injury. Previous literature has investigated this relationship through the development of animal models and behavioral tasks. However, recent advancements in these methods may provide insight into the translation of therapeutics into a clinical setting. In this review, we characterize various animal models and behavioral tasks to provide guidelines for evaluating the therapeutic efficacy of treatment options in TBI. We provide a brief review into the systems utilized in TBI classification and provide comparisons to the animal models that have been developed. In addition, we discuss the role of behavioral tasks in evaluating outcomes associated with TBI. Our goal is to provide those in the nanotheranostic field a guide for selecting an adequate TBI animal model and behavioral task for assessment of outcomes to increase research in this field.
Collapse
|
12
|
Kumar SP, Babu PP. NADPH Oxidase: a Possible Therapeutic Target for Cognitive Impairment in Experimental Cerebral Malaria. Mol Neurobiol 2021; 59:800-820. [PMID: 34782951 DOI: 10.1007/s12035-021-02598-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Long-term cognitive impairment associated with seizure-induced hippocampal damage is the key feature of cerebral malaria (CM) pathogenesis. One-fourth of child survivors of CM suffer from long-lasting neurological deficits and behavioral anomalies. However, mechanisms on hippocampal dysfunction are unclear. In this study, we elucidated whether gp91phox isoform of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) (a potent marker of oxidative stress) mediates hippocampal neuronal abnormalities and cognitive dysfunction in experimental CM (ECM). Mice symptomatic to CM were rescue treated with artemether monotherapy (ARM) and in combination with apocynin (ARM + APO) adjunctive based on scores of Rapid Murine Come behavior Scale (RMCBS). After a 30-day survivability period, we performed Barnes maze, T-maze, and novel object recognition cognitive tests to evaluate working and reference memory in all the experimental groups except CM. Sensorimotor tests were conducted in all the cohorts to assess motor coordination. We performed Golgi-Cox staining to illustrate cornu ammonis-1 (CA1) pyramidal neuronal morphology and study overall hippocampal neuronal density changes. Further, expression of NOX2, NeuN (neuronal marker) in hippocampal CA1 and dentate gyrus was determined using double immunofluorescence experiments in all the experimental groups. Mice administered with ARM monotherapy and APO adjunctive treatment exhibited similar survivability. The latter showed better locomotor and cognitive functions, reduced ROS levels, and hippocampal NOX2 immunoreactivity in ECM. Our results show a substantial increase in hippocampal NeuN immunoreactivity and dendritic arborization in ARM + APO cohorts compared to ARM-treated brain samples. Overall, our study suggests that overexpression of NOX2 could result in loss of hippocampal neuronal density and dendritic spines of CA1 neurons affecting the spatial working and reference memory during ECM. Notably, ARM + APO adjunctive therapy reversed the altered neuronal morphology and oxidative damage in hippocampal neurons restoring long-term cognitive functions after CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Phanithi Prakash Babu
- F-23/71, Neuroscience Laboratory, Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India.
| |
Collapse
|
13
|
Ano Y, Ohya R, Takashima A, Uchida K, Nakayama H. β-Lactolin Reduces Age-Related Inflammation and Cognitive Decline. Front Nutr 2021; 8:724134. [PMID: 34497823 PMCID: PMC8419277 DOI: 10.3389/fnut.2021.724134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
With the rapid increase in aging populations worldwide, there has been an increase in demand for preventive and therapeutic measures for age-related cognitive decline and dementia. Epidemiological studies show that consumption of dairy products reduces the risk for cognitive decline and dementia in the elderly. We have previously demonstrated in randomized trials that the consumption of β-lactolin, a whey-derived Gly-Thr-Trp-Tyr lactotetrapeptide, improves cognitive function in older adults. Orally administered β-lactolin is delivered to the brain and inhibits monoamine oxidase, resulting in alleviation of memory impairment. However, there is currently no evidence of the effects of long-term β-lactolin intake on aging. Here, we found that the discrimination index in the novel object recognition test for object recognition memory was reduced in mice aged 20 months compared with that in young mice, indicating that age-related cognitive decline was induced in the aged mice; in aged mice fed β-lactolin for 3 months, memory impairment was subsequently alleviated. In aged mice, impairment of light/dark activity cycles was found to be induced, which was subsequently alleviated by β-lactolin consumption. Additionally, the number of activated microglia in the hippocampus and cortex and the production of cytokines (tumor necrosis factor-α, macrophage inflammatory protein-1α, and macrophage chemoattractant protein-1) were increased in aged mice compared with those in young mice but were reduced in aged mice fed β-lactolin. The age-related hippocampal atrophy was improved in aged mice fed β-lactolin. Cytochrome c levels in the hippocampus and cortex were increased in aged mice compared with those in young mice but were also reduced by β-lactolin consumption. These results suggest that β-lactolin consumption prevents neural inflammation and alleviates aging-related cognitive decline.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd., Kanagawa, Japan
| | - Rena Ohya
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Kirin Central Research Institute, Kirin Holdings Company Ltd., Kanagawa, Japan
| | | | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Nakayama
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
van Heusden FC, Palacín I Bonsón S, Stiedl O, Smit AB, van Kesteren RE. Longitudinal Assessment of Working Memory Performance in the APPswe/PSEN1dE9 Mouse Model of Alzheimer's Disease Using an Automated Figure-8-Maze. Front Behav Neurosci 2021; 15:655449. [PMID: 34054444 PMCID: PMC8155296 DOI: 10.3389/fnbeh.2021.655449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/29/2021] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder, with a long preclinical and prodromal phase. To enable the study of disease mechanisms, AD has been modeled in many transgenic animal lines and cognitive functioning has been tested using several widely used behavioral tasks. These tasks, however, are not always suited for repeated longitudinal testing and are often associated with acute stress such as animal transfer, handling, novelty, or stress related to the task itself. This makes it challenging to relate cognitive dysfunction in animal models to cognitive decline observed in AD patients. Here, we designed an automated figure-8-maze (F8M) to test mice in a delayed alternation task (DAT) in a longitudinal manner. Mice were rewarded when they entered alternate sides of the maze on subsequent trials. Automation as well as connection of the F8M set-up with a home cage reduces experimenter interference and minimizes acute stress, thus making it suitable for longitudinal testing and facilitating clinical translation. In the present study, we monitored cognitive functioning of 2-month-old APPswe/PSEN1dE9 (APP/PS1) mice over a period of 4 months. The percentage of correct responses in the DAT did not differ between wild-type and transgenic mice from 2 to 6 months of age. However, 6-month-old mice displayed an increase in the number of consecutive incorrect responses. These results demonstrate the feasibility of longitudinal testing using an automated F8M and suggest that APP/PS1 mice are not impaired at delayed spatial alternation until 6 months of age under the current experimental conditions.
