1
|
Maly T, Hank M, Verbruggen FF, Clarup C, Phillips K, Zahalka F, Mala L, Ford KR. Relationships of lower extremity and trunk asymmetries in elite soccer players. Front Physiol 2024; 15:1343090. [PMID: 38370013 PMCID: PMC10869622 DOI: 10.3389/fphys.2024.1343090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/16/2024] [Indexed: 02/20/2024] Open
Abstract
In light of previous research highlighting the prevalence of asymmetries in soccer players and possible links to injury risks, there is a crucial gap in the biomechanical understanding of complex relationships between lower extremity and trunk asymmetries in elite soccer players. The purpose of this study was to investigate the level, relationships, and differences among twelve different parameters of strength, morphological, and neuromuscular asymmetries in elite soccer players. Methods: Elite male soccer players (n = 25, age 21.7 ± 3.9 years) were tested in the following tests: bilateral fluid distribution, hip flexor range of motion, postural stability, isokinetic strength of knee extensors and flexors, isometric lateral trunk rotation strength, eccentric strength of knee flexors, isometric bilateral strength of hip adductors, and vertical ground reaction force in counter-movement jump-free arms, counter-movement jump, squat jump, and drop jump tests. One-way ANOVA, Pearson's coefficient (r), and partial eta squared (η p 2) were used for data analysis. Results: Significant differences in asymmetries were found in elite soccer players (F11,299 = 11.01, p < .01). The magnitude of asymmetry over 10% was in postural stability and drop jump parameters. The lowest magnitudes of asymmetries were in the fluid distribution of the lower limbs and the vertical ground reaction force during the take-off phase in squat jumps. The highest asymmetries between the dominant and non-dominant sides were found in postural stability and drop jump. A total of eleven significant correlations (p < 0.05, r = 0.41-0.63, R2 = 0.17-0.40) were detected between the analyzed asymmetries in elite soccer players. The lateral trunk rotation asymmetries were significantly correlated to vertical ground reaction force asymmetries and knee extensors. Conclusion: Long-term exposure in elite soccer leads to unilateral biomechanical loading that induces abnormal strength and morphological adaptations in favor of the dominant side while linking lower limb and trunk strength asymmetries. By unraveling these complex relationships, we strive to contribute novel methods that could inform targeted training regimens and injury prevention strategies in the elite soccer community. The data should encourage future researchers and coaches to monitor and develop trunk strength linked to lower body kinematics.
Collapse
Affiliation(s)
- Tomas Maly
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
- Department of Performance, AC Sparta Praha, Prague, Czechia
| | - Mikulas Hank
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Ferdia Fallon Verbruggen
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
- Department of Performance, AC Sparta Praha, Prague, Czechia
| | | | - Kirk Phillips
- Department of Performance, AC Sparta Praha, Prague, Czechia
| | - Frantisek Zahalka
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Lucia Mala
- Sport Research Center, Faculty of Physical Education and Sport, Charles University, Prague, Czechia
| | - Kevin R. Ford
- Department of Physical Therapy, High Point University, High Point, NC, United States
| |
Collapse
|
2
|
Jahanshahi A, Ghareaghaji N, Hassanpour S, Vafadar A, Mousavi S, Khezerloo D. Cortical gray matter and cerebral white matter atrophy and asymmetry in Parkinson's disease patients with normal cognitive precede. Int J Neurosci 2023:1-6. [PMID: 38085250 DOI: 10.1080/00207454.2023.2294260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Parkinson's disease is the second most common neurodegenerative disorder with complex and distributed motor and non-motor symptoms. In this study, cortical gray matter (GM) and cerebral white matter (WM) overall atrophy, and asymmetry of atrophy are investigated in PD with normal cognitive function. METHOD Forty-eight male Parkinson's disease(PD) patients with normal cognitive precede (PD-NC), and thirty matched healthy control (HC) subjects were selected from the Parkinson's Progression Markers Initiative (PPMI) database. Brain structures volumes were extracted using Freesurfer software based on subject 3 tesla MRI images. The normalized volume of cortical GM and cerebral WM were compared in two study groups, and then the asymmetry index (AI) of GM and WM atrophy was also assessed in two groups. Statistical analysis was constructed using a t-test with p < 0.05 of significance. RESULTS No significant difference was observed in the volume of cortical GM and cerebral WM in the two study groups. The cortical GM asymmetry index in the PD-NC group was significantly (p = 0.01) higher than the HC group, however, no difference was observed for the cerebral WM asymmetry index. CONCLUSION Atrophy in cortical GM and WM was not observed between the PD-NC and the HC group, however, the asymmetry index in GM was significant between the two group. It seems that the brain's bilateral balance has ruptured in PD. Cortical GM asymmetry in PD-NC can be considered a potent biomarker and should be investigated more in the future. In future studies, construction of a longitudinal study on this issue could be useful.
Collapse
Affiliation(s)
- Amirreza Jahanshahi
- Department of Radiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Ghareaghaji
- Department of Radiology, Faculty of Allied Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | - Samaneh Hassanpour
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Vafadar
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Mousavi
- Department of Statistics and Epidemiology, Faculty of Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Khezerloo
- Department of Radiology, Faculty of Allied Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
3
|
Studnicki A, Seidler RD, Ferris DP. A table tennis serve versus rally hit elicits differential hemispheric electrocortical power fluctuations. J Neurophysiol 2023; 130:1444-1456. [PMID: 37964746 PMCID: PMC10994643 DOI: 10.1152/jn.00091.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Human visuomotor control requires coordinated interhemispheric interactions to exploit the brain's functional lateralization. In right-handed individuals, the left hemisphere (right arm) is better for dynamic control and the right hemisphere (left arm) is better for impedance control. Table tennis is a game that requires precise movements of the paddle, whole body coordination, and cognitive engagement, providing an ecologically valid way to study visuomotor integration. The sport has many different types of strokes (e.g., serve, return, and rally shots), which should provide unique cortical dynamics given differences in the sensorimotor demands. The goal of this study was to determine the hemispheric specialization of table tennis serving - a sequential, self-paced, bimanual maneuver. We used time-frequency analysis, event-related potentials, and functional connectivity measures of source-localized electrocortical clusters and compared serves with other types of shots, which varied in the types of movement required, attentional focus, and other task demands. We found greater alpha (8-12 Hz) and beta (13-30 Hz) power in the right sensorimotor cortex than in the left sensorimotor cortex, and we found a greater magnitude of spectral power fluctuations in the right sensorimotor cortex for serve hits than return or rally hits, in all right-handed participants. Surprisingly, we did not find a difference in interhemispheric functional connectivity between a table tennis serve and return or rally hits, even though a serve could arguably be a more complex maneuver. Studying real-world brain dynamics of table tennis provides insight into bilateral sensorimotor integration.NEW & NOTEWORTHY We found different spectral power fluctuations in the left and right sensorimotor cortices during table tennis serves, returns, and rallies. Our findings contribute to the basic science understanding of hemispheric specialization in a real-world context.
