1
|
Tan L, Fan Y, Xu X, Zhang T, Cao X, Zhang C, Liang J, Hou Y, Dou H. WIF-1 contributes to lupus-induced neuropsychological deficits via the CRYAB/STAT4-SHH axis. Arthritis Res Ther 2024; 26:183. [PMID: 39444000 PMCID: PMC11515771 DOI: 10.1186/s13075-024-03420-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Neuropsychiatric systemic lupus erythematosus (NPSLE) often manifests as cognitive deterioration, with activated microglia and blood-brain barrier (BBB) disruption implicated in these neurological complications. Wnt-inhibitory factor-1 (WIF-1), a secreted protein, has been detected in the cerebrospinal fluid (CSF) of NPSLE patients. However, the contribution of WIF-1 in contributing to lupus cognitive impairment remains poorly understood. METHODS Using MRL/MpJ-Faslpr (MRL/lpr) lupus-prone mice and TLR7 agonist imiquimod (IMQ)-induced lupus mice, recombinant WIF-1 protein (rWIF-1) and adeno-associated virus (AAV) encoding sh-WIF-1 were administered via intracerebroventricular injection. Behavioral tests, histopathological examinations, flow cytometry, and molecular biology techniques were employed to investigate the underlying mechanisms. RESULTS Microinjection of rWIF-1 exacerbated cognitive deficits and mood abnormalities, increased BBB leakage and neuronal degeneration, and caused aberrant activation of microglia and synaptic pruning in the hippocampus. Conversely, lupus mice injected with AAV-shWIF-1 exhibited significant remission. In vitro, rWIF-1 induced overactivation of microglia with an increased CD86+ pro-inflammatory subpopulation, upregulated phagocytic activity, and excessive synaptic engulfment, contributing to increased BBB permeability. Furthermore, WIF-1 exerted its biological effects through the CRYAB/STAT4 pathway, transcriptionally decreasing SHH production. We also identified that symmetric dimethylarginine (SDMA) could alleviate rWIF-1-induced microglial activation and BBB damage, thereby restoring SHH levels. CONCLUSIONS In conclusion, WIF-1 exacerbates lupus-induced cognitive dysfunction in mice by triggering aberrant microglial activation and BBB disruption through the CRYAB/STAT4-SHH axis, highlighting the potential therapeutic effects of SDMA for the treatment of NPSLE.
Collapse
Affiliation(s)
- Liping Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Yu Fan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Xinyi Xu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Tianshu Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Xiangyu Cao
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Chenghao Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China
| | - Jun Liang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing, 210093, China.
| |
Collapse
|
2
|
Reddy DS, Li Y, Qamari T, Ramakrishnan S. Behavioral Assays for Comprehensive Evaluation of Cognitive and Neuropsychiatric Comorbidities of Traumatic Brain Injury and Chronic Neurological Disorders. Curr Protoc 2024; 4:e70019. [PMID: 39422165 DOI: 10.1002/cpz1.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Neurological deficits, psychiatric disorders, and cognitive impairments often accompany stroke, brain injury, epilepsy, and many neurological disorders, which present intricate comorbidities that challenge recognition and management. There are many tools and paradigms for evaluating learning, memory, anxiety, and depression-like behaviors in lab animal models of brain disorders. However, there is a significant gap between clinical observations and experimental models, which limit understanding of the complex interplay between chronic brain conditions and their impact on cognitive dysfunction and psychiatric impairments. This article describes an overview of experimental rationale, methods, