1
|
Amorim-de-Sousa A, Chakraborty R, Collins MJ, Fernandes P, González-Méijome J, Hannibal J, Hoseini-Yazdi H, Read SA, Ellrich J, Schilling T. Blue light stimulation of the blind spot in human: from melanopsin to clinically relevant biomarkers of myopia. Bioelectron Med 2024; 10:26. [PMID: 39491000 PMCID: PMC11533427 DOI: 10.1186/s42234-024-00159-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
The protective effects of time spent outdoors emphasize the major role of daylight in myopia. Based on the pathophysiology of myopia, the impact of blue light stimulation on the signaling cascade, from melanopsin at the blind spot to clinically relevant biomarkers for myopia, was investigated. Parameters and site of light stimulation are mainly defined by the photopigment melanopsin, that is sensitive to blue light with a peak wavelength of 480 nm and localized on the intrinsically photosensitive retinal ganglion cells (ipRGC) whose axons converge to the optic disc, corresponding to the physiological blind spot. Blue light at the blind spot (BluSpot) stimulation provides the opportunity to activate the vast majority of ipRGC and avoids additional involvement of rods and cones which may exert incalculable effects on the signaling cascade.Experimental studies have applied anatomical, histochemical, electrophysiological, imaging, and psychophysical methods to unravel the mode of action of BluSpot stimulation. Results indicate activation of melanopsin, improvement of contrast sensitivity, gain in electrical retinal activity, and increase of choroidal thickness following BluSpot stimulation. Short-term changes of clinically relevant biomarkers lead to the hypothesis that BluSpot stimulation may exert antimyopic effects with long-term application.
Collapse
Affiliation(s)
- Ana Amorim-de-Sousa
- Clinical & Experimental Optometry Research Lab, Physics Center of Minho and Porto Universities, University of Minho, Braga, Portugal
| | - Ranjay Chakraborty
- Myopia and Visual Development Lab, Flinders University College of Nursing and Health Sciences, Bedford Park, South Australia, Australia
| | - Michael J Collins
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Paulo Fernandes
- Clinical & Experimental Optometry Research Lab, Physics Center of Minho and Porto Universities, University of Minho, Braga, Portugal
| | - José González-Méijome
- Clinical & Experimental Optometry Research Lab, Physics Center of Minho and Porto Universities, University of Minho, Braga, Portugal
| | - Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg and Frederiksberg Hospital, Institute of Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hosein Hoseini-Yazdi
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Scott A Read
- Contact Lens and Visual Optics Laboratory, Centre for Vision and Eye Research, Optometry and Vision Science, Queensland University of Technology, Brisbane, Australia
| | - Jens Ellrich
- Dopavision GmbH, Pfuelstrasse 5, 10997, Berlin, Germany
- Medical Faculty, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Tim Schilling
- Dopavision GmbH, Pfuelstrasse 5, 10997, Berlin, Germany.
| |
Collapse
|
2
|
Nuiten SA, de Gee JW, Zantvoord JB, Fahrenfort JJ, van Gaal S. Pharmacological Elevation of Catecholamine Levels Improves Perceptual Decisions, But Not Metacognitive Insight. eNeuro 2024; 11:ENEURO.0019-24.2024. [PMID: 39029953 PMCID: PMC11287790 DOI: 10.1523/eneuro.0019-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024] Open
Abstract
Perceptual decisions are often accompanied by a feeling of decision confidence. Where the parietal cortex is known for its crucial role in shaping such perceptual decisions, metacognitive evaluations are thought to additionally rely on the (pre)frontal cortex. Because of this supposed neural differentiation between these processes, perceptual and metacognitive decisions may be divergently affected by changes in internal (e.g., attention, arousal) and external (e.g., task and environmental demands) factors. Although intriguing, causal evidence for this hypothesis remains scarce. Here, we investigated the causal effect of two neuromodulatory systems on behavioral and neural measures of perceptual and metacognitive decision-making. Specifically, we pharmacologically elevated levels of catecholamines (with atomoxetine) and acetylcholine (with donepezil) in healthy adult human participants performing a visual discrimination task in which we gauged decision confidence, while electroencephalography was measured. Where cholinergic effects were not robust, catecholaminergic enhancement improved perceptual sensitivity, while at the same time leaving metacognitive sensitivity unaffected. Neurally, catecholaminergic elevation did not affect sensory representations of task-relevant visual stimuli but instead enhanced well-known decision signals measured over the centroparietal cortex, reflecting the accumulation of sensory evidence over time. Crucially, catecholaminergic enhancement concurrently impoverished neural markers measured over the frontal cortex linked to the formation of metacognitive evaluations. Enhanced catecholaminergic neuromodulation thus improves perceptual but not metacognitive decision-making.