Collapse
Affiliation(s)
- Amanda Studnicki
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| | - Rachael D Seidler
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Daniel P Ferris
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
4
|
Bhat SG, Shin AY, Kaufman KR. Upper extremity asymmetry due to nerve injuries or central neurologic conditions: a scoping review. J Neuroeng Rehabil 2023; 20:151. [PMID: 37940959 PMCID: PMC10634143 DOI: 10.1186/s12984-023-01277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Peripheral nerve injuries and central neurologic conditions can result in extensive disabilities. In cases with unilateral impairment, assessing the asymmetry between the upper extremity has been used to assess outcomes of treatment and severity of injury. A wide variety of validated and novel tests and sensors have been utilized to determine the upper extremity asymmetry. The purpose of this article is to review the literature and define the current state of the art for describing upper extremity asymmetry in patients with peripheral nerve injuries or central neurologic conditions. METHOD An electronic literature search of PubMed, Scopus, Web of Science, OVID was performed for publications between 2000 to 2022. Eligibility criteria were subjects with neurological conditions/injuries who were analyzed for dissimilarities in use between the upper extremities. Data related to study population, target condition/injury, types of tests performed, sensors used, real-world data collection, outcome measures of interest, and results of the study were extracted. Sackett's Level of Evidence was used to judge the quality of the articles. RESULTS Of the 7281 unique articles, 112 articles met the inclusion criteria for the review. Eight target conditions/injuries were identified (Brachial Plexus Injury, Cerebral Palsy, Multiple Sclerosis, Parkinson's Disease, Peripheral Nerve Injury, Spinal Cord Injury, Schizophrenia, and stroke). The tests performed were classified into thirteen categories based on the nature of the test and data collected. The general results related to upper extremity asymmetry were listed for all the reviewed articles. Stroke was the most studied condition, followed by cerebral palsy, with kinematics and strength measurement tests being the most frequently used tests. Studies with a level of evidence level II and III increased between 2000 and 2021. The use of real-world evidence-based data, and objective data collection tests also increased in the same period. CONCLUSION Adequately powered randomized controlled trials should be used to study upper extremity asymmetry. Neurological conditions other than stroke should be studied further. Upper extremity asymmetry should be measured using objective outcome measures like motion tracking and activity monitoring in the patient's daily living environment.
Collapse
Affiliation(s)
- Sandesh G Bhat
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kenton R Kaufman
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Motion Analysis Laboratory, Mayo Clinic, DAHLC 4-214A, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Leisman G, Melillo R. Front and center: Maturational dysregulation of frontal lobe functional neuroanatomic connections in attention deficit hyperactivity disorder. Front Neuroanat 2022; 16:936025. [PMID: 36081853 PMCID: PMC9446472 DOI: 10.3389/fnana.2022.936025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/29/2022] [Indexed: 12/21/2022] Open
Abstract
Frontal lobe function may not universally explain all forms of attention deficit hyperactivity disorder (ADHD) but the frontal lobe hypothesis described supports an internally consistent model for integrating the numerous behaviors associated with ADHD. The paper examines the developmental trajectories of frontal and prefrontal lobe development, framing ADHD as maturational dysregulation concluding that the cognitive, motor, and behavioral abilities of the presumptive majority of ADHD children may not primarily be disordered or dysfunctional but reflect maturational dysregulation that is inconsistent with the psychomotor and cognitive expectations for the child’s chronological and mental age. ADHD children demonstrate decreased activation of the right and middle prefrontal cortex. Prefrontal and frontal lobe regions have an exuberant network of shared pathways with the diencephalic region, also having a regulatory function in arousal as well as with the ascending reticular formation which has a capacity for response suppression to task-irrelevant stimuli. Prefrontal lesions oftentimes are associated with the regulatory breakdown of goal-directed activity and impulsivity. In conclusion, a presumptive majority of childhood ADHD may result from maturational dysregulation of the frontal lobes with effects on the direct, indirect and/or, hyperdirect pathways.
Collapse
Affiliation(s)
- Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
- Department of Neurology, University of Medical Sciences of Havana, Havana, Cuba
- *Correspondence: Gerry Leisman,
| | - Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
6
|
Archery under the (electroencephalography-)hood: Theta-lateralization as a marker for motor learning. Neuroscience 2022; 499:23-39. [PMID: 35870564 DOI: 10.1016/j.neuroscience.2022.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022]
Abstract
An intrinsic characteristic of the motor system is the preference of one side of the body. Lateralization is found in motor behavior and in the structural and functional correlates of cortical motor networks. While genetic factors have been elucidated as mechanisms leading to such asymmetries, findings in motor learning and experience from clinical experience demonstrate considerable additional plasticity during the lifespan. If and how functional lateralization develops in short timeframes during training of motor skills involving both sides of the body is still largely unclear. In the present exploratory study, we investigate lateralization of theta-, alpha- and beta-band oscillations during training of an ecologically valid skill - archery. We relate lateralization shift to performance improvement and elucidate the underlying cortical areas. To this end, healthy participants without any previous experience in archery underwent intensive training with 100 shots on each of three days. 64-channel electroencephalography was recorded simultaneously during the individual shots. We found that a central-parietal theta lateralization shift to the left immediately before the shot was associated with performance improvement. Lateralization of alpha or beta did not yield a significant association. Importantly, areas of maximum activation were not identical with areas showing the strongest associations with performance improvement. These data suggest that learning a complex bimanual motor skill is associated with a shift of theta-band oscillations to the left in central-parietal areas. The relationship with performance improvement may reflect increased cortical efficiency of task-relevant processing.
Collapse
|
7
|
Gyoda T, Nojima I, Lin SC, Koganemaru S, Mima T, Tanabe S, Huang YZ. Strengthening the GABAergic system through neurofeedback training suppresses implicit motor learning. Neuroscience 2022; 488:112-121. [PMID: 35149145 DOI: 10.1016/j.neuroscience.2022.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
Gamma-aminobutyric acid (GABA) activity within the primary motor cortex (M1) is essential for motor learning in cortical plasticity, and a recent study has suggested that real-time neurofeedback training (NFT) can self-regulate GABA activity. Therefore, this study aimed to investigate the effect of GABA activity strengthening via NFT on subsequent motor learning. Thirty-six healthy participants were randomly assigned to either an NFT group or control group, which received sham feedback. GABA activity was assessed for short intracortical inhibition (SICI) within the right M1 using paired-pulse transcranial magnetic stimulation. During the NFT intervention period, the participants tried to modulate the size of a circle, which was altered according to the degree of SICI in the NFT group. However, the size was altered independently of the degree of SICI in the control group. We measured the reaction time before, after (online learning), and 24 h after (offline learning) the finger-tapping task. Results showed the strengthening of GABA activity induced by the NFT intervention, and the suppression of the online but not the offline learning. These findings suggest that prior GABA activity modulation may affect online motor learning.
Collapse
Affiliation(s)
- Tomoya Gyoda
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ippei Nojima
- Division of Physical Therapy, Shinshu University School of Health Sciences, Matsumoto, Nagano, Japan.