Collapse
Affiliation(s)
- Fran C van Heusden
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sara Palacín I Bonsón
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Oliver Stiedl
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
15
|
Habedank A, Kahnau P, Lewejohann L. Alternate without alternative: neither preference nor learning explains behaviour of C57BL/6J mice in the T-maze. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-bja10085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In rodents, the T-maze is commonly used to investigate spontaneous alternating behaviour, but it can also be used to investigate preference between goods. However, for T-maze preference tests with mice there is no recommended protocol and researchers frequently report reproduction difficulties. Here, we tried to develop an efficient protocol with female C57BL/6J CrL mice for preference tests. We used two different designs, adapting habituation, cues and trial timing. However, in both experiments mice did not show any preference, although we used goods which we knew mice find rewarding. Instead, they alternated choices indicating that exploratory behaviour overruled preference. We argue that this behavioural strategy has evolved as an adaptive trait in saturated conditions where there is no need to take the reward immediately. Therefore, we deem the T-maze unsuitable for preference testing with the procedures we used here.
Collapse
Affiliation(s)
- Anne Habedank
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8–10, D-10589 Berlin, Germany
| | - Pia Kahnau
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8–10, D-10589 Berlin, Germany
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8–10, D-10589 Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, D-14163 Berlin, Germany
| |
Collapse
|
16
|
Manzhalii EG, Falalyeyeva TM, Moyseyenko VO, Weiskirchen R, Stremmel W. Elevation of Autoantibodies to Cerebral Proteins in Hepatic Encephalopathy: Another Pathogenic Factor? Dig Dis 2021; 40:232-238. [PMID: 33839722 DOI: 10.1159/000516412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The pathophysiology of hepatic encephalopathy (HE) is incompletely understood. It remains elusive how the contributing factors of neuronal ammonia accumulation, cell swelling, and inflammation interact. OBJECTIVE The objective of this study was to find the correlation between neuronal autoantibody levels and the degree of HE as first indication of immune-mediated pathogenesis. METHODS We investigated serum autoantibody levels of representative brain proteins in patients with HE as well as in an experimental rat model with cirrhosis and HE after carbon tetrachloride exposure. They were examined in relation to presence of HE and the degree of neurological impairment evaluated by quantitative scores. RESULTS In HE, an increase in all of the examined antibodies was observed in serum. The grade of antibody elevation correlated to the degree of encephalopathy registered by quantitative evaluation of brain dysfunction. CONCLUSION The degree of HE parallels neuronal autoantibody elevation. In case a causal relationship could finally be established, it adds to the understanding of HE and may open a new perspective for treatment of this handicapping condition by immunosuppressive strategies.
Collapse
Affiliation(s)
- Elina G Manzhalii
- Bogomolets National Medical University, Ministry of Health of Ukraine, Kiev, Ukraine
| | - Tetyana M Falalyeyeva
- Institute of Biology and Medicine, Taras Shevchenko National University of Kyiv, Kiev, Ukraine
| | | | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen, Aachen, Germany
| | | |
Collapse
|
17
|
Losartan Improves Memory, Neurogenesis and Cell Motility in Transgenic Alzheimer's Mice. Pharmaceuticals (Basel) 2021; 14:ph14020166. [PMID: 33672482 PMCID: PMC7923419 DOI: 10.3390/ph14020166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022] Open
Abstract
Angiotensin receptor blockers (ARBs) have demonstrated multiple neuroprotective benefits in Alzheimer’s disease (AD) models. However, their beneficial effects on memory deficits, cholinergic activity, neurogenesis and Amyloid beta (Aβ) clearance reveal significant interstudy variability. The delivery route can impact not only delivery but also targeting and therapeutic efficacy of ARBs. Our previous findings on the beneficial effects of intranasally delivered losartan in the APP/PS1 model of AD prompted us to explore the influence of the delivery route by employing here the systemic administration of losartan. Consistent with our previous results with intranasal losartan, repeated intraperitoneal administration (10 mg/kg) resulted in a remarkable decrease in Aβ plaques and soluble Aβ42, as well as inflammatory cytokines (IL-2, IL-6 and TNFα). The Aβ reduction can be ascribed to its facilitated degradation by neprilysin and diminished generation by BACE1. Losartan increased neurogenesis in vivo and in vitro and improved migratory properties of astrocytes isolated from adult transgenic AD mice. In summary, this data together with our previous results suggest therapeutic features of losartan which are independent of delivery route. The improvement of cell motility of Aβ-affected astrocytes by losartan deserves further in vivo investigation, which may lead to new strategies for AD treatment.