Collapse
Affiliation(s)
- Stijn A Nuiten
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, Netherlands
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Jan Willem de Gee
- Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, Netherlands
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Jasper B Zantvoord
- Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, Netherlands
- Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Johannes J Fahrenfort
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Experimental and Applied Psychology - Cognitive Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Simon van Gaal
- Department of Psychology, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Brain & Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Nuiten SA, de Gee JW, Zantvoord JB, Fahrenfort JJ, van Gaal S. Catecholaminergic neuromodulation and selective attention jointly shape perceptual decision-making. eLife 2023; 12:RP87022. [PMID: 38038722 PMCID: PMC10691802 DOI: 10.7554/elife.87022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023] Open
Abstract
Perceptual decisions about sensory input are influenced by fluctuations in ongoing neural activity, most prominently driven by attention and neuromodulator systems. It is currently unknown if neuromodulator activity and attention differentially modulate perceptual decision-making and/or whether neuromodulatory systems in fact control attentional processes. To investigate the effects of two distinct neuromodulatory systems and spatial attention on perceptual decisions, we pharmacologically elevated cholinergic (through donepezil) and catecholaminergic (through atomoxetine) levels in humans performing a visuo-spatial attention task, while we measured electroencephalography (EEG). Both attention and catecholaminergic enhancement improved decision-making at the behavioral and algorithmic level, as reflected in increased perceptual sensitivity and the modulation of the drift rate parameter derived from drift diffusion modeling. Univariate analyses of EEG data time-locked to the attentional cue, the target stimulus, and the motor response further revealed that attention and catecholaminergic enhancement both modulated pre-stimulus cortical excitability, cue- and stimulus-evoked sensory activity, as well as parietal evidence accumulation signals. Interestingly, we observed both similar, unique, and interactive effects of attention and catecholaminergic neuromodulation on these behavioral, algorithmic, and neural markers of the decision-making process. Thereby, this study reveals an intricate relationship between attentional and catecholaminergic systems and advances our understanding about how these systems jointly shape various stages of perceptual decision-making.
Collapse
Affiliation(s)
- Stijn A Nuiten
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Department of Psychiatry (UPK), University of BaselBaselSwitzerland
| | - Jan Willem de Gee
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s HospitalHoustonUnited States
- Department of Neuroscience, Baylor College of MedicineHoustonUnited States
- Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdamNetherlands
| | - Jasper B Zantvoord
- Department of Psychiatry, Amsterdam UMC location University of AmsterdamAmsterdamNetherlands
- Amsterdam NeuroscienceAmsterdamNetherlands
| | - Johannes J Fahrenfort
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
- Institute for Brain and Behavior Amsterdam, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Department of Experimental and Applied Psychology - Cognitive Psychology, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Simon van Gaal
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
- Amsterdam Brain & Cognition, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
4
|
Kunnath AJ, Gifford RH, Wallace MT. Cholinergic modulation of sensory perception and plasticity. Neurosci Biobehav Rev 2023; 152:105323. [PMID: 37467908 PMCID: PMC10424559 DOI: 10.1016/j.neubiorev.2023.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Sensory systems are highly plastic, but the mechanisms of sensory plasticity remain unclear. People with vision or hearing loss demonstrate significant neural network reorganization that promotes adaptive changes in other sensory modalities as well as in their ability to combine information across the different senses (i.e., multisensory integration. Furthermore, sensory network remodeling is necessary for sensory restoration after a period of sensory deprivation. Acetylcholine is a powerful regulator of sensory plasticity, and studies suggest that cholinergic medications may improve visual and auditory abilities by facilitating sensory network plasticity. There are currently no approved therapeutics for sensory loss that target neuroplasticity. This review explores the systems-level effects of cholinergic signaling on human visual and auditory perception, with a focus on functional performance, sensory disorders, and neural activity. Understanding the role of acetylcholine in sensory plasticity will be essential for developing targeted treatments for sensory restoration.