| | - Su-Chuan Lin
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Satoko Koganemaru
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuya Mima
- Graduate School of Core Ethics and Frontier Sciences, Ritsumeikan University, Kyoto, Japan
| | - Shigeo Tanabe
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Aichi, Japan
| | - Ying-Zu Huang
- Neuroscience Research Center and Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Institute of Cognitive Neuroscience, National Central University, Taoyuan, Taiwan
| |
Collapse
|
8
|
Default mode and dorsal attention network involvement in visually guided motor sequence learning. Cortex 2021; 146:89-105. [PMID: 34844195 DOI: 10.1016/j.cortex.2021.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 01/08/2023]
Abstract
Motor sequence learning (MSL) paradigms are often used to investigate the neural processes underlying the acquisition of complex motor skills. Behavioral and neuroimaging studies have indicated an early stage in which spatial learning is prominent and a late stage of automatized performance after multiple training periods. Functional magnetic resonance imaging (fMRI) studies yielded both decreased and increased activations of the sensorimotor and association areas. However, task-negative and task-positive intrinsic connectivity networks (ICNs), the default mode (DMN) and dorsal attention (DAN) networks involved in governing attention demands during various task conditions were not specifically addressed in most studies. In the present fMRI study, a visually guided MSL (VMSL) task was used for bringing roles of visuospatial and motor attention into foreground in order to investigate the role of attention-related ICNs in MSL. Seventeen healthy, right-handed participants completed training and test sessions of VMSL during fMRI on the 1st day. Then, after daily training for three consecutive days outside the scanner, they were re-tested during the 5th day's scanning session. When test session after early learning period was compared with training session, activation decrease was observed in the occipito-temporal fusiform cortex, while task-related suppression of DMN was reduced. Reduced deactivation after early learning was correlated with decreased error rates. After late learning stage we observed activation decreases in bilateral superior parietal lobules of task-positive DAN, dorsal precunei, and cerebellum. Reduced activity in left posterior parietal and right cerebellar regions were correlated with gains in speed, error rate, respectively. This dissociation in activity changes of DMN and DAN related areas suggests that DAN shows high contribution during both early and late MSL stages, possibly due to attention requirement for automatization of spatial and temporal aspects of motor sequence. In contrast, spatial learning occurring during early MSL stage was sufficient for releasing DMN resources.
Collapse
|
9
|
Interhemispheric co-alteration of brain homotopic regions. Brain Struct Funct 2021; 226:2181-2204. [PMID: 34170391 PMCID: PMC8354999 DOI: 10.1007/s00429-021-02318-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/07/2021] [Indexed: 11/11/2022]
Abstract
Asymmetries in gray matter alterations raise important issues regarding the pathological co-alteration between hemispheres. Since homotopic areas are the most functionally connected sites between hemispheres and gray matter co-alterations depend on connectivity patterns, it is likely that this relationship might be mirrored in homologous interhemispheric co-altered areas. To explore this issue, we analyzed data of patients with Alzheimer’s disease, schizophrenia, bipolar disorder and depressive disorder from the BrainMap voxel-based morphometry database. We calculated a map showing the pathological homotopic anatomical co-alteration between homologous brain areas. This map was compared with the meta-analytic homotopic connectivity map obtained from the BrainMap functional database, so as to have a meta-analytic connectivity modeling map between homologous areas. We applied an empirical Bayesian technique so as to determine a directional pathological co-alteration on the basis of the possible tendencies in the conditional probability of being co-altered of homologous brain areas. Our analysis provides evidence that: the hemispheric homologous areas appear to be anatomically co-altered; this pathological co-alteration is similar to the pattern of connectivity exhibited by the couples of homologues; the probability to find alterations in the areas of the left hemisphere seems to be greater when their right homologues are also altered than vice versa, an intriguing asymmetry that deserves to be further investigated and explained.
Collapse
|
10
|
Tisseyre J, Amarantini D, Tallet J. Behavioural and cerebral asymmetries of mirror movements are specific to rhythmic task and related to higher attentional and executive control. Behav Brain Res 2021; 412:113429. [PMID: 34175358 DOI: 10.1016/j.bbr.2021.113429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 11/28/2022]
Abstract
Mirror movements (MM) refer to the involuntary movements or contractions occurring in homologous muscles contralateral to the unilateral voluntary movements. This behavioural manifestation increases in elderly. In right-handed adults, some studies report asymmetry in MM production, with greater MM in the right dominant hand during voluntary movements of the left non-dominant hand than the opposite. However, other studies report contradictory results, suggesting that MM asymmetry could depend on the characteristics of the task. The present study investigates the behavioural asymmetry of MM and its associated cerebral correlates during a rhythmic task and a non-rhythmic task using low-force contractions (i.e., 25 % MVC). We determined the quantity and the intensity of MM using electromyography (EMG) and cerebral correlates through electroencephalography (EEG) in right-handed healthy young and middle-aged adults during unimanual rhythmic vs. non-rhythmic tasks. Overall, results revealed (1) behavioural asymmetry of MM specific to the rhythmic task and irrespective of age, (2) cerebral asymmetry of motor activations specific to the rhythmic task and irrespective of age and (3) greater attentional and executive activations in the rhythmic task compared to the non-rhythmic task. In line with our hypotheses, behavioural and cerebral motor asymmetries of MM seem to be specific to the rhythmic task. Results are discussed in terms of cognitive-motor interactions: greater attentional and executive control required in the rhythmic tasks could contribute to the increased occurrence of involuntary movements in both young and middle-aged adults.
Collapse
Affiliation(s)
- Joseph Tisseyre
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.
| | - David Amarantini
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| |
Collapse
|
11
|
Sokołowska B. A novel virtual reality approach for functional lateralization in healthy adults. Brain Res 2021; 1766:147537. [PMID: 34052260 DOI: 10.1016/j.brainres.2021.147537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Functional lateralization relates to a natural asymmetry in the dominance right or left body side, and is a fundamental principle of the brain. The hemispheres of the brain control the contralateral body side, and show subtle, yet striking, anatomical asymmetries and functional lateralization. Innovative technologies, including Virtual Reality (VR), are entering the areas of experimental research, modeling and simulation related to the study of lateralization, with new perspectives of different applications in modern medical practice. Researchers/clinicians note that there are fewer VR studies with healthy participants, and which are important in evaluating/interpreting clinical outcomes, and testing the usefulness, limitations, and sensitivity of VR. The presented influence of the domination of upper/lower limbs on the performance of VR exercises was studied in healthy right-handed adults. Virtual testing sessions were performed independently with both/ dominant/ non-dominant hands, and the similar VR sessions were conduced on a Wii Balance Board (WBB) with the choice of body side, at different levels of the difficulty. The obtained results are consistent with other studies which show that cognitive-motor training in VR with the WBB platform is a very sensitive and promising tool for recognizing/assessing functional asymmetries of the right-left body side not only in disturbed lateralization, but also in the test training of healthy subjects.