Collapse
|
18
|
Richter SH. Automated Home-Cage Testing as a Tool to Improve Reproducibility of Behavioral Research? Front Neurosci 2020; 14:383. [PMID: 32390795 PMCID: PMC7193758 DOI: 10.3389/fnins.2020.00383] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/30/2020] [Indexed: 01/08/2023] Open
|
19
|
Chang P, Bush D, Schorge S, Good M, Canonica T, Shing N, Noy S, Wiseman FK, Burgess N, Tybulewicz VLJ, Walker MC, Fisher EMC. Altered Hippocampal-Prefrontal Neural Dynamics in Mouse Models of Down Syndrome. Cell Rep 2020; 30:1152-1163.e4. [PMID: 31995755 PMCID: PMC6996020 DOI: 10.1016/j.celrep.2019.12.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/02/2019] [Accepted: 12/17/2019] [Indexed: 01/26/2023] Open
Abstract
Altered neural dynamics in the medial prefrontal cortex (mPFC) and hippocampus may contribute to cognitive impairments in the complex chromosomal disorder Down syndrome (DS). Here, we demonstrate non-overlapping behavioral differences associated with distinct abnormalities in hippocampal and mPFC electrophysiology during a canonical spatial working memory task in three partially trisomic mouse models of DS (Dp1Tyb, Dp10Yey, and Dp17Yey) that together cover all regions of homology with human chromosome 21 (Hsa21). Dp1Tyb mice show slower decision-making (unrelated to the gene dose of DYRK1A, which has been implicated in DS cognitive dysfunction) and altered theta dynamics (reduced frequency, increased hippocampal-mPFC coherence, and increased modulation of hippocampal high gamma); Dp10Yey mice show impaired alternation performance and reduced theta modulation of hippocampal low gamma; and Dp17Yey mice are not significantly different from the wild type. These results link specific hippocampal and mPFC circuit dysfunctions to cognitive deficits in DS models and, importantly, map them to discrete regions of Hsa21.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Daniel Bush
- UCL Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London WC1N 3AZ, UK
| | - Stephanie Schorge
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Mark Good
- School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Tara Canonica
- School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Cardiff CF10 3AT, UK
| | - Nathanael Shing
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Suzanna Noy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Frances K Wiseman
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Neil Burgess
- UCL Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London WC1N 3AZ, UK
| | - Victor L J Tybulewicz
- Francis Crick Institute, London NW1 1AT, UK; Department of Medicine, Imperial College, London W12 0NN, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK.
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
20
|
Kapolowicz MR, Thompson LT. Plasticity in Limbic Regions at Early Time Points in Experimental Models of Tinnitus. Front Syst Neurosci 2020; 13:88. [PMID: 32038184 PMCID: PMC6992603 DOI: 10.3389/fnsys.2019.00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 01/09/2023] Open
Abstract
Tinnitus is one of the most prevalent auditory disorders worldwide, manifesting in both chronic and acute forms. The pathology of tinnitus has been mechanistically linked to induction of harmful neural plasticity stemming from traumatic noise exposure, exposure to ototoxic medications, input deprivation from age-related hearing loss, and in response to injuries or disorders damaging the conductive apparatus of the ears, the cochlear hair cells, the ganglionic cells of the VIIIth cranial nerve, or neurons of the classical auditory pathway which link the cochlear nuclei through the inferior colliculi and medial geniculate nuclei to auditory cortices. Research attempting to more specifically characterize the neural plasticity occurring in tinnitus have used a wide range of techniques, experimental paradigms, and sampled at different windows of time to reach different conclusions about why and which specific brain regions are crucial in the induction or ongoing maintenance of tinnitus-related plasticity. Despite differences in experimental methodologies, evidence reveals similar findings that strongly suggest that immediate and prolonged activation of non-classical auditory structures (i.e., amygdala, hippocampus, and cingulate cortex) may contribute to the initiation and development of tinnitus in addition to the ongoing maintenance of this devastating condition. The overarching focus of this review, therefore, is to highlight findings from the field supporting the hypothesis that abnormal early activation of non-classical sensory limbic regions are involved in tinnitus induction, with activation of these regions continuing to occur at different temporal stages. Since initial/early stages of tinnitus are difficult to control and to quantify in human clinical populations, a number of different animal paradigms have been developed and assessed in experimental investigations. Reviews of traumatic noise exposure and ototoxic doses of sodium salicylate, the most prevalently used animal models to induce experimental tinnitus, indicate early limbic system plasticity (within hours, minutes, or days after initial insult), supports subsequent plasticity in other auditory regions, and contributes to the pathophysiology of tinnitus. Understanding this early plasticity presents additional opportunities for intervention to reduce or eliminate tinnitus from the human condition.