Collapse
Affiliation(s)
- Ansley J Kunnath
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - René H Gifford
- Department of Otolaryngology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Mark T Wallace
- Department of Hearing and Speech Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
5
|
Lista S, Vergallo A, Teipel SJ, Lemercier P, Giorgi FS, Gabelle A, Garaci F, Mercuri NB, Babiloni C, Gaire BP, Koronyo Y, Koronyo-Hamaoui M, Hampel H, Nisticò R. Determinants of approved acetylcholinesterase inhibitor response outcomes in Alzheimer's disease: relevance for precision medicine in neurodegenerative diseases. Ageing Res Rev 2023; 84:101819. [PMID: 36526257 DOI: 10.1016/j.arr.2022.101819] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/11/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Acetylcholinesterase inhibitors (ChEI) are the global standard of care for the symptomatic treatment of Alzheimer's disease (AD) and show significant positive effects in neurodegenerative diseases with cognitive and behavioral symptoms. Although experimental and large-scale clinical evidence indicates the potential long-term efficacy of ChEI, primary outcomes are generally heterogeneous across outpatient clinics and regional healthcare systems. Sub-optimal dosing or slow tapering, heterogeneous guidelines about the timing for therapy initiation (prodromal versus dementia stages), healthcare providers' ambivalence to treatment, lack of disease awareness, delayed medical consultation, prescription of ChEI in non-AD cognitive disorders, contribute to the negative outcomes. We present an evidence-based overview of determinants, spanning genetic, molecular, and large-scale networks, involved in the response to ChEI in patients with AD and other neurodegenerative diseases. A comprehensive understanding of cerebral and retinal cholinergic system dysfunctions along with ChEI response predictors in AD is crucial since disease-modifying therapies will frequently be prescribed in combination with ChEI. Therapeutic algorithms tailored to genetic, biological, clinical (endo)phenotypes, and disease stages will help leverage inter-drug synergy and attain optimal combined response outcomes, in line with the precision medicine model.
Collapse
Affiliation(s)
- Simone Lista
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France; School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy.
| | - Andrea Vergallo
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Stefan J Teipel
- German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Medicine Rostock, Rostock, Germany
| | - Pablo Lemercier
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - Audrey Gabelle
- Memory Resources and Research Center (CMRR), Neurology Department, Gui de Chauliac University Hospital, Montpellier, France
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Rome, Italy; Casa di Cura "San Raffaele Cassino", Cassino, Italy
| | - Nicola B Mercuri
- Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "Erspamer", Sapienza University of Rome, Rome, Italy; Hospital San Raffaele Cassino, Cassino, Italy
| | - Bhakta Prasad Gaire
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Harald Hampel
- Sorbonne University, Alzheimer Precision Medicine (APM), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy.