Collapse
Affiliation(s)
- Beata Sokołowska
- Bioinformatics Laboratory, Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
12
|
Malatesta G, Marzoli D, Prete G, Tommasi L. Human Lateralization, Maternal Effects and Neurodevelopmental Disorders. Front Behav Neurosci 2021; 15:668520. [PMID: 33828467 PMCID: PMC8019713 DOI: 10.3389/fnbeh.2021.668520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 11/29/2022] Open
Abstract
In humans, behavioral laterality and hemispheric asymmetries are part of a complex biobehavioral system in which genetic factors have been repeatedly proposed as developmental determinants of both phenomena. However, no model solely based on genetic factors has proven conclusive, pushing towards the inclusion of environmental and epigenetic factors into the system. Moreover, it should be pointed out that epigenetic modulation might also account for why certain genes are expressed differently in parents and offspring. Here, we suggest the existence of a sensitive period in early postnatal development, during which the exposure to postural and motor lateral biases, expressed in interactive sensorimotor coordination with the caregiver, canalizes hemispheric lateralization in the “typical” direction. Despite newborns and infants showing their own inherent asymmetries, the canalizing effect of the interactive context owes most to adult caregivers (usually the mother), whose infant-directed lateralized behavior might have been specifically selected for as a population-level trait, functional to confer fitness to offspring. In particular, the case of the left-cradling bias (LCB; i.e., the population-level predisposition of mothers to hold their infants on the left side) represents an instance of behavioral trait exhibiting heritability along the maternal line, although no genetic investigation has been carried out so far. Recent evidence, moreover, seems to suggest that the reduction of this asymmetry is related to several unfavorable conditions, including neurodevelopmental disorders. Future studies are warranted to understand whether and how genetic and epigenetic factors affect the lateralization of early mother-infant interaction and the proneness of the offspring to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Gianluca Malatesta
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti and Pescara, Chieti, Italy
| | - Daniele Marzoli
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti and Pescara, Chieti, Italy
| | - Giulia Prete
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti and Pescara, Chieti, Italy
| | - Luca Tommasi
- Department of Psychological, Health and Territorial Sciences, University "G. d'Annunzio" of Chieti and Pescara, Chieti, Italy
| |
Collapse
|
13
|
Nemkova SA, Semenov DV, Zavadenko NN, Vozvyshaeva MY. [The influence of the drug recognan (citicoline) on neurodynamic characteristics of mental activity in patients with mild cognitive impairment]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:43-46. [PMID: 33580760 DOI: 10.17116/jnevro202112101143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The aim of the study was to study the effect of the drug recognan (citicoline) on the neurodynamic characteristics of mental activity in patients with mild cognitive impairment. MATERIAL AND METHODS A survey of 58 subjects (17 of them male and 41 female) aged 18-45 years (average age 27.2±12.5 years) was conducted. Clinical diagnosis according to ICD-10 «Mild cognitive impairment» (F06.7). The main subgroup included29 people received oral recognan therapy (in solution, 100 mg in 1 ml) for 30 days, with a daily dosage of 500 mg (5 ml of solution). In the control group (29 people) drug therapy was not performed. Tests were used: «Graphic sample», the sample on the reciprocal coordination of the hands (Ozeretsky test), test for the compression of fingers, the test «number series». The follow-up period was 30 days. All subjects were examined three times (initially, in the middle of the study - on day 15, at the end of the study - on day 30). RESULTS AND CONCLUSION The results obtained showed that the use of the drug recognan (citicoline) has a positive effect on the indicators of visual-motor coordination and spatial representations, neurodynamic characteristics of movement, and cognitive functions. After a 2-week treatment with recognan improved graphical sample, 84% of patients, with reliable improvement according to the Wilcoxon (p=0.0002), the sample in the compression of the fingers 60%, as well as coordination 60%, the accounting functions in 44%. After a month (30 day) treatment course recomanem there was an increase in indices of samples for the compression of fingers in 71.4% of patients, with significant improvement (p=0.0499) and run the graphical samples of 71.4%, coordination at 46.4%, counting functions - 48% patients.
Collapse
Affiliation(s)
- S A Nemkova
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - D V Semenov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - N N Zavadenko
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - M Yu Vozvyshaeva
- Pirogov Russian National Research Medical University, Moscow, Russia
| |
Collapse
|
14
|
Filippi M, Sarasso E, Piramide N, Stojkovic T, Stankovic I, Basaia S, Fontana A, Tomic A, Markovic V, Stefanova E, Kostic VS, Agosta F. Progressive brain atrophy and clinical evolution in Parkinson's disease. NEUROIMAGE-CLINICAL 2020; 28:102374. [PMID: 32805678 PMCID: PMC7453060 DOI: 10.1016/j.nicl.2020.102374] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/08/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
Cortical and subcortical atrophy is accelerated early after the onset of PD. Brain atrophy in PD progressed with cognitive, non-motor and mood deficits. Structural MRI may be useful for predicting disease progression in PD.
Clinical manifestations and evolution are very heterogeneous among individuals with Parkinson’s disease (PD). The aims of this study were to investigate the pattern of progressive brain atrophy in PD according to disease stage and to elucidate to what extent cortical thinning and subcortical atrophy are related to clinical motor and non-motor evolution. 154 patients at different PD stages were assessed over time using motor, non-motor and structural MRI evaluations for a maximum of 4 years. Cluster analysis defined clinical subtypes. Cortical thinning and subcortical atrophy were assessed at baseline in patients relative to 60 healthy controls. Longitudinal trends of brain atrophy progression were compared between PD clusters. The contribution of brain atrophy in predicting motor, non-motor, cognitive and mood deterioration was explored. Two main PD clusters were defined: mild (N = 87) and moderate-to-severe (N = 67). Two mild subtypes were further identified: mild motor-predominant (N = 43) and mild-diffuse (N = 44), with the latter group being older and having more severe non-motor and cognitive symptoms. The initial pattern of brain atrophy was more severe in patients with moderate-to-severe PD. Over time, mild-diffuse PD patients had the greatest brain atrophy accumulation in the cortex and the left hippocampus, while less distributed atrophy progression was observed in moderate-to-severe and mild motor-predominant patients. Baseline and 1-year cortical thinning was associated with long-term progression of motor, cognitive, non-motor and mood symptoms. Cortical and subcortical atrophy is accelerated early after the onset of PD and becomes prominent in later stages of disease according to the development of cognitive, non-motor and mood dysfunctions. Structural MRI may be useful for monitoring and predicting disease progression in PD.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology and Neurophysiology Units, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Noemi Piramide
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Tanja Stojkovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Iva Stankovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Silvia Basaia
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - Aleksandra Tomic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladana Markovic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Elka Stefanova
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir S Kostic
- Clinic of Neurology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
15
|
Pflug A, Gompf F, Muthuraman M, Groppa S, Kell CA. Differential contributions of the two human cerebral hemispheres to action timing. eLife 2019; 8:e48404. [PMID: 31697640 PMCID: PMC6837842 DOI: 10.7554/elife.48404] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/08/2019] [Indexed: 01/22/2023] Open
Abstract
Rhythmic actions benefit from synchronization with external events. Auditory-paced finger tapping studies indicate the two cerebral hemispheres preferentially control different rhythms. It is unclear whether left-lateralized processing of faster rhythms and right-lateralized processing of slower rhythms bases upon hemispheric timing differences that arise in the motor or sensory system or whether asymmetry results from lateralized sensorimotor interactions. We measured fMRI and MEG during symmetric finger tapping, in which fast tapping was defined as auditory-motor synchronization at 2.5 Hz. Slow tapping corresponded to tapping to every fourth auditory beat (0.625 Hz). We demonstrate that the left auditory cortex preferentially represents the relative fast rhythm in an amplitude modulation of low beta oscillations while the right auditory cortex additionally represents the internally generated slower rhythm. We show coupling of auditory-motor beta oscillations supports building a metric structure. Our findings reveal a strong contribution of sensory cortices to hemispheric specialization in action control.