Collapse
Affiliation(s)
- Michelle R. Kapolowicz
- Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Lucien T. Thompson
- Department of Neurobiology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
21
|
An incremental training method with automated, extendable maze for training spatial behavioral tasks in rodents. Sci Rep 2019; 9:12589. [PMID: 31467371 PMCID: PMC6715809 DOI: 10.1038/s41598-019-48965-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/02/2019] [Indexed: 11/29/2022] Open
Abstract
We present a training procedure and maze equipped with sensors and automated feeders for training spatial behavioral tasks in rodents. The maze can be transformed from an enclosed box to a maze of variable dimensions. The modularity of the protocol and setup makes it highly flexible and suitable for training a wide variety of spatial tasks, and facilitates incremental training stages of increasing maze size for more efficient learning. The apparatus, in its software and hardware, is able to adapt to animal performance, adjusting task challenges and difficulty. Two different methods of automatic behavioral scoring are evaluated against manual methods. Sensors embedded in the maze provide information regarding the order of reward locations visited and the time between the activation of the cue via the nose-poke and the activation of the reward location sensors. The distributions of these reaction times differ between correct and incorrect trials, providing an index of behavior and motivation. The automated maze system allows the trainer to operate and monitor the task away from the experimental set-up, minimizing human interference and improving the reproducibility of the experiment. We show that our method succeeds in training a binary forced-choice task in rats.
Collapse
|
22
|
Zou S, Li CT. High-Throughput Automatic Training System for Spatial Working Memory in Free-Moving Mice. Neurosci Bull 2019; 35:389-400. [PMID: 30977042 DOI: 10.1007/s12264-019-00370-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/12/2018] [Indexed: 10/27/2022] Open
Abstract
Efficient behavioral assays are crucial for understanding the neural mechanisms of cognitive functions. Here, we designed a high-throughput automatic training system for spatial cognition (HASS) for free-moving mice. Mice were trained to return to the home arm and remain there during a delay period. Software was designed to enable automatic training in all its phases, including habituation, shaping, and learning. Using this system, we trained mice to successfully perform a spatially delayed nonmatch to sample task, which tested spatial cognition, working memory, and decision making. Performance depended on the delay duration, which is a hallmark of working memory tasks. The HASS enabled a human operator to train more than six mice simultaneously with minimal intervention, therefore greatly enhancing experimental efficiency and minimizing stress to the mice. Combined with the optogenetic method and neurophysiological techniques, the HASS will be useful in deciphering the neural circuitry underlying spatial cognition.
Collapse
Affiliation(s)
- Shimin Zou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyu Tony Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China. .,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Helping-Like Behaviour in Mice Towards Conspecifics Constrained Inside Tubes. Sci Rep 2019; 9:5817. [PMID: 30967573 PMCID: PMC6456590 DOI: 10.1038/s41598-019-42290-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 03/27/2019] [Indexed: 12/02/2022] Open
Abstract
Prosocial behaviour, including helping behaviour, benefits others. Recently, helping-like behaviour has been observed in rats, but whether it is oriented towards rescue, social contact with others, or other goals remains unclear. Therefore, we investigated whether helping-like behaviour could be observed in mice similar to that in rats. Because mice are social animals widely used in neuroscience, the discovery of helping-like behaviour in mice would be valuable in clarifying the psychological and biological mechanisms underlying pro-sociability. We constrained mice inside tubes. Subject mice were allowed to move freely in cages with tubes containing constrained conspecifics. The subject mice released both cagemates and stranger mice but did not engage in opening empty tubes. Furthermore, the same behaviour was observed under aversive conditions and with anesthetised conspecifics. Interestingly, hungry mice opened the tubes containing food before engaging in tube-opening behaviour to free constrained conspecifics. Mice showed equal preferences for constrained and freely moving conspecifics. We demonstrated for the first time that mice show tube-opening behaviour. Furthermore, we partly clarified the purpose and motivation of this behaviour. An effective mouse model for helping-like behaviour would facilitate research on the mechanisms underlying prosocial behaviour.
Collapse
|
24
|
Ano Y, Hoshi A, Ayabe T, Ohya R, Uchida S, Yamada K, Kondo K, Kitaoka S, Furuyashiki T. Iso-α-acids, the bitter components of beer, improve hippocampus-dependent memory through vagus nerve activation. FASEB J 2019; 33:4987-4995. [PMID: 30601670 PMCID: PMC6436653 DOI: 10.1096/fj.201801868rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/10/2018] [Indexed: 11/11/2022]
Abstract
Iso-α-acids (IAAs) are hop-derived bitter acids of beer. Epidemiologic studies suggest that moderate alcohol consumption is beneficial for cognitive function, but they do not show the ingredients in alcoholic beverages. Previously, we reported that long-term consumption of IAAs prevents inflammation and Alzheimer pathologies in mice, but their effects on cognitive function have not been evaluated. In the present study, we demonstrated that the consumption of IAAs improves spatial and object recognition memory functions not only in normal Crl:CD1(ICR) male mice but also in mice with pharmacologically induced amnesia. IAA consumption increased the total and extracellular levels of dopamine in the hippocampus of mice and Sprague-Dawley male rats, respectively. Dopamine D1 receptor antagonist treatment and knockdown of dopamine D1 receptor expression in the hippocampus attenuated IAA-induced spatial memory improvement. Furthermore, vagotomy attenuated the effects of IAAs in improving spatial and object recognition memory functions and increasing the total level of dopamine in the hippocampus. These results suggest that the consumption of IAAs activates dopamine D1 receptor-signaling in the hippocampus in a vagus nerve-dependent manner and, consequently, improves spatial and object recognition memory functions. Vagal activation with food components including IAAs may be an easy and safe approach to improve cognitive functions.-Ano, Y., Hoshi, A., Ayabe, T., Ohya, R., Uchida, S., Yamada, K., Kondo, K., Kitaoka, S., Furuyashiki, T. Iso-α-acids, the bitter components of beer, improve hippocampus-dependent memory through vagus nerve activation.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Ayaka Hoshi
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Tatsuhiro Ayabe
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Rena Ohya
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Shinichi Uchida
- Research and Development Division, Central Nervous System Research Laboratories, Central Nervous System (CNS) Research and Development Unit, Kyowa Hakko Kirin Company, Limited, Shizuoka, Japan
| | - Koji Yamada
- Research and Development Division, Central Nervous System Research Laboratories, Central Nervous System (CNS) Research and Development Unit, Kyowa Hakko Kirin Company, Limited, Shizuoka, Japan
| | - Keiji Kondo
- Research Laboratories for Health Science and Food Technologies, Kirin Company, Limited, Yokohama-shi, Japan
| | - Shiho Kitaoka
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe-shi, Japan; and
- Japan Agency for Medical Research and Development–Centers of Research Excellence in Science and Technology (AMED–CREST) Tokyo, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe-shi, Japan; and
- Japan Agency for Medical Research and Development–Centers of Research Excellence in Science and Technology (AMED–CREST) Tokyo, Japan
| |
Collapse
|
25
|
Aharoni R, Schottlender N, Bar-Lev DD, Eilam R, Sela M, Tsoory M, Arnon R. Cognitive impairment in an animal model of multiple sclerosis and its amelioration by glatiramer acetate. Sci Rep 2019; 9:4140. [PMID: 30858445 PMCID: PMC6412002 DOI: 10.1038/s41598-019-40713-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/21/2019] [Indexed: 01/28/2023] Open
Abstract
The severe motor impairment in the MS animal model experimental autoimmune encephalomyelitis (EAE) obstructs the assessment of cognitive functions. We developed an experimental system that evaluates memory faculties in EAE-affected mice, irrespective of their motor performance, enabling the assessment of cognitive impairments along the disease duration, the associated brain damage, and the consequences of glatiramer acetate (GA) treatment on these manifestations. The delayed-non-matching to sample (DNMS) T-maze task, testing working and long term memory was adapted and utilized. Following the appearance of clinical manifestations task performances of the EAE-untreated mice drastically declined. Cognitive impairments were associated with disease severity, as indicated by a significant correlation between the T-maze performance and the clinical symptoms in EAE-untreated mice. GA-treatment conserved cognitive functions, so that despite their exhibited mild motor impairments, the treated mice performed similarly to naïve controls. The cognitive deficit of EAE-mice coincided with inflammatory and neurodegenerative damage to the frontal cortex and the hippocampus; these damages were alleviated by GA-treatment. These combined findings indicate that in addition to motor impairment, EAE leads to substantial impairment of cognitive functions, starting at the early stages and increasing with disease aggravation. GA-treatment, conserves cognitive capacities and prevents its disease related deterioration.
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel.
| | - Nofar Schottlender
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Dekel D Bar-Lev
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Raya Eilam
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Michael Sela
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Michael Tsoory
- Department of Veterinary Resources, The Weizmann Institute of Science, Rehovot, 761001, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, 761001, Israel.
| |
Collapse
|
26
|
Tryptophan-Tyrosine Dipeptide, the Core Sequence of β-Lactolin, Improves Memory by Modulating the Dopamine System. Nutrients 2019; 11:nu11020348. [PMID: 30736353 PMCID: PMC6412195 DOI: 10.3390/nu11020348] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/02/2019] [Accepted: 02/03/2019] [Indexed: 02/07/2023] Open
Abstract
Tryptophan-tyrosine (WY)-related peptides including the β-lactopeptide of the glycine-threonine-tryptophan-tyrosine peptide, β-lactolin, improve spatial memory. However, whether and how the WY dipeptide as the core sequence in WY-related peptides improves memory functions has not been investigated. This study assessed the pharmacological effects of the WY dipeptide on memory impairment to elucidate the mechanisms. Here, we showed that oral administration of dipeptides of WY, tryptophan-methionine (WM), tryptophan-valine, tryptophan-leucine, and tryptophan-phenylalanine improved spontaneous alternation of the Y-maze test in scopolamine-induced amnesic mice. In contrast, tyrosine-tryptophan, methionine-tryptophan, tryptophan, tyrosine, and methionine had no effect. These results indicated that the conformation of dipeptides with N-terminal tryptophan is required for their memory improving effects. WY dipeptide inhibited the monoamine oxidase B activity in vitro and increased dopamine levels in the hippocampus and frontal cortex, whereas tryptophan did not cause these effects. In addition, the treatment with SCH-23390, a dopamine D1-like receptor antagonist, and the knockdown of the hippocampal dopamine D1 receptor partially attenuated the memory improvement induced by the WY dipeptide. Importantly, WY dipeptide improved the spontaneous alternations of the Y-maze test in aged mice. These results suggest that the WY dipeptide restores memory impairments by augmenting dopaminergic activity. The development of supplements rich in these peptides might help to prevent age-related cognitive decline.