| |
Collapse
|
6
|
Past, present and future role of retinal imaging in neurodegenerative disease. Prog Retin Eye Res 2021; 83:100938. [PMID: 33460813 PMCID: PMC8280255 DOI: 10.1016/j.preteyeres.2020.100938] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 02/08/2023]
Abstract
Retinal imaging technology is rapidly advancing and can provide ever-increasing amounts of information about the structure, function and molecular composition of retinal tissue in humans in vivo. Most importantly, this information can be obtained rapidly, non-invasively and in many cases using Food and Drug Administration-approved devices that are commercially available. Technologies such as optical coherence tomography have dramatically changed our understanding of retinal disease and in many cases have significantly improved their clinical management. Since the retina is an extension of the brain and shares a common embryological origin with the central nervous system, there has also been intense interest in leveraging the expanding armamentarium of retinal imaging technology to understand, diagnose and monitor neurological diseases. This is particularly appealing because of the high spatial resolution, relatively low-cost and wide availability of retinal imaging modalities such as fundus photography or OCT compared to brain imaging modalities such as magnetic resonance imaging or positron emission tomography. The purpose of this article is to review and synthesize current research about retinal imaging in neurodegenerative disease by providing examples from the literature and elaborating on limitations, challenges and future directions. We begin by providing a general background of the most relevant retinal imaging modalities to ensure that the reader has a foundation on which to understand the clinical studies that are subsequently discussed. We then review the application and results of retinal imaging methodologies to several prevalent neurodegenerative diseases where extensive work has been done including sporadic late onset Alzheimer's Disease, Parkinson's Disease and Huntington's Disease. We also discuss Autosomal Dominant Alzheimer's Disease and cerebrovascular small vessel disease, where the application of retinal imaging holds promise but data is currently scarce. Although cerebrovascular disease is not generally considered a neurodegenerative process, it is both a confounder and contributor to neurodegenerative disease processes that requires more attention. Finally, we discuss ongoing efforts to overcome the limitations in the field and unmet clinical and scientific needs.
Collapse
|
7
|
Levi DM, Li RW, Silver MA, Chung STL. Sequential perceptual learning of letter identification and "uncrowding" in normal peripheral vision: Effects of task, training order, and cholinergic enhancement. J Vis 2021; 20:24. [PMID: 32347910 PMCID: PMC7405719 DOI: 10.1167/jov.20.4.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human adults with normal vision are capable of improving performance on visual tasks through repeated practice. Previous work has shown that enhancing synaptic levels of acetylcholine (ACh) in healthy human adults with donepezil (trade name: Aricept) can increase the magnitude and specificity of perceptual learning (PL) for motion direction discrimination in the perifovea. In the current study, we ask whether increasing the synaptic levels of ACh in healthy human adults with donepezil boosts learning of low-contrast isolated letter identification and high-contrast flanked letter identification in normal peripheral vision. Two groups of observers performed sequential training over multiple days while ingesting donepezil. One group trained on isolated low-contrast letters in Phase 1 and crowded high-contrast letters in Phase 2, and the other group performed the reverse sequence, thereby enabling us to differentiate possible effects of drug and training order on PL of letter identification. All testing and training were performed monocularly in peripheral vision, at an eccentricity of 10 degrees along the lower vertical meridian. Our experimental design allowed us to evaluate the effects of sequential training and to ask whether increasing cholinergic signaling boosted learning and/or transfer of low-contrast isolated letter identification and high-contrast flanked letter identification in normal peripheral vision. We found that both groups improved on each of the two tasks. However, our results revealed an effect of training task order on flanked letter identification: Observers who trained on isolated targets first showed rapid early improvement in flanked letter identification but little to no additional improvement after 30 training blocks, while observers who first trained with flanked letters improved gradually on flanked letter identification over the entire 100-block course of training. In addition, we found no effect of donepezil on PL of either isolated or flanked letter identification. In other words, donepezil neither boosted nor blocked learning to identify isolated low-contrast letters or learning to uncrowd in normal peripheral vision.
Collapse
|
8
|
Byrne KN, McDevitt EA, Sheremata SL, Peters MW, Mednick SC, Silver MA. Transient cholinergic enhancement does not significantly affect either the magnitude or selectivity of perceptual learning of visual texture discrimination. J Vis 2020; 20:5. [PMID: 32511666 PMCID: PMC7416900 DOI: 10.1167/jov.20.6.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Perceptual learning (PL), often characterized by improvements in perceptual performance with training that are specific to the stimulus conditions used during training, exemplifies experience-dependent cortical plasticity. An improved understanding of how neuromodulatory systems shape PL promises to provide new insights into the mechanisms of plasticity, and by extension how PL can be generated and applied most efficiently. Previous studies have reported enhanced PL in human subjects following administration of drugs that increase signaling through acetylcholine (ACh) receptors, and physiological evidence indicates that ACh sharpens neuronal selectivity, suggesting that this neuromodulator supports PL and its stimulus specificity. Here we explored the effects of enhancing endogenous cholinergic signaling during PL of a visual texture discrimination task. We found that training on this task in the lower visual field yielded significant behavioral improvement at the trained location. However, a single dose of the cholinesterase inhibitor donepezil, administered before training, did not significantly impact either the magnitude or the location specificity of texture discrimination learning compared with placebo. We discuss potential explanations for discrepant findings in the literature regarding the role of ACh in visual PL, including possible differences in plasticity mechanisms in the dorsal and ventral cortical processing streams.
Collapse
|
9
|
Singh AK, Verma S. Use of ocular biomarkers as a potential tool for early diagnosis of Alzheimer's disease. Indian J Ophthalmol 2020; 68:555-561. [PMID: 32174567 PMCID: PMC7210832 DOI: 10.4103/ijo.ijo_999_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/10/2019] [Accepted: 10/26/2019] [Indexed: 02/05/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide which unfortunately has no known effective cure to date. Despite many clinical trials indicating the effectiveness of preclinical treatment, a sensitive tool for screening of AD is yet to be developed. Due to multiple similarities between ocular and the brain tissue, the eye is being explored by researchers for this purpose, with utmost attention focused on the retinal tissue. Besides visual functional impairment, neuronal degeneration and apoptosis, retinal nerve fiber degeneration, increase in the cup-to-disc ratio, and retinal vascular thinning and tortuosity are the changes observed in the retinal tissue which are related to AD. Studies have shown that targeting these changes in the retina is an effective way of reducing the degeneration of retinal neuronal tissue. Similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Multiple studies are underway to investigate the potential of diagnosing AD and detection of amyloid-β (Aβ) levels in the retinal tissue. Since the tissues in the anterior segment of the eye are more accessible for in vivo imaging and examination, they have more potential as screening biomarkers. This article provides a concise review of available literature on the ocular biomarkers in anterior and posterior segments of the eye including the cornea, aqueous humour (AH), crystalline lens, and retina in AD. This review will also highlight the newer technological tools available for the detection of potential biomarkers in the eye for early diagnosis of AD.
Collapse
Affiliation(s)
- Ajay K Singh
- Consultant and Anterior Segment Surgeon, Department of Ophthalmology, Asian Institute of Medical Sciences, Faridabad, Haryana, India
| | - Shilpa Verma
- WNS Global Services Pvt. Ltd., Gurugram, Haryana, India
| |
Collapse
|
10
|
Bubbico G, Di Iorio A, Lauriola M, Sepede G, Salice S, Spina E, Brondi G, Esposito R, Perrucci MG, Tartaro A. Subjective Cognitive Decline and Nighttime Sleep Alterations, a Longitudinal Analysis. Front Aging Neurosci 2019; 11:142. [PMID: 31312133 PMCID: PMC6614445 DOI: 10.3389/fnagi.2019.00142] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 05/27/2019] [Indexed: 11/16/2022] Open
Abstract
Objective: The aim of this study was to analyze quantitative sleep changes and their implication on subjective cognitive decline (SCD). Objective sleep patterns were investigated by an actigraph and recorded at the baseline and 2-year after in order to examine specific sleep alterations in SCD. Background: Sleep disorders are very common among average elderly adults and an altered sleep pattern is known to be a risk factor for future development of mild cognitive impairment (MCI) and dementia. Recent studies have shown how sleep is objectively altered in average senior adults with SCD, without any other significant change in cognition and behavior or brain structure. Considering that both SCD and disrupted sleep are risk factors for future MCI and dementia, with sleep only as a modifiable risk factor, further research is required to deeply investigate the interaction between sleep and SCD. Methods: Among 70 community-dwelling elderly individuals who had been enrolled at baseline, 35 (64.6 ± 5.6 years, 15 M/20 F) underwent a complete neuropsychological battery and 1-week wrist actigraphy recording 2 years later during the follow-up stage. Individuals were divided into two groups according to their SCD Questionnaire (SCD-Q) score. Sleep hours, sleep efficiency and onset latency, napping and time awake after sleep onset (WASO) were collected. All individuals underwent structural magnetic resonance imaging (MRI) examination to exclude brain disorders. Data collection was performed at baseline and after 2 years at the follow-up phase. Results: A significantly different night sleep time between the two groups was observed: SCD showed a lower total sleep time (TST) than non-SCD subjects. Moreover, a total time spent in bed (TIB) was significantly lower in SCD subjects over 2 years of observation. Conclusions: Objective changes over time of the sleep pattern, specifically TIB and TST, are present in SCD individuals. The results of the study show that sleep alterations are common in SCD and underline the clinical importance of screening in order to assess sleep alterations as well as improve sleep in average adults with SCD complaints.
Collapse
Affiliation(s)
- Giovanna Bubbico
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Angelo Di Iorio
- Department of Medicine and Science of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mariella Lauriola
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Momentum for Mental Health, La Selva, Palo Alto, CA, United States
| | - Gianna Sepede
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Simone Salice
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Eleonora Spina
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Science of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Brondi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Department of Medicine and Science of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Roberto Esposito
- Department of Radiology, Azienda Ospedaliera Ospedali Riuniti Marche Nord, Pesaro, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Armando Tartaro
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Institute for Advanced Biomedical Technologies (ITAB), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Radiology Units, Popoli Hospital, Popoli, Italy
| |
Collapse
|
11
|
Cerquera-Jaramillo MA, Nava-Mesa MO, González-Reyes RE, Tellez-Conti C, de-la-Torre A. Visual Features in Alzheimer's Disease: From Basic Mechanisms to Clinical Overview. Neural Plast 2018; 2018:2941783. [PMID: 30405709 PMCID: PMC6204169 DOI: 10.1155/2018/2941783] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/07/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide. It compromises patients' daily activities owing to progressive cognitive deterioration, which has elevated direct and indirect costs. Although AD has several risk factors, aging is considered the most important. Unfortunately, clinical diagnosis is usually performed at an advanced disease stage when dementia is established, making implementation of successful therapeutic interventions difficult. Current biomarkers tend to be expensive, insufficient, or invasive, raising the need for novel, improved tools aimed at early disease detection. AD is characterized by brain atrophy due to neuronal and synaptic loss, extracellular amyloid plaques composed of amyloid-beta peptide (Aβ), and neurofibrillary tangles of hyperphosphorylated tau protein. The visual system and central nervous system share many functional components. Thus, it is plausible that damage induced by Aβ, tau, and neuroinflammation may be observed in visual components such as the retina, even at an early disease stage. This underscores the importance of implementing ophthalmological examinations, less invasive and expensive than other biomarkers, as useful measures to assess disease progression and severity in individuals with or at risk of AD. Here, we review functional and morphological changes of the retina and visual pathway in AD from pathophysiological and clinical perspectives.
Collapse
Affiliation(s)
| | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Rodrigo E. González-Reyes
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Tellez-Conti
- Escuela Superior de Oftalmología-Instituto Barraquer de América, Bogotá, Colombia
| | - Alejandra de-la-Torre
- Grupo de Investigación en Neurociencias (NeURos), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
12
|
Coppola JJ, Disney AA. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems. Front Neural Circuits 2018; 12:8. [PMID: 29440996 PMCID: PMC5797555 DOI: 10.3389/fncir.2018.00008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.
Collapse
Affiliation(s)
- Jennifer J. Coppola
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Anita A. Disney
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
13
|
Kusne Y, Wolf AB, Townley K, Conway M, Peyman GA. Visual system manifestations of Alzheimer's disease. Acta Ophthalmol 2017; 95:e668-e676. [PMID: 27864881 DOI: 10.1111/aos.13319] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is an increasingly common disease with massive personal and economic costs. While it has long been known that AD impacts the visual system, there has recently been an increased focus on understanding both pathophysiological mechanisms that may be shared between the eye and brain and how related biomarkers could be useful for AD diagnosis. Here, were review pertinent cellular and molecular mechanisms of AD pathophysiology, the presence of AD pathology in the visual system, associated functional changes, and potential development of diagnostic tools based on the visual system. Additionally, we discuss links between AD and visual disorders, including possible pathophysiological mechanisms and their relevance for improving our understanding of AD.
Collapse
Affiliation(s)
- Yael Kusne
- University of Arizona College of Medicine; Phoenix Arizona USA
| | - Andrew B. Wolf
- University of Colorado School of Medicine; Aurora Colorado USA
| | - Kate Townley
- University of Arizona College of Medicine; Phoenix Arizona USA
| | - Mandi Conway
- University of Arizona College of Medicine; Phoenix Arizona USA
- Arizona Retinal Specialists; Sun City Arizona USA
| | - Gholam A. Peyman
- University of Arizona College of Medicine; Phoenix Arizona USA
- Arizona Retinal Specialists; Sun City Arizona USA
| |
Collapse
|
14
|
Chamoun M, Huppé-Gourgues F, Legault I, Rosa-Neto P, Dumbrava D, Faubert J, Vaucher E. Cholinergic Potentiation Improves Perceptual-Cognitive Training of Healthy Young Adults in Three Dimensional Multiple Object Tracking. Front Hum Neurosci 2017; 11:128. [PMID: 28377707 PMCID: PMC5359296 DOI: 10.3389/fnhum.2017.00128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/06/2017] [Indexed: 11/13/2022] Open
Abstract
A large body of literature supports cognitive enhancement as an effect of cholinergic potentiation. However, it remains elusive whether pharmacological manipulations of cholinergic neurotransmission enhance complex visual processing in healthy individuals. To test this hypothesis, we randomly administered either the cholinergic transmission enhancer donepezil (DPZ; 5 mg P.O.) or placebo (lactose) to young adults (n = 17) 3 h before each session of the three-dimensional (3D) multiple object tracking (3D-MOT) task. This multi-focal attention task evaluates perceptual-cognitive learning over five sessions conducted 7 days apart. A significant amount of learning was observed in the DPZ group but not the placebo group in the fourth session. In the fifth session, this learning effect was observed in both groups. Furthermore, preliminary results for a subgroup of participants (n = 9) 4–14 months later suggested the cholinergic enhancement effect was long lasting. On the other hand, DPZ had no effect on basic visual processing as measured by a motion and orientation discrimination task performed as an independent one-time, pre-post drug study without placebo control (n = 10). The results support the construct that cholinergic enhancement facilitates the encoding of a highly demanding perceptual-cognitive task although there were no significant drug effects on the performance levels compared to placebo.
Collapse
Affiliation(s)
- Mira Chamoun
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal Montréal, QC, Canada
| | - Frédéric Huppé-Gourgues
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal Montréal, QC, Canada
| | - Isabelle Legault
- Laboratoire de Psychophysique et de Perception Visuelle, École d'optométrie, Université de Montréal Montréal, QC, Canada
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging Douglas Research Institute, McGill University, Montréal, QC, Canada
| | - Daniela Dumbrava
- Laboratoire des Neurosciences de la Vision, École d'optométrie, Université de Montréal Montréal, QC, Canada
| | - Jocelyn Faubert
- Laboratoire de Psychophysique et de Perception Visuelle, École d'optométrie, Université de Montréal Montréal, QC, Canada
| | - Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
15
|
Nguyen CTO, Hui F, Charng J, Velaedan S, van Koeverden AK, Lim JKH, He Z, Wong VHY, Vingrys AJ, Bui BV, Ivarsson M. Retinal biomarkers provide "insight" into cortical pharmacology and disease. Pharmacol Ther 2017; 175:151-177. [PMID: 28174096 DOI: 10.1016/j.pharmthera.2017.02.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The retina is an easily accessible out-pouching of the central nervous system (CNS) and thus lends itself to being a biomarker of the brain. More specifically, the presence of neuronal, vascular and blood-neural barrier parallels in the eye and brain coupled with fast and inexpensive methods to quantify retinal changes make ocular biomarkers an attractive option. This includes its utility as a biomarker for a number of cerebrovascular diseases as well as a drug pharmacology and safety biomarker for the CNS. It is a rapidly emerging field, with some areas well established, such as stroke risk and multiple sclerosis, whereas others are still in development (Alzheimer's, Parkinson's, psychological disease and cortical diabetic dysfunction). The current applications and future potential of retinal biomarkers, including potential ways to improve their sensitivity and specificity are discussed. This review summarises the existing literature and provides a perspective on the strength of current retinal biomarkers and their future potential.
Collapse
Affiliation(s)
- Christine T O Nguyen
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia.
| | - Flora Hui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jason Charng
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Shajan Velaedan
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Anna K van Koeverden
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Jeremiah K H Lim
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Zheng He
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Algis J Vingrys
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Magnus Ivarsson
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, 3010, Victoria, Australia
| |
Collapse
|
16
|
Javaid FZ, Brenton J, Guo L, Cordeiro MF. Visual and Ocular Manifestations of Alzheimer's Disease and Their Use as Biomarkers for Diagnosis and Progression. Front Neurol 2016; 7:55. [PMID: 27148157 PMCID: PMC4836138 DOI: 10.3389/fneur.2016.00055] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia affecting the growing aging population today, with prevalence expected to rise over the next 35 years. Clinically, patients exhibit a progressive decline in cognition, memory, and social functioning due to deposition of amyloid β (Aβ) protein and intracellular hyperphosphorylated tau protein. These pathological hallmarks of AD are measured either through neuroimaging, cerebrospinal fluid analysis, or diagnosed post-mortem. Importantly, neuropathological progression occurs in the eye as well as the brain, and multiple visual changes have been noted in both human and animal models of AD. The eye offers itself as a transparent medium to cerebral pathology and has thus potentiated the development of ocular biomarkers for AD. The use of non-invasive screening, such as retinal imaging and visual testing, may enable earlier diagnosis in the clinical setting, minimizing invasive and expensive investigations. It also potentially improves disease management and quality of life for AD patients, as an earlier diagnosis allows initiation of medication and treatment. In this review, we explore the evidence surrounding ocular changes in AD and consider the biomarkers currently in development for early diagnosis.
Collapse
Affiliation(s)
- Fatimah Zara Javaid
- Glaucoma and Retinal Degeneration Research Group, Visual Neurosciences, UCL Institute of Ophthalmology, London, UK
| | - Jonathan Brenton
- Glaucoma and Retinal Degeneration Research Group, Visual Neurosciences, UCL Institute of Ophthalmology, London, UK
| | - Li Guo
- Glaucoma and Retinal Degeneration Research Group, Visual Neurosciences, UCL Institute of Ophthalmology, London, UK
| | - Maria F. Cordeiro
- Glaucoma and Retinal Degeneration Research Group, Visual Neurosciences, UCL Institute of Ophthalmology, London, UK
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|