Collapse
Affiliation(s)
- Anja Pflug
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Florian Gompf
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| | - Muthuraman Muthuraman
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Sergiu Groppa
- Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of NeurologyJohannes Gutenberg UniversityMainzGermany
| | - Christian Alexander Kell
- Cognitive Neuroscience Group, Brain Imaging Center and Department of NeurologyGoethe UniversityFrankfurtGermany
| |
Collapse
|
16
|
Delorme M, Vergotte G, Perrey S, Froger J, Laffont I. Time course of sensorimotor cortex reorganization during upper extremity task accompanying motor recovery early after stroke: An fNIRS study. Restor Neurol Neurosci 2019; 37:207-218. [PMID: 31227675 DOI: 10.3233/rnn-180877] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND The acute phase of stroke is accompanied by functional changes and interplay of both hemispheres. However, our understanding of how the time course of upper limb functional motor recovery is related to the progression of brain reorganization in the sensorimotor areas remains limited. This study aimed to assess the time course of hemodynamic patterns of cortical sensorimotor areas using functional near infrared spectroscopy (fNIRS) and motor recovery within three months after a stroke. METHOD Eight right-handed first ischemic/hemorrhagic stroke patients (60±8 years, 3 women) with mild to severe hemiparesis were examined with repetitive fNIRS measurements and motor recovery tests (Fugl-Meyer score) during two months. Hemodynamic changes over the ipsilesional and contralesional sensorimotor areas were collected from a multi-channel fNIRS system during intermittent isometric muscle contractions at self-selected submaximal force levels for each arm. Lateralization index was computed to evaluate the changes in the interhemispheric balance between the cortical sensorimotor areas. RESULTS Lateralization index values during non-paretic arm movements showed no significant changes over time in patients and were comparable to those observed in eight healthy controls. Paretic-arm movements were associated early with a bilateral cortical activity before shifting to ipsilesional patterns (p < 0.01). Progressive lateralization observed over the two months (p < 0.05) evolved concomitantly with an increase in the Fugl-Meyer score (p < 0.001). CONCLUSIONS Cortical reorganization monitoring using fNIRS during the first weeks after stroke may be applied for assessing progressive brain plasticity in addition to clinical measures of performance.
Collapse
Affiliation(s)
- Marion Delorme
- EuroMov, Univ. Montpellier, Montpellier, France.,Nîmes University Hospital, Department of Physical Medicine and Rehabilitation, Nîmes, France
| | | | | | - Jérôme Froger
- EuroMov, Univ. Montpellier, Montpellier, France.,Nîmes University Hospital, Department of Physical Medicine and Rehabilitation, Nîmes, France
| | - Isabelle Laffont
- EuroMov, Univ. Montpellier, Montpellier, France.,Montpellier University Hospital, Department of Physical Medicine and Rehabilitation, Montpellier, France
| |
Collapse
|
17
|
Bayram E, Bluett B, Zhuang X, Cordes D, LaBelle DR, Banks SJ. Neural correlates of distinct cognitive phenotypes in early Parkinson's disease. J Neurol Sci 2019; 399:22-29. [PMID: 30743154 PMCID: PMC6436969 DOI: 10.1016/j.jns.2019.02.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/19/2019] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Cognitive decline is common in Parkinson's disease (PD), but changes can occur in a variety of cognitive domains. The lack of a single cognitive phenotype complicates diagnosis and tracking. In an earlier study we used a data-driven approach to identify distinct cognitive phenotypes of early PD. Here we identify the morphometric brain differences between those different phenotypes compared with cognitively normal PD participants. METHODS Six different cognitive classes were included (Weak, Typical, Weak-Visuospatial/Strong-Memory, Weak-Visuospatial, Amnestic, Strong). Structural differences between each class and the Typical class were assessed by deformation-based morphometry. RESULTS The different groups evidenced different patterns of atrophy. Weak class had frontotemporal and insular atrophy; Weak-Visuospatial/Strong-Memory class had frontotemporal, insular, parietal, and putamen atrophy; Weak-Visuospatial class had Rolandic operculum; Amnestic class had left frontotemporal, occipital, parietal and insular atrophy when compared to the Typical class. The Strong class did not have any atrophy but had significant differences in left temporal cortex in comparison to the Typical class. CONCLUSIONS Structural neuroimaging differences are evident in PD patients with distinct cognitive phenotypes even very early in the disease process prior to the emergence of frank cognitive impairment. Future studies will elucidate whether these have prognostic value in identifying trajectories toward dementia, or if they represent groups sensitive to different treatments.
Collapse
Affiliation(s)
- Ece Bayram
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA.
| | - Brent Bluett
- Stanford University, Department of Neurology and Neurological Sciences, Palo Alto, CA, USA
| | - Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Denise R LaBelle
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Sarah J Banks
- University of California San Diego, Department of Neurosciences, La Jolla, CA, USA
| |
Collapse
|
18
|
Tisseyre J, Marquet-Doléac J, Barral J, Amarantini D, Tallet J. Lateralized inhibition of symmetric contractions is associated with motor, attentional and executive processes. Behav Brain Res 2019; 361:65-73. [DOI: 10.1016/j.bbr.2018.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/23/2018] [Accepted: 12/17/2018] [Indexed: 10/27/2022]
|
19
|
Sánchez‐Camarero C, Ortega‐Santiago R, Arias‐Horcajadas F, Madoz‐Gúrpide A, Miangolarra‐Page JC, Palacios‐Ceña D. Altered fine motor control and manual dexterity in people with cocaine dependence: An observational study. Aust Occup Ther J 2018; 66:304-312. [DOI: 10.1111/1440-1630.12551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Carlos Sánchez‐Camarero
- Department of Physiotherapy Therapy, Occupational Therapy, Rehabilitation and Physical Medicine Universidad Rey Juan Carlos Madrid Spain
| | - Ricardo Ortega‐Santiago
- Department of Physiotherapy Therapy, Occupational Therapy, Rehabilitation and Physical Medicine Universidad Rey Juan Carlos Madrid Spain
| | | | | | - Juan Carlos Miangolarra‐Page
- Department of Physiotherapy Therapy, Occupational Therapy, Rehabilitation and Physical Medicine Universidad Rey Juan Carlos Madrid Spain
| | - Domingo Palacios‐Ceña
- Department of Physiotherapy Therapy, Occupational Therapy, Rehabilitation and Physical Medicine Universidad Rey Juan Carlos Madrid Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM) Madrid Spain
| |
Collapse
|
20
|
Gonzalez CLR, van Rootselaar NA, Gibb RL. Sensorimotor lateralization scaffolds cognitive specialization. PROGRESS IN BRAIN RESEARCH 2018; 238:405-433. [PMID: 30097202 DOI: 10.1016/bs.pbr.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter, we review hemispheric differences for sensorimotor function and cognitive abilities. Specifically, we examine the left-hemisphere specialization for visuomotor control and its interplay with language, executive function, and musical training. Similarly, we discuss right-hemisphere lateralization for haptic processing and its relationship to spatial and numerical processing. We propose that cerebral lateralization for sensorimotor functions served as a foundation for the development of higher cognitive abilities and their hemispheric functional specialization. We further suggest that sensorimotor and cognitive functions are inextricably linked. Based on the studies discussed in this chapter our view is that sensorimotor control serves as a loom upon which the fibers of language, executive function, spatial, and numerical processing are woven together to create the fabric of cognition.
Collapse
Affiliation(s)
- Claudia L R Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge, AB, Canada; Department of Neuroscience, Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.
| | - Nicole A van Rootselaar
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge, AB, Canada; Department of Neuroscience, Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Robbin L Gibb
- Department of Neuroscience, Canadian Centre for Behavioral Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
21
|
Florio TM, Scarnati E, Rosa I, Di Censo D, Ranieri B, Cimini A, Galante A, Alecci M. The Basal Ganglia: More than just a switching device. CNS Neurosci Ther 2018; 24:677-684. [PMID: 29879292 DOI: 10.1111/cns.12987] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 12/12/2022] Open
Abstract
The basal ganglia consist of a variety of subcortical nuclei engaged in motor control and executive functions, such as motor learning, behavioral control, and emotion. The striatum, a major basal ganglia component, is particularly useful for cognitive planning of purposive motor acts owing to its structural features and the neuronal circuitry established with the cerebral cortex. Recent data indicate emergent functions played by the striatum. Indeed, cortico-striatal circuits carrying motor information are paralleled by circuits originating from associative and limbic territories, which are functionally integrated in the striatum. Functional integration between brain areas is achieved through patterns of coherent activity. Coherence belonging to cortico-basal ganglia circuits is also present in Parkinson's disease patients. Excessive synchronization occurring in this pathology is reduced by dopaminergic therapies. The mechanisms through which the dopaminergic effects may be addressed are the object of several ongoing investigations. Overall, the bulk of data reported in recent years has provided new vistas concerning basal ganglia role in the organization and control of movement and behavior, both in physiological and pathological conditions. In this review, basal ganglia functions involved in the organization of main movement categories and behaviors are critically discussed. Comparatively, the multiplicity of Parkinson's disease symptomatology is also revised.
Collapse
Affiliation(s)
- Tiziana Marilena Florio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Rosa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Davide Di Censo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Brigida Ranieri
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, Philadelphia, PA, USA
| | - Angelo Galante
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, L'Aquila, Italy.,Istituto SPIN-CNR, c/o Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy
| | - Marcello Alecci
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Gran Sasso, L'Aquila, Italy.,Istituto SPIN-CNR, c/o Dipartimento di Scienze Fisiche e Chimiche, L'Aquila, Italy
| |
Collapse
|
22
|
Begliomini C, Sartori L, Di Bono MG, Budisavljević S, Castiello U. The Neural Correlates of Grasping in Left-Handers: When Handedness Does Not Matter. Front Neurosci 2018; 12:192. [PMID: 29666567 PMCID: PMC5891894 DOI: 10.3389/fnins.2018.00192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Neurophysiological studies showed that in macaques, grasp-related visuomotor transformations are supported by a circuit involving the anterior part of the intraparietal sulcus, the ventral and the dorsal region of the premotor area. In humans, a similar grasp-related circuit has been revealed by means of neuroimaging techniques. However, the majority of "human" studies considered movements performed by right-handers only, leaving open the question of whether the dynamics underlying motor control during grasping is simply reversed in left-handers with respect to right-handers or not. To address this question, a group of left-handed participants has been scanned with functional magnetic resonance imaging while performing a precision grasping task with the left or the right hand. Dynamic causal modeling was used to assess how brain regions of the two hemispheres contribute to grasping execution and whether the intra- and inter-hemispheric connectivity is modulated by the choice of the performing hand. Results showed enhanced inter-hemispheric connectivity between anterior intraparietal and dorsal premotor cortices during grasping execution with the left dominant hand (LDH) (e.g., right hemisphere) compared to the right (e.g., left hemisphere). These findings suggest that that the left hand, although dominant and theoretically more skilled in left handers, might need additional resources in terms of the visuomotor control and on-line monitoring to accomplish a precision grasping movement. The results are discussed in light of theories on the modulation of parieto-frontal networks during the execution of prehensile movements, providing novel evidence supporting the hypothesis of a handedness-independent specialization of the left hemisphere in visuomotor control.
Collapse
Affiliation(s)
- Chiara Begliomini
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | - Luisa Sartori
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy.,Padua Neuroscience Center, Padua, Italy
| | - Maria G Di Bono
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
| | | | - Umberto Castiello
- Dipartimento di Psicologia Generale, Università degli Studi di Padova, Padua, Italy
| |
Collapse
|
23
|
Bimanual tapping of a syncopated rhythm reveals hemispheric preferences for relative movement frequencies. Hum Mov Sci 2017; 54:287-296. [PMID: 28605695 DOI: 10.1016/j.humov.2017.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 11/23/2022]
Abstract
In bimanual multifrequency tapping, right-handers commonly use the right hand to tap the relatively higher rate and the left hand to tap the relatively lower rate. This could be due to hemispheric specializations for the processing of relative frequencies. An extension of the double-filtering-by-frequency theory to motor control proposes a left hemispheric specialization for the control of relatively high and a right hemispheric specialization for the control of relatively low tapping rates. We investigated timing variability and rhythmic accentuation in right handers tapping mono- and multifrequent bimanual rhythms to test the predictions of the double-filtering-by-frequency theory. Yet, hemispheric specializations for the processing of relative tapping rates could be masked by a left hemispheric dominance for the control of known sequences. Tapping was thus either performed in an overlearned quadruple meter (tap of the slow rhythm on the first auditory beat) or in a syncopated quadruple meter (tap of the slow rhythm on the fourth auditory beat). Independent of syncopation, the right hand outperformed the left hand in timing accuracy for fast tapping. A left hand timing benefit for slow tapping rates as predicted by the double-filtering-by-frequency theory was only found in the syncopated tapping group. This suggests a right hemisphere preference for the control of slow tapping rates when rhythms are not overlearned. Error rates indicate that overlearned rhythms represent hierarchically structured meters that are controlled by a single timer that could potentially reside in the left hemisphere.
Collapse
|
24
|
Features of EEG Activity Related to Realization of Cyclic Unimanual and Bimanual Hand Movements in Humans. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9632-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Moreira R, Lial L, Teles Monteiro MG, Aragão A, Santos David L, Coertjens M, Silva-Júnior FL, Dias G, Velasques B, Ribeiro P, Teixeira SS, Bastos VH. Diagonal movement of the upper limb produces greater adaptive plasticity than sagittal plane flexion in the shoulder. Neurosci Lett 2017; 643:8-15. [DOI: 10.1016/j.neulet.2017.02.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
|
26
|
Chieffi S, Villano I, Iavarone A, Messina A, Monda V, Viggiano A, Messina G, Monda M. Manual asymmetry for temporal and spatial parameters in sensorimotor synchronization. Exp Brain Res 2017; 235:1511-1518. [PMID: 28251335 DOI: 10.1007/s00221-017-4919-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/16/2017] [Indexed: 11/29/2022]
Abstract
Previous studies suggest a right hemisphere advantage for temporal processing and a left hemisphere advantage for planning of motor actions. In the present study, we studied sensorimotor synchronization of hand reaching movements with an auditory rhythm. Blindfolded right-handed participants were asked to synchronize left and right hand movements to an auditory rhythm (40 vs. 60 vs. 80 bpm) and simultaneously reproduce the amplitude of a previously shown movement. Constant and variable asynchronies and movement amplitude errors were measured. The results showed that (a) constant asynchrony was lesser with the left hand than the right hand and (b) constant and variable amplitude errors were lesser with the right hand than the left hand. We suggest that when hand reaching movements are synchronized with an auditory rhythm, the left hand/right hemisphere system appears relatively specialized in temporally adhering to the rhythm and the right hand/left hemisphere system in performing spatially accurate movements.
Collapse
Affiliation(s)
- Sergio Chieffi
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy.
| | - Ines Villano
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy
| | - Alessandro Iavarone
- Neurological and Stroke Unit, CTO Hospital, AORN "Ospedali dei Colli", Naples, Italy
| | - Antonietta Messina
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy
| | - Vincenzo Monda
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy
| | - Andrea Viggiano
- Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Giovanni Messina
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marcellino Monda
- Dipartimento di Medicina Sperimentale, Seconda Università di Napoli, Via Costantinopoli 16, 80138, Napoli, Italy
| |
Collapse
|
27
|
Claassen DO, McDonell KE, Donahue M, Rawal S, Wylie SA, Neimat JS, Kang H, Hedera P, Zald D, Landman B, Dawant B, Rane S. Cortical asymmetry in Parkinson's disease: early susceptibility of the left hemisphere. Brain Behav 2016; 6:e00573. [PMID: 28031997 PMCID: PMC5167000 DOI: 10.1002/brb3.573] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 07/05/2016] [Accepted: 08/08/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Clinically, Parkinson's disease (PD) presents with asymmetric motor symptoms. The left nigrostriatal system appears more susceptible to early degeneration than the right, and a left-lateralized pattern of early neuropathological changes is also described in several neurodegenerative conditions, including Alzheimer's disease, frontotemporal dementia, and Huntington's disease. In this study, we evaluated hemispheric differences in estimated rates of atrophy in a large, well-characterized cohort of PD patients. METHODS Our cohort included 205 PD patients who underwent clinical assessments and T1-weighted brain MRI's. Patients were classified into Early (n = 109) and Late stage (n = 96) based on disease duration, defined as greater than or less than 10 years of motor symptoms. Cortical thickness was determined using FreeSurfer, and a bootstrapped linear regression model was used to estimate differences in rates of atrophy between Early and Late patients. RESULTS Our results show that patients classified as Early stage exhibit a greater estimated rate of cortical atrophy in left frontal regions, especially the left insula and olfactory sulcus. This pattern was replicated in left-handed patients, and was not influenced by the degree of motor symptom asymmetry (i.e., left-sided predominant motor symptoms). Patients classified as Late stage exhibited greater atrophy in the bilateral occipital, and right hemisphere-predominant cortical areas. CONCLUSIONS We show that cortical degeneration in PD differs between cerebral hemispheres, and findings suggest a pattern of early left, and late right hemisphere with posterior cortical atrophy. Further investigation is warranted to elucidate the underlying mechanisms of this asymmetry and pathologic implications.
Collapse
Affiliation(s)
| | | | - Manus Donahue
- Vanderbilt University Institute of Imaging Science Nashville TN USA
| | - Shiv Rawal
- Meharry Medical College Nashville TN USA
| | - Scott A Wylie
- Department of Neurology Vanderbilt University Nashville TN USA
| | - Joseph S Neimat
- Department of Neurosurgery University of Louisville Louisville KY USA
| | - Hakmook Kang
- Department of Biostatistics Vanderbilt University Nashville TN USA
| | - Peter Hedera
- Department of Neurology Vanderbilt University Nashville TN USA
| | - David Zald
- Department of Psychology Vanderbilt University Nashville TN USA
| | - Bennett Landman
- Department of Electrical Engineering Vanderbilt University Nashville TN USA
| | - Benoit Dawant
- Department of Electrical Engineering Vanderbilt University Nashville TN USA
| | - Swati Rane
- Vanderbilt University Institute of Imaging Science Nashville TN USA
| |
Collapse
|
28
|
Leinen P, Panzer S, Shea CH. Hemispheric asymmetries of a motor memory in a recognition test after learning a movement sequence. Acta Psychol (Amst) 2016; 171:36-46. [PMID: 27648751 DOI: 10.1016/j.actpsy.2016.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022] Open
Abstract
Two experiments utilizing a spatial-temporal movement sequence were designed to determine if the memory of the sequence is lateralized in the left or right hemisphere. In Experiment 1, dominant right-handers were randomly assigned to one of two acquisition groups: a left-hand starter and a right-hand starter group. After an acquisition phase, reaction time (RT) was measured in a recognition test by providing the learned sequential pattern in the left or right visual half-field for 150ms. In a retention test and two transfer tests the dominant coordinate system for sequence production was evaluated. In Experiment 2 dominant left-handers and dominant right-handers had to acquire the sequence with their dominant limb. The results of Experiment 1 indicated that RT was significantly shorter when the acquired sequence was provided in the right visual field during the recognition test. The same results occurred in Experiment 2 for dominant right-handers and left-handers. These results indicated a right visual field left hemisphere advantage in the recognition test for the practiced stimulus for dominant left and right-handers, when the task was practiced with the dominant limb.
Collapse
Affiliation(s)
- Peter Leinen
- Saarland University, Im Stadtwald B8.2, D-66041 Saarbrücken, Germany.
| | - Stefan Panzer
- Saarland University, Im Stadtwald B8.2, D-66041 Saarbrücken, Germany.
| | - Charles H Shea
- Texas A&M University, Department of Health and Kinesiology, Texas A&M University College Station, TX 77843-4243, United States.
| |
Collapse
|
29
|
Hodgson JC, Hirst RJ, Hudson JM. Hemispheric speech lateralisation in the developing brain is related to motor praxis ability. Dev Cogn Neurosci 2016; 22:9-17. [PMID: 27744099 PMCID: PMC6990139 DOI: 10.1016/j.dcn.2016.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 10/24/2022] Open
Abstract
Commonly displayed functional asymmetries such as hand dominance and hemispheric speech lateralisation are well researched in adults. However there is debate about when such functions become lateralised in the typically developing brain. This study examined whether patterns of speech laterality and hand dominance were related and whether they varied with age in typically developing children. 148 children aged 3-10 years performed an electronic pegboard task to determine hand dominance; a subset of 38 of these children also underwent functional Transcranial Doppler (fTCD) imaging to derive a lateralisation index (LI) for hemispheric activation during speech production using an animation description paradigm. There was no main effect of age in the speech laterality scores, however, younger children showed a greater difference in performance between their hands on the motor task. Furthermore, this between-hand performance difference significantly interacted with direction of speech laterality, with a smaller between-hand difference relating to increased left hemisphere activation. This data shows that both handedness and speech lateralisation appear relatively determined by age 3, but that atypical cerebral lateralisation is linked to greater performance differences in hand skill, irrespective of age. Results are discussed in terms of the common neural systems underpinning handedness and speech lateralisation.
Collapse
Affiliation(s)
| | - Rebecca J Hirst
- School of Psychology, University of Nottingham, Nottingham, UK
| | - John M Hudson
- School of Psychology, University of Lincoln, Lincoln, LN6 7TS, UK
| |
Collapse
|
30
|
Vourvopoulos A, Bermúdez I Badia S. Motor priming in virtual reality can augment motor-imagery training efficacy in restorative brain-computer interaction: a within-subject analysis. J Neuroeng Rehabil 2016; 13:69. [PMID: 27503007 PMCID: PMC4977849 DOI: 10.1186/s12984-016-0173-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/12/2016] [Indexed: 11/17/2022] Open
Abstract
Background The use of Brain–Computer Interface (BCI) technology in neurorehabilitation provides new strategies to overcome stroke-related motor limitations. Recent studies demonstrated the brain's capacity for functional and structural plasticity through BCI. However, it is not fully clear how we can take full advantage of the neurobiological mechanisms underlying recovery and how to maximize restoration through BCI. In this study we investigate the role of multimodal virtual reality (VR) simulations and motor priming (MP) in an upper limb motor-imagery BCI task in order to maximize the engagement of sensory-motor networks in a broad range of patients who can benefit from virtual rehabilitation training. Methods In order to investigate how different BCI paradigms impact brain activation, we designed 3 experimental conditions in a within-subject design, including an immersive Multimodal Virtual Reality with Motor Priming (VRMP) condition where users had to perform motor-execution before BCI training, an immersive Multimodal VR condition, and a control condition with standard 2D feedback. Further, these were also compared to overt motor-execution. Finally, a set of questionnaires were used to gather subjective data on Workload, Kinesthetic Imagery and Presence. Results Our findings show increased capacity to modulate and enhance brain activity patterns in all extracted EEG rhythms matching more closely those present during motor-execution and also a strong relationship between electrophysiological data and subjective experience. Conclusions Our data suggest that both VR and particularly MP can enhance the activation of brain patterns present during overt motor-execution. Further, we show changes in the interhemispheric EEG balance, which might play an important role in the promotion of neural activation and neuroplastic changes in stroke patients in a motor-imagery neurofeedback paradigm. In addition, electrophysiological correlates of psychophysiological responses provide us with valuable information about the motor and affective state of the user that has the potential to be used to predict MI-BCI training outcome based on user’s profile. Finally, we propose a BCI paradigm in VR, which gives the possibility of motor priming for patients with low level of motor control.
Collapse
Affiliation(s)
- Athanasios Vourvopoulos
- Faculdade das Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal. .,Madeira Interactive Technologies Institute, Polo Científico e Tecnológico da Madeira, Caminho da Penteada, 9020-105, Funchal, Portugal.
| | - Sergi Bermúdez I Badia
- Faculdade das Ciências Exatas e da Engenharia, Universidade da Madeira, Campus Universitário da Penteada, 9020-105, Funchal, Portugal.,Madeira Interactive Technologies Institute, Polo Científico e Tecnológico da Madeira, Caminho da Penteada, 9020-105, Funchal, Portugal
| |
Collapse
|
31
|
Zemankova P, Lungu O, Huttlova J, Kerkovsky M, Zubor J, Lipova P, Bares M, Kasparek T. Neuronal substrate and effective connectivity of abnormal movement sequencing in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2016; 67:1-9. [PMID: 26780603 DOI: 10.1016/j.pnpbp.2016.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/14/2022]
Abstract
Movement sequencing difficulties are part of the neurological soft signs (NSS), they have high clinical value because they are not always present in schizophrenia. We investigated the neuronal correlates of movement sequencing in 24 healthy controls and 24 schizophrenia patients, with (SZP SQ+) or without (SZP SQ-) sequencing difficulties. We characterized simultaneous and lagged functional connectivity between brain regions involved in movement sequencing using psychophysiological interaction (PPI) and the Granger causality modeling (GCM), respectively. Left premotor cortex (PMC) and superior parietal lobule (SPL) were specifically activated during sequential movements in all participants. Right PMC and precuneus, ipsilateral to the hand executing the task, activated during sequential movements only in healthy controls and SZP SQ-. SZP SQ+ showed hyperactivation in contralateral PMC, as compared to the other groups. PPI analysis revealed a deficit in inhibitory connections within this fronto-parietal network in SZP SQ+ during sequential task. GCM showed a significant lagged effective connectivity from right PMC to left SPL during task and rest periods in all groups and from right PMC to right precuneus in SZP SQ+ group only. Both SZP groups had a significant lagged connectivity from right to left PMC, during sequential task. Our results indicate that aberrant fronto-parietal network connectivity with cortical inhibition deficit and abnormal reliance on previous network activity are related to movement sequencing in SZP. The overactivation of motor cortex seems to be a good compensating strategy, the hyperactivation of parietal cortex is linked to motor deficit symptoms.
Collapse
Affiliation(s)
- Petra Zemankova
- Behavioural and Social Neuroscience Research Group, Central European Institute of Technology - Masaryk University, Brno, Czech Republic.
| | - Ovidiu Lungu
- Department of Psychiatry, University of Montreal, Centre de recherche de l'Institut Universitaire de Gériatrie de Montreal, Montreal, Canada; Centre for Research in Aging, Donald Berman Maimonides Geriatric Centre, Montreal, Canada
| | - Jitka Huttlova
- Department of Psychiatry, Faculty of Medicine of the Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Milos Kerkovsky
- Department of Radiology, Faculty of Medicine of the Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Jozef Zubor
- Department of Psychiatry, Faculty of Medicine of the Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Petra Lipova
- Department of Psychiatry, Faculty of Medicine of the Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Martin Bares
- Behavioural and Social Neuroscience Research Group, Central European Institute of Technology - Masaryk University, Brno, Czech Republic; First Department of Neurology, Faculty of Medicine of the Masaryk University and St. Anne's University Hospital, Brno, Czech Republic
| | - Tomas Kasparek
- Behavioural and Social Neuroscience Research Group, Central European Institute of Technology - Masaryk University, Brno, Czech Republic; Department of Psychiatry, Faculty of Medicine of the Masaryk University and University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
32
|
Choo AL, Burnham E, Hicks K, Chang SE. Dissociations among linguistic, cognitive, and auditory-motor neuroanatomical domains in children who stutter. JOURNAL OF COMMUNICATION DISORDERS 2016; 61:29-47. [PMID: 27010940 PMCID: PMC4880500 DOI: 10.1016/j.jcomdis.2016.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 02/04/2016] [Accepted: 03/12/2016] [Indexed: 05/26/2023]
Abstract
The onset of developmental stuttering typically occurs between 2 to 4 years of age, coinciding with a period of rapid development in speech, language, motor and cognitive domains. Previous studies have reported generally poorer performance and uneven, or "dissociated" development across speech and language domains in children who stutter (CWS) relative to children who do not stutter (CWNS) (Anderson, Pellowski, & Conture, 2005). The aim of this study was to replicate and expand previous findings by examining whether CWS exhibit dissociated development across speech-language, cognitive, and motor domains that are also reflected in measures of neuroanatomical development. Participants were 66CWS (23 females) and 53CWNS (26 females) ranging from 3 to 10 years. Standardized speech, language, cognitive, and motor skills measures, and fractional anisotropy (FA) values derived from diffusion tensor imaging from speech relevant "dorsal auditory" left perisylvian areas (Hickok & Poeppel, 2007) were analyzed using a correlation-based statistical procedure (Coulter, Anderson, & Conture, 2009) that quantified dissociations across domains. Overall, CWS scored consistently lower on speech, language, cognitive and motor measures, and exhibited dissociated development involving these same measures and white matter neuroanatomical indices relative to CWNS. Boys who stutter exhibited a greater number of dissociations compared to girls who stutter. Results suggest a subgroup of CWS may have incongruent development across multiple domains, and the resolution of this imbalance may be a factor in recovery from stuttering.
Collapse
Affiliation(s)
- Ai Leen Choo
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| | - Evamarie Burnham
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA.
| | - Kristin Hicks
- Department of Communicative Sciences and Disorders, Michigan State University, East Lansing, MI, USA.
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
33
|
Porac C. Left-Handers and the Right Mind. Laterality 2016. [DOI: 10.1016/b978-0-12-801239-0.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
34
|
Stone KD, Gonzalez CLR. The contributions of vision and haptics to reaching and grasping. Front Psychol 2015; 6:1403. [PMID: 26441777 PMCID: PMC4584943 DOI: 10.3389/fpsyg.2015.01403] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 09/02/2015] [Indexed: 11/23/2022] Open
Abstract
This review aims to provide a comprehensive outlook on the sensory (visual and haptic) contributions to reaching and grasping. The focus is on studies in developing children, normal, and neuropsychological populations, and in sensory-deprived individuals. Studies have suggested a right-hand/left-hemisphere specialization for visually guided grasping and a left-hand/right-hemisphere specialization for haptically guided object recognition. This poses the interesting possibility that when vision is not available and grasping relies heavily on the haptic system, there is an advantage to use the left hand. We review the evidence for this possibility and dissect the unique contributions of the visual and haptic systems to grasping. We ultimately discuss how the integration of these two sensory modalities shape hand preference.
Collapse
Affiliation(s)
- Kayla D Stone
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge AB, Canada
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, Lethbridge AB, Canada
| |
Collapse
|