Collapse
|
27
|
Ano Y, Ohya R, Kondo K, Nakayama H. Iso-α-acids, Hop-Derived Bitter Components of Beer, Attenuate Age-Related Inflammation and Cognitive Decline. Front Aging Neurosci 2019; 11:16. [PMID: 30778295 PMCID: PMC6369178 DOI: 10.3389/fnagi.2019.00016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/17/2019] [Indexed: 01/18/2023] Open
Abstract
With the aging population rapidly increasing worldwide, preventive measures and treatments for age-related cognitive decline and dementia are of utmost importance. We have previously demonstrated that the consumption of iso-α-acids (IAA), which are hop-derived bitter compounds in beer, prevents the formation of disease pathology in a transgenic mouse model of Alzheimer’s disease (AD). However, the effect of IAA consumption on age-related cognitive decline is unknown. In the present study, we examined the effect of long-term and short-term dietary consumption of IAA, on age-related memory impairments and inflammation in the hippocampus of aged mice. When compared with young mice, aged mice showed impairment in spatial working memory during the Y-maze spontaneous alternation test, impairment in object recognition memory during the novel object recognition test (NORT), a pro-inflammatory hippocampal microglial phenotype with increased CD86 expression and inflammatory cytokine production, increased levels of glutamate and amyloid β1–42, and decreased levels of dopamine (DA). In aged mice fed IAA for 3 months, the age-related alterations in memory, microglial inflammation, and glutamate, amyloid β1–42, and DA levels were all significantly attenuated. Additionally, the oral administration of IAA for 7 days in aged mice with memory impairment, also improved spatial and object recognition memory. These results suggest that IAA consumption prevents inflammation in the hippocampus and ameliorates age-related cognitive decline.
Collapse
Affiliation(s)
- Yasuhisa Ano
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd, Yokohama, Japan
| | - Rena Ohya
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd, Yokohama, Japan
| | - Keiji Kondo
- Research Laboratories for Health Science & Food Technologies, Kirin Company Ltd, Yokohama, Japan
| | - Hiroyuki Nakayama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
28
|
Kozareva DA, Foley T, Moloney GM, Cryan JF, Nolan YM. TLX knockdown in the dorsal dentate gyrus of juvenile rats differentially affects adolescent and adult behaviour. Behav Brain Res 2018; 360:36-50. [PMID: 30481511 DOI: 10.1016/j.bbr.2018.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/23/2018] [Accepted: 11/23/2018] [Indexed: 12/27/2022]
Abstract
The orphan nuclear receptor TLX is predominantly expressed in the central nervous system and is an important factor regulating the maintenance and self-renewal of neural stem cells from embryonic development through adulthood. In adolescence and adulthood, TLX expression is restricted to the neurogenic niches of the brain: the dentate gyrus of the hippocampus and the subventricular zone. The adolescent period is critical for maturation of the hippocampus with heightened levels of neurogenesis observed in rodents. Therefore, we investigated whether lentiviral silencing of TLX expression (TLX knockdown) in the dorsal dentate gyrus of juvenile rats incurred differential impairments in behaviour during late adolescence and adulthood. Our results showed that knockdown of TLX in the dorsal dentate gyrus led to a decrease in cell proliferation in the dorsal but not ventral dentate gyrus. At a behavioural level we observed differential effects in adolescence and adulthood across a number of parameters. A hyperactive phenotype was present in adolescent but not adult TLX knockdown rats, and an increase in immobility during adolescence and in swimming frequency during adulthood was observed in the forced swim test. There was an increased defecation frequency in the open field during adulthood but not adolescence. There were no changes in cognitive performance on hippocampus-dependent tasks or in anxiety-related behaviours. In conclusion, silencing of TLX in the dorsal dentate gyrus led to impairments in hippocampal-independent behaviours which either did not persist or were reversed during adulthood. The current data highlight the temporal importance and function of the nuclear receptor TLX during development.
Collapse
Affiliation(s)
- Danka A Kozareva
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Tara Foley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
29
|
Bendorius M, Po C, Muller S, Jeltsch-David H. From Systemic Inflammation to Neuroinflammation: The Case of Neurolupus. Int J Mol Sci 2018; 19:E3588. [PMID: 30428632 PMCID: PMC6274746 DOI: 10.3390/ijms19113588] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 12/17/2022] Open
Abstract
It took decades to arrive at the general consensus dismissing the notion that the immune system is independent of the central nervous system. In the case of uncontrolled systemic inflammation, the relationship between the two systems is thrown off balance and results in cognitive and emotional impairment. It is specifically true for autoimmune pathologies where the central nervous system is affected as a result of systemic inflammation. Along with boosting circulating cytokine levels, systemic inflammation can lead to aberrant brain-resident immune cell activation, leakage of the blood⁻brain barrier, and the production of circulating antibodies that cross-react with brain antigens. One of the most disabling autoimmune pathologies known to have an effect on the central nervous system secondary to the systemic disease is systemic lupus erythematosus. Its neuropsychiatric expression has been extensively studied in lupus-like disease murine models that develop an autoimmunity-associated behavioral syndrome. These models are very useful for studying how the peripheral immune system and systemic inflammation can influence brain functions. In this review, we summarize the experimental data reported on murine models developing autoimmune diseases and systemic inflammation, and we explore the underlying mechanisms explaining how systemic inflammation can result in behavioral deficits, with a special focus on in vivo neuroimaging techniques.
Collapse
Affiliation(s)
- Mykolas Bendorius
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| | - Chrystelle Po
- ICube UMR 7357, Université de Strasbourg/CNRS, Fédération de Médecine Translationnelle de Strasbourg, 67000 Strasbourg, France.
| | - Sylviane Muller
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
- University of Strasbourg Institute for Advanced Study (USIAS), 67000 Strasbourg, France.
| | - Hélène Jeltsch-David
- UMR 7242 Biotechnologie et Signalisation Cellulaire, École Supérieure de Biotechnologie de Strasbourg (ESBS), Laboratoire d'Excellence Médalis, Université de Strasbourg/CNRS, 67412 Illkirch, France.
| |
Collapse
|
30
|
Ahloy-Dallaire J, Klein JD, Davis JK, Garner JP. Automated monitoring of mouse feeding and body weight for continuous health assessment. Lab Anim 2018; 53:342-351. [PMID: 30286683 DOI: 10.1177/0023677218797974] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Routine health assessment of laboratory rodents can be improved using automated home cage monitoring. Continuous, non-stressful, objective assessment of rodents unaware that they are being watched, including during their active dark period, reveals behavioural and physiological changes otherwise invisible to human caretakers. We developed an automated feeder that tracks feed intake, body weight, and physical appearance of individual radio frequency identification-tagged mice in social home cages. Here, we experimentally induce illness via lipopolysaccharide challenge and show that this automated tracking apparatus reveals sickness behaviour (reduced food intake) as early as 2-4 hours after lipopolysaccharide injection, whereas human observers conducting routine health checks fail to detect a significant difference between sick mice and saline-injected controls. Continuous automated monitoring additionally reveals pronounced circadian rhythms in both feed intake and body weight. Automated home cage monitoring is a non-invasive, reliable mode of health surveillance allowing caretakers to more efficiently detect and respond to early signs of illness in laboratory rodent populations.
Collapse
Affiliation(s)
| | - Jon D Klein
- 2 Department of Animal Sciences, Purdue University, United States
| | - Jerry K Davis
- 3 Department of Comparative Pathobiology, Purdue University, United States
| | - Joseph P Garner
- 1 Department of Comparative Medicine, Stanford University, United States.,4 Department of Psychiatry and Behavioral Sciences, Stanford University, United States
| |
Collapse
|
31
|
Voikar V, Krackow S, Lipp HP, Rau A, Colacicco G, Wolfer DP. Automated dissection of permanent effects of hippocampal or prefrontal lesions on performance at spatial, working memory and circadian timing tasks of C57BL/6 mice in IntelliCage. Behav Brain Res 2017; 352:8-22. [PMID: 28927717 PMCID: PMC6102415 DOI: 10.1016/j.bbr.2017.08.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/23/2022]
Abstract
To evaluate permanent effects of hippocampal and prefrontal cortex lesion on spatial tasks, lesioned and sham-operated female C57BL/6 mice were exposed to a series of conditioning schemes in IntelliCages housing 8–10 transponder-tagged mice from each treatment group. Sequential testing started at 51–172 days after bilateral lesions and lasted for 154 and 218 days in two batches of mice, respectively. Spontaneous undisturbed behavioral patterns clearly separated the three groups, hippocampals being characterized by more erratic hyperactivity, and strongly impaired circadian synchronization ability. Hippocampal lesions led to deficits in spatial passive avoidance, as well as in spatial reference and working memory tasks. Impairment was minimal in rewarded preference/reversal schemes, but prominent if behavioral responses required precise circadian timing or included punishment of wrong spatial choices. No differences between sham-operated and prefrontally lesioned subjects in conditioning success were discernible. These results corroborate the view that hippocampal dysfunction spares simple spatial learning tasks but impairs the ability to cope with conflicting task-inherent spatial, temporal or emotional cues. Methodologically, the results show that automated testing and data analysis of socially kept mice is a powerful, efficient and animal-friendly tool for dissecting complex features and behavioral profiles of hippocampal dysfunction characterizing many transgenic or pharmacological mouse models.
Collapse
Affiliation(s)
- Vootele Voikar
- Institute of Anatomy, University of Zürich, Switzerland; Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Sven Krackow
- Institute of Anatomy, University of Zürich, Switzerland; XBehavior GmbH, Bänk, Dägerlen, Switzerland
| | - Hans-Peter Lipp
- Institute of Anatomy, University of Zürich, Switzerland; Institute of Evolutionary Medicine, University of Zürich, Switzerland; School of Laboratory Medicine and Medical Sciences, University of Kwazulu-Natal, South Africa
| | - Anton Rau
- Institute of Anatomy, University of Zürich, Switzerland; Chair of Entrepreneurial Risks, Department of Management, Technology, and Economics, ETH Zürich, Zürich, Switzerland
| | | | - David P Wolfer
- Institute of Anatomy, University of Zürich, Switzerland; Institute of Human Movement Sciences and Sport, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
32
|
Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model. Neuropsychopharmacology 2017; 42:1447-1457. [PMID: 28230072 PMCID: PMC5436124 DOI: 10.1038/npp.2017.40] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/10/2017] [Accepted: 02/19/2017] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric disorders such as schizophrenia are associated with cognitive impairment, including learning, memory and attention deficits. Antipsychotic drugs are limited in their efficacy to improve cognition; therefore, new therapeutic agents are required. Cannabidiol (CBD), the non-intoxicating component of cannabis, has anti-inflammatory, neuroprotective and antipsychotic-like properties; however, its ability to improve the cognitive deficits of schizophrenia remains unclear. Using a prenatal infection model, we examined the effect of chronic CBD treatment on cognition and social interaction. Time-mated pregnant Sprague-Dawley rats (n=16) were administered polyinosinic-polycytidilic acid (poly I:C) (POLY; 4 mg/kg) or saline (CONT) at gestation day 15. Male offspring (PN56) were injected twice daily with 10 mg/kg CBD (CONT+CBD, POLY+CBD; n=12 per group) or vehicle (VEH; CONT+VEH, POLY+VEH; n=12 per group) for 3 weeks. Body weight, food and water intake was measured weekly. The Novel Object Recognition and rewarded T-maze alternation tests assessed recognition and working memory, respectively, and the social interaction test assessed sociability. POLY+VEH offspring exhibited impaired recognition and working memory, and reduced social interaction compared to CONT+VEH offspring (p<0.01). CBD treatment significantly improved recognition, working memory and social interaction deficits in the poly I:C model (p<0.01 vs POLY+VEH), did not affect total body weight gain, food or water intake, and had no effect in control animals (all p>0.05). In conclusion, chronic CBD administration can attenuate the social interaction and cognitive deficits induced by prenatal poly I:C infection. These novel findings present interesting implications for potential use of CBD in treating the cognitive deficits and social withdrawal of schizophrenia.
Collapse
|
33
|
Hawkins P, Golledge HDR. The 9 to 5 Rodent - Time for Change? Scientific and animal welfare implications of circadian and light effects on laboratory mice and rats. J Neurosci Methods 2017; 300:20-25. [PMID: 28502554 DOI: 10.1016/j.jneumeth.2017.05.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/07/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Rodents, particularly rats and mice, are the most commonly used laboratory animals and are extensively used in neuroscience research, including as translational models for human disorders. It is common practice to carry out scientific procedures on rats and mice during the daytime, which is the inactive period for these nocturnal species. However, there is increasing evidence for circadian and light-induced effects on rodent physiology and behaviour which may affect the validity of results obtained from mice and rats in neuroscience studies. For example, testing animals during their inactive periods may produce abnormal results due to cognitive deficits, lack of motivation to perform the task or stress from being disturbed during the resting period. In addition, conducting procedures during an animal's resting period may also pose an animal welfare issue, as procedures may be experienced as more stressful than if these were done during the active phase. In this paper we set out the need to consider the impact of time of day and lighting conditions, when scientific procedures or routine husbandry are performed, on both the welfare of mice and rats used in neuroscience research and on data quality. Wherever possible, husbandry and experimental procedures should be conducted at times of day when the animals would be active, and under naturalistic lighting conditions, to minimise stress and maximise data quality and translatability.
Collapse
Affiliation(s)
- Penny Hawkins
- Research Animals Department, Royal Society for the Prevention of Cruelty to Animals, Southwater, UK.
| | | |
Collapse
|
34
|
Garner JP. The significance of meaning: why do over 90% of behavioral neuroscience results fail to translate to humans, and what can we do to fix it? ILAR J 2014; 55:438-56. [PMID: 25541546 PMCID: PMC4342719 DOI: 10.1093/ilar/ilu047] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The vast majority of drugs entering human trials fail. This problem (called "attrition") is widely recognized as a public health crisis, and has been discussed openly for the last two decades. Multiple recent reviews argue that animals may be just too different physiologically, anatomically, and psychologically from humans to be able to predict human outcomes, essentially questioning the justification of basic biomedical research in animals. This review argues instead that the philosophy and practice of experimental design and analysis is so different in basic animal work and human clinical trials that an animal experiment (as currently conducted) cannot reasonably predict the outcome of a human trial. Thus, attrition does reflect a lack of predictive validity of animal experiments, but it would be a tragic mistake to conclude that animal models cannot show predictive validity. A variety of contributing factors to poor validity are reviewed. The need to adopt methods and models that are highly specific (i.e., which can identify true negative results) in order to complement the current preponderance of highly sensitive methods (which are prone to false positive results) is emphasized. Concepts in biomarker-based medicine are offered as a potential solution, and changes in the use of animal models required to embrace a translational biomarker-based approach are outlined. In essence, this review advocates a fundamental shift, where we treat every aspect of an animal experiment that we can as if it was a clinical trial in a human population. However, it is unrealistic to expect researchers to adopt a new methodology that cannot be empirically justified until a successful human trial. "Validation with known failures" is proposed as a solution. Thus new methods or models can be compared against existing ones using a drug that has translated (a known positive) and one that has failed (a known negative). Current methods should incorrectly identify both as effective, but a more specific method should identify the negative compound correctly. By using a library of known failures we can thereby empirically test the impact of suggested solutions such as enrichment, controlled heterogenization, biomarker-based models, or reverse-translated measures.
Collapse
|