1
|
Li Y, Lee SH, Yu C, Hsu LM, Wang TWW, Do K, Kim HJ, Shih YYI, Grill WM. Optogenetic fMRI reveals therapeutic circuits of subthalamic nucleus deep brain stimulation. Brain Stimul 2024; 17:947-957. [PMID: 39096961 PMCID: PMC11364984 DOI: 10.1016/j.brs.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/11/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using functional magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examination of cell-type specific STN feedforward neural activity. Unilateral optogenetic STN DBS elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, this modulation effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetic DBS induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Collapse
Affiliation(s)
- Yuhui Li
- Department of Biomedical Engineering, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Chunxiu Yu
- Department of Biomedical Engineering, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Tzu-Wen W Wang
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoa Do
- Department of Biomedical Engineering, USA
| | - Hyeon-Joong Kim
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA; Department of Neurology, University of North Carolina, Chapel Hill, NC, USA.
| | - Warren M Grill
- Department of Biomedical Engineering, USA; Department of Electrical and Computer Engineering, USA; Department of Neurobiology, Duke University, Durham, NC, USA; Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
2
|
Zhang KK, Matin R, Gorodetsky C, Ibrahim GM, Gouveia FV. Systematic review of rodent studies of deep brain stimulation for the treatment of neurological, developmental and neuropsychiatric disorders. Transl Psychiatry 2024; 14:186. [PMID: 38605027 PMCID: PMC11009311 DOI: 10.1038/s41398-023-02727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 04/13/2024] Open
Abstract
Deep brain stimulation (DBS) modulates local and widespread connectivity in dysfunctional networks. Positive results are observed in several patient populations; however, the precise mechanisms underlying treatment remain unknown. Translational DBS studies aim to answer these questions and provide knowledge for advancing the field. Here, we systematically review the literature on DBS studies involving models of neurological, developmental and neuropsychiatric disorders to provide a synthesis of the current scientific landscape surrounding this topic. A systematic analysis of the literature was performed following PRISMA guidelines. 407 original articles were included. Data extraction focused on study characteristics, including stimulation protocol, behavioural outcomes, and mechanisms of action. The number of articles published increased over the years, including 16 rat models and 13 mouse models of transgenic or healthy animals exposed to external factors to induce symptoms. Most studies targeted telencephalic structures with varying stimulation settings. Positive behavioural outcomes were reported in 85.8% of the included studies. In models of psychiatric and neurodevelopmental disorders, DBS-induced effects were associated with changes in monoamines and neuronal activity along the mesocorticolimbic circuit. For movement disorders, DBS improves symptoms via modulation of the striatal dopaminergic system. In dementia and epilepsy models, changes to cellular and molecular aspects of the hippocampus were shown to underlie symptom improvement. Despite limitations in translating findings from preclinical to clinical settings, rodent studies have contributed substantially to our current knowledge of the pathophysiology of disease and DBS mechanisms. Direct inhibition/excitation of neural activity, whereby DBS modulates pathological oscillatory activity within brain networks, is among the major theories of its mechanism. However, there remain fundamental questions on mechanisms, optimal targets and parameters that need to be better understood to improve this therapy and provide more individualized treatment according to the patient's predominant symptoms.
Collapse
Affiliation(s)
- Kristina K Zhang
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rafi Matin
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - George M Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON, Canada
| | | |
Collapse
|
3
|
Li Y, Lee SH, Yu C, Hsu LM, Wang TWW, Do K, Kim HJ, Shih YYI, Grill WM. Optogenetic fMRI reveals therapeutic circuits of subthalamic nucleus deep brain stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.22.581627. [PMID: 38464010 PMCID: PMC10925223 DOI: 10.1101/2024.02.22.581627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
While deep brain stimulation (DBS) is widely employed for managing motor symptoms in Parkinson's disease (PD), its exact circuit mechanisms remain controversial. To identify the neural targets affected by therapeutic DBS in PD, we analyzed DBS-evoked whole brain activity in female hemi-parkinsonian rats using function magnetic resonance imaging (fMRI). We delivered subthalamic nucleus (STN) DBS at various stimulation pulse repetition rates using optogenetics, allowing unbiased examinations of cell-type specific STN feed-forward neural activity. Unilateral STN optogenetic stimulation elicited pulse repetition rate-dependent alterations of blood-oxygenation-level-dependent (BOLD) signals in SNr (substantia nigra pars reticulata), GP (globus pallidus), and CPu (caudate putamen). Notably, these manipulations effectively ameliorated pathological circling behavior in animals expressing the kinetically faster Chronos opsin, but not in animals expressing ChR2. Furthermore, mediation analysis revealed that the pulse repetition rate-dependent behavioral rescue was significantly mediated by optogenetically induced activity changes in GP and CPu, but not in SNr. This suggests that the activation of GP and CPu are critically involved in the therapeutic mechanisms of STN DBS.
Collapse
|
4
|
Ruiz MCM, Guimarães RP, Mortari MR. Parkinson’s Disease Rodent Models: are they suitable for DBS research? J Neurosci Methods 2022; 380:109687. [DOI: 10.1016/j.jneumeth.2022.109687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/20/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022]
|
5
|
Spiliotis K, Starke J, Franz D, Richter A, Köhling R. Deep brain stimulation for movement disorder treatment: exploring frequency-dependent efficacy in a computational network model. BIOLOGICAL CYBERNETICS 2022; 116:93-116. [PMID: 34894291 PMCID: PMC8866393 DOI: 10.1007/s00422-021-00909-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 10/31/2021] [Indexed: 06/14/2023]
Abstract
A large-scale computational model of the basal ganglia network and thalamus is proposed to describe movement disorders and treatment effects of deep brain stimulation (DBS). The model of this complex network considers three areas of the basal ganglia region: the subthalamic nucleus (STN) as target area of DBS, the globus pallidus, both pars externa and pars interna (GPe-GPi), and the thalamus. Parkinsonian conditions are simulated by assuming reduced dopaminergic input and corresponding pronounced inhibitory or disinhibited projections to GPe and GPi. Macroscopic quantities are derived which correlate closely to thalamic responses and hence motor programme fidelity. It can be demonstrated that depending on different levels of striatal projections to the GPe and GPi, the dynamics of these macroscopic quantities (synchronisation index, mean synaptic activity and response efficacy) switch from normal to Parkinsonian conditions. Simulating DBS of the STN affects the dynamics of the entire network, increasing the thalamic activity to levels close to normal, while differing from both normal and Parkinsonian dynamics. Using the mentioned macroscopic quantities, the model proposes optimal DBS frequency ranges above 130 Hz.
Collapse
Affiliation(s)
| | - Jens Starke
- Institute of Mathematics, University of Rostock, 18057 Rostock, Germany
| | - Denise Franz
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
6
|
Herrero JL, Smith A, Mishra A, Markowitz N, Mehta AD, Bickel S. Inducing neuroplasticity through intracranial θ-burst stimulation in the human sensorimotor cortex. J Neurophysiol 2021; 126:1723-1739. [PMID: 34644179 PMCID: PMC8782667 DOI: 10.1152/jn.00320.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/20/2021] [Accepted: 10/08/2021] [Indexed: 01/04/2023] Open
Abstract
The progress of therapeutic neuromodulation greatly depends on improving stimulation parameters to most efficiently induce neuroplasticity effects. Intermittent θ-burst stimulation (iTBS), a form of electrical stimulation that mimics natural brain activity patterns, has proved to efficiently induce such effects in animal studies and rhythmic transcranial magnetic stimulation studies in humans. However, little is known about the potential neuroplasticity effects of iTBS applied through intracranial electrodes in humans. This study characterizes the physiological effects of intracranial iTBS in humans and compare them with α-frequency stimulation, another frequently used neuromodulatory pattern. We applied these two stimulation patterns to well-defined regions in the sensorimotor cortex, which elicited contralateral hand muscle contractions during clinical mapping, in patients with epilepsy implanted with intracranial electrodes. Treatment effects were evaluated using oscillatory coherence across areas connected to the treatment site, as defined with corticocortical-evoked potentials. Our results show that iTBS increases coherence in the β-frequency band within the sensorimotor network indicating a potential neuroplasticity effect. The effect is specific to the sensorimotor system, the β band, and the stimulation pattern and outlasted the stimulation period by ∼3 min. The effect occurred in four out of seven subjects depending on the buildup of the effect during iTBS treatment and other patterns of oscillatory activity related to ceiling effects within the β band and to preexistent coherence within the α band. By characterizing the neurophysiological effects of iTBS within well-defined cortical networks, we hope to provide an electrophysiological framework that allows clinicians/researchers to optimize brain stimulation protocols which may have translational value.NEW & NOTEWORTHY θ-Burst stimulation (TBS) protocols in transcranial magnetic stimulation studies have shown improved treatment efficacy in a variety of neuropsychiatric disorders. The optimal protocol to induce neuroplasticity in invasive direct electrical stimulation approaches is not known. We report that intracranial TBS applied in human sensorimotor cortex increases local coherence of preexistent β rhythms. The effect is specific to the stimulation frequency and the stimulated network and outlasts the stimulation period by ∼3 min.
Collapse
Affiliation(s)
- Jose L Herrero
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Alexander Smith
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Akash Mishra
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Noah Markowitz
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Ashesh D Mehta
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| | - Stephan Bickel
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
- Department of Neurology, Zucker School of Medicine at Hofstra/Northwell, Manhasset, New York
| |
Collapse
|
7
|
Plocksties F, Kober M, Niemann C, Heller J, Fauser M, Nüssel M, Uster F, Franz D, Zwar M, Lüttig A, Kröger J, Harloff J, Schulz A, Richter A, Köhling R, Timmermann D, Storch A. The software defined implantable modular platform (STELLA) for preclinical deep brain stimulation research in rodents. J Neural Eng 2021; 18. [PMID: 34542029 DOI: 10.1088/1741-2552/ac23e1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/06/2021] [Indexed: 11/11/2022]
Abstract
Context.Long-term deep brain stimulation (DBS) studies in rodents are of crucial importance for research progress in this field. However, most stimulation devices require jackets or large head-mounted systems which severely affect mobility and general welfare influencing animals' behavior.Objective.To develop a preclinical neurostimulation implant system for long-term DBS research in small animal models.Approach.We propose a low-cost dual-channel DBS implant called software defined implantable platform (STELLA) with a printed circuit board size of Ø13 × 3.3 mm, weight of 0.6 g and current consumption of 7.6µA/3.1 V combined with an epoxy resin-based encapsulation method.Main results.STELLA delivers charge-balanced and configurable current pulses with widely used commercial electrodes. Whilein vitrostudies demonstrate at least 12 weeks of error-free stimulation using a CR1225 battery, our calculations predict a battery lifetime of up to 3 years using a CR2032. Exemplary application for DBS of the subthalamic nucleus in adult rats demonstrates that fully-implanted STELLA neurostimulators are very well-tolerated over 42 days without relevant stress after the early postoperative phase resulting in normal animal behavior. Encapsulation, external control and monitoring of function proved to be feasible. Stimulation with standard parameters elicited c-Fos expression by subthalamic neurons demonstrating biologically active function of STELLA.Significance.We developed a fully implantable, scalable and reliable DBS device that meets the urgent need for reverse translational research on DBS in freely moving rodent disease models including sensitive behavioral experiments. We thus add an important technology for animal research according to 'The Principle of Humane Experimental Technique'-replacement, reduction and refinement (3R). All hardware, software and additional materials are available under an open source license.
Collapse
Affiliation(s)
- Franz Plocksties
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Maria Kober
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Christoph Niemann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Jakob Heller
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Martin Nüssel
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Felix Uster
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Denise Franz
- Institute of Physiology, University of Rostock, 18057 Rostock, Germany
| | - Monique Zwar
- Institute of Physiology, University of Rostock, 18057 Rostock, Germany
| | - Anika Lüttig
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, 04103 Leipzig, Germany
| | - Justin Kröger
- Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Jörg Harloff
- Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Axel Schulz
- Institute of Chemistry, University of Rostock, 18059 Rostock, Germany
| | - Angelika Richter
- Institute of Pharmacology, Pharmacy and Toxicology, University of Leipzig, 04103 Leipzig, Germany
| | - Rüdiger Köhling
- Department of Neurology, University of Rostock, 18147 Rostock, Germany
| | - Dirk Timmermann
- Institute of Applied Microelectronics and Computer Engineering, University of Rostock, 18119 Rostock, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, 18147 Rostock, Germany.,German Center for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
| |
Collapse
|
8
|
Mottaghi S, Buchholz O, Hofmann UG. Systematic Evaluation of DBS Parameters in the Hemi-Parkinsonian Rat Model. Front Neurosci 2020; 14:561008. [PMID: 33162878 PMCID: PMC7581801 DOI: 10.3389/fnins.2020.561008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/03/2020] [Indexed: 11/24/2022] Open
Abstract
Electrical stimulation of the subthalamic nucleus (STN) is clinically employed to ameliorate several symptoms of manifest Parkinson’s Disease (PD). Stimulation parameters utilized by chronically implanted pulse generators comprise biphasic rectangular short (60–100 μs) pulses with a repetition frequency between 130 and 180 Hz. A better insight into the effect of electrical stimulation parameters could potentially reveal new possibilities for the improvement of deep brain stimulation (DBS) as a treatment. To this end, we employed single-sided 6-hydroxidopamine (6-OHDA) lesioning of the medial forebrain bundle (MFB) in rats to systematically investigate alternative stimulation parameters. These hemi-parkinsonian (hemi-PD) rats underwent individualized, ipsilateral electrical stimulation to the STN of the lesioned hemisphere, while the transiently induced contralateral rotational behavior was quantified to assess the effect of DBS parameter variations. The number of induced rotations during 30 s of stimulation was strongly correlated with the amplitude of the stimulation pulses. Despite a general linear relation between DBS frequency and rotational characteristics, a plateau effect was observed in the rotation count throughout the clinically used frequency range. Alternative waveforms to the conventional biphasic rectangular (Rect) pulse shapes [Triangular (Tri), Sinusoidal (Sine), and Sawtooth (Lin.Dec.)] required higher charges per phase to display similar behavior in rats as compared to the conventional pulse shape. The Euclidean Distance (ED) was used to quantify similarities between different angular trajectories. Overall, our study confirmed that the effect of different amplitude and frequency parameters of STN-DBS in the hemi-PD rat model was similar to those in human PD patients. This shows that induced contralateral rotation is a valuable readout in testing stimulation parameters. Our study supports the call for more pre-clinical studies using this measurement to assess the effect of other DBS parameters such as pulse-width and interphase intervals.
Collapse
Affiliation(s)
- Soheil Mottaghi
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Technical Faculty, University of Freiburg, Freiburg, Germany
| | - Oliver Buchholz
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich G Hofmann
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Technical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Trevathan JK, Asp AJ, Nicolai EN, Trevathan JM, Kremer NA, Kozai TDY, Cheng D, Schachter MJ, Nassi JJ, Otte SL, Parker JG, Lujan JL, Ludwig KA. Calcium imaging in freely-moving mice during electrical stimulation of deep brain structures. J Neural Eng 2020; 18:10.1088/1741-2552/abb7a4. [PMID: 32916665 PMCID: PMC8485730 DOI: 10.1088/1741-2552/abb7a4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
After decades of study in humans and animal models, there remains a lack of consensus regarding how the action of electrical stimulation on neuronal and non-neuronal elements - e.g. neuropil, cell bodies, glial cells, etc. - leads to the therapeutic effects of neuromodulation therapies. To further our understanding of neuromodulation therapies, there is a critical need for novel methodological approaches using state-of-the-art neuroscience tools to study neuromodulation therapy in preclinical models of disease. In this manuscript we outline one such approach combining chronic behaving single-photon microendoscope recordings in a pathological mouse model with electrical stimulation of a common deep brain stimulation (DBS) target. We describe in detail the steps necessary to realize this approach, as well as discuss key considerations for extending this experimental paradigm to other DBS targets for different therapeutic indications. Additionally, we make recommendations from our experience on implementing and validating the required combination of procedures that includes: the induction of a pathological model (6-OHDA model of Parkinson's disease) through an injection procedure, the injection of the viral vector to induce GCaMP expression, the implantation of the GRIN lens and stimulation electrode, and the installation of a baseplate for mounting the microendoscope. We proactively identify unique data analysis confounds occurring due to the combination of electrical stimulation and optical recordings and outline an approach to address these confounds. In order to validate the technical feasibility of this unique combination of experimental methods, we present data to demonstrate that 1) despite the complex multifaceted surgical procedures, chronic optical recordings of hundreds of cells combined with stimulation is achievable over week long periods 2) this approach enables measurement of differences in DBS evoked neural activity between anesthetized and awake conditions and 3) this combination of techniques can be used to measure electrical stimulation induced changes in neural activity during behavior in a pathological mouse model. These findings are presented to underscore the feasibility and potential utility of minimally constrained optical recordings to elucidate the mechanisms of DBS therapies in animal models of disease.
Collapse
Affiliation(s)
- James K Trevathan
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Anders J Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Evan N Nicolai
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, United States of America
| | - Jonathan M Trevathan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Nicholas A Kremer
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
| | - Takashi DY Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
- NeuroTech Center of the University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - David Cheng
- Inscopix, Palo Alto, CA, United States of America
| | | | | | | | - Jones G Parker
- CNC Program, Stanford University, Stanford, CA, United States of America
| | - J Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, United States of America
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, United States of America
- These authors contributed equally
| | - Kip A Ludwig
- Department of Bioengineering, University of Wisconsin, Madison, WI 53706, United States of America
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53706, United States of America
- These authors contributed equally
| |
Collapse
|
10
|
Singer A, Dutta S, Lewis E, Chen Z, Chen JC, Verma N, Avants B, Feldman AK, O'Malley J, Beierlein M, Kemere C, Robinson JT. Magnetoelectric Materials for Miniature, Wireless Neural Stimulation at Therapeutic Frequencies. Neuron 2020; 107:631-643.e5. [PMID: 32516574 PMCID: PMC7818389 DOI: 10.1016/j.neuron.2020.05.019] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/09/2020] [Accepted: 05/12/2020] [Indexed: 01/15/2023]
Abstract
A major challenge for miniature bioelectronics is wireless power delivery deep inside the body. Electromagnetic or ultrasound waves suffer from absorption and impedance mismatches at biological interfaces. On the other hand, magnetic fields do not suffer these losses, which has led to magnetically powered bioelectronic implants based on induction or magnetothermal effects. However, these approaches have yet to produce a miniature stimulator that operates at clinically relevant high frequencies. Here, we show that an alternative wireless power method based on magnetoelectric (ME) materials enables miniature magnetically powered neural stimulators that operate up to clinically relevant frequencies in excess of 100 Hz. We demonstrate that wireless ME stimulators provide therapeutic deep brain stimulation in a freely moving rodent model for Parkinson's disease and that these devices can be miniaturized to millimeter-scale and fully implanted. These results suggest that ME materials are an excellent candidate to enable miniature bioelectronics for clinical and research applications.
Collapse
Affiliation(s)
- Amanda Singer
- Applied Physics Program, Rice University, Houston, TX 77005, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Shayok Dutta
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Eric Lewis
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Ziying Chen
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Joshua C Chen
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Nishant Verma
- Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Benjamin Avants
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA
| | - Ariel K Feldman
- Department of Computer Science, Rice University, Houston, TX 77005, USA; Department of Cognitive Science, Rice University, Houston, TX 77005, USA
| | - John O'Malley
- Department of Neurobiology and Anatomy, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Michael Beierlein
- Department of Neurobiology and Anatomy, McGovern Medical School at UTHealth, Houston, TX 77030, USA
| | - Caleb Kemere
- Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Jacob T Robinson
- Applied Physics Program, Rice University, Houston, TX 77005, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77005, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Li H, McConnell GC. Intraoperative Microelectrode Recordings in Substantia Nigra Pars Reticulata in Anesthetized Rats. Front Neurosci 2020; 14:367. [PMID: 32410946 PMCID: PMC7201294 DOI: 10.3389/fnins.2020.00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/25/2020] [Indexed: 11/27/2022] Open
Abstract
The Substantia Nigra pars reticulata (SNr) is a promising target for deep brain stimulation (DBS) to treat the gait and postural disturbances in Parkinson’s disease (PD). Positioning the DBS electrode within the SNr is critical for the development of preclinical models of SNr DBS to investigate underlying mechanisms. However, a complete characterization of intraoperative microelectrode recordings in the SNr to guide DBS electrode placement is lacking. In this study, we recorded extracellular single-unit activity in anesthetized rats at multiple locations in the medial SNr (mSNr), lateral SNr (lSNr), and the Ventral Tegmental Area (VTA). Immunohistochemistry and fluorescently dyed electrodes were used to map neural recordings to neuroanatomy. Neural recordings were analyzed in the time domain (i.e., firing rate, interspike interval (ISI) correlation, ISI variance, regularity, spike amplitude, signal-to-noise ratio, half-width, asymmetry, and latency) and the frequency domain (i.e., spectral power in frequency bands of interest). Spike amplitude decreased and ISI correlation increased in the mSNr versus the lSNr. Spike amplitude, signal-to-noise ratio, and ISI correlation increased in the VTA versus the mSNr. ISI correlation increased in the VTA versus the lSNr. Spectral power in the VTA increased versus: (1) the mSNr in the 20–30 Hz band and (2) the lSNr in the 20–40 Hz band. No significant differences were observed between structures for any other feature analyzed. Our results shed light on the heterogeneity of the SNr and suggest electrophysiological features to promote precise targeting of SNr subregions during stereotaxic surgery.
Collapse
Affiliation(s)
- Hanyan Li
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - George C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| |
Collapse
|
12
|
Mottaghi S, Afshari N, Buchholz O, Liebana S, Hofmann UG. Modular Current Stimulation System for Pre-clinical Studies. Front Neurosci 2020; 14:408. [PMID: 32425752 PMCID: PMC7203490 DOI: 10.3389/fnins.2020.00408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/03/2020] [Indexed: 11/13/2022] Open
Abstract
Electric stimulators with precise and reliable outputs are an indispensable part of electrophysiological research. From single cells to deep brain or neuromuscular tissue, there are diverse targets for electrical stimulation. Even though commercial systems are available, we state the need for a low-cost, high precision, functional, and modular (hardware, firmware, and software) current stimulation system with the capacity to generate stable and complex waveforms for pre-clinical research. The system presented in this study is a USB controlled 4-channel modular current stimulator that can be expanded and generate biphasic arbitrary waveforms with 16-bit resolution, high temporal precision (μs), and passive charge balancing: the NES STiM (Neuro Electronic Systems Stimulator). We present a detailed description of the system's structural design, the controlling software, reliability test, and the pre-clinical studies [deep brain stimulation (DBS) in hemi-PD rat model] in which it was utilized. The NES STiM has been tested with MacOS and Windows operating systems. Interfaces to MATLAB source codes are provided. The system is inexpensive, relatively easy to build and can be assembled quickly. We hope that the NES STiM will be used in a wide variety of neurological applications such as Functional Electrical Stimulation (FES), DBS and closed loop neurophysiological research.
Collapse
Affiliation(s)
- Soheil Mottaghi
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Technical Faculty, University of Freiburg, Freiburg, Germany
| | - Niloofar Afshari
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Oliver Buchholz
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
| | - Samuel Liebana
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Ulrich G. Hofmann
- Section for Neuroelectronic Systems, Department of Neurosurgery, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Technical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Frequency-Specific Optogenetic Deep Brain Stimulation of Subthalamic Nucleus Improves Parkinsonian Motor Behaviors. J Neurosci 2020; 40:4323-4334. [PMID: 32312888 DOI: 10.1523/jneurosci.3071-19.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective therapy for the motor symptoms of Parkinson's disease (PD). However, the neural elements mediating symptom relief are unclear. A previous study concluded that direct optogenetic activation of STN neurons was neither necessary nor sufficient for relief of parkinsonian symptoms. However, the kinetics of the channelrhodopsin-2 (ChR2) used for cell-specific activation are too slow to follow the high rates required for effective DBS, and thus the contribution of activation of STN neurons to the therapeutic effects of DBS remains unclear. We quantified the behavioral and neuronal effects of optogenetic STN DBS in female rats following unilateral 6-hydroxydopamine (6-OHDA) lesion using an ultrafast opsin (Chronos). Optogenetic STN DBS at 130 pulses per second (pps) reduced pathologic circling and ameliorated deficits in forelimb stepping similarly to electrical DBS, while optogenetic STN DBS with ChR2 did not produce behavioral effects. As with electrical DBS, optogenetic STN DBS exhibited a strong dependence on stimulation rate; high rates produced symptom relief while low rates were ineffective. High-rate optogenetic DBS generated both increases and decreases in firing rates of single neurons in STN, globus pallidus externa (GPe), and substantia nigra pars reticular (SNr), and disrupted β band oscillatory activity in STN and SNr. High-rate optogenetic STN DBS can indeed ameliorate parkinsonian motor symptoms through reduction of abnormal oscillatory activity in the STN-associated neural circuit, and these results highlight that the kinetic properties of opsins have a strong influence on the effects of optogenetic stimulation.SIGNIFICANCE STATEMENT Whether STN local cells contribute to the therapeutic effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) remains unclear. We re-examined the role of STN local cells in mediating the symptom-relieving effects of STN DBS using cell type-specific optogenetic stimulation with a much faster opsin, Chronos. Direct optogenetic stimulation of STN neurons was effective in treating the symptoms of parkinsonism in the 6-hydroxydopamine (6-OHDA) lesion rat. These results highlight that the kinetic properties of opsins can have a strong influence on the effects of optogenetic activation/inhibition and must be considered when employing optogenetic to study high-rate neural stimulation.
Collapse
|
14
|
Neuronal activity pattern defects in the striatum in awake mouse model of Parkinson’s disease. Behav Brain Res 2018; 341:135-145. [DOI: 10.1016/j.bbr.2017.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 11/23/2022]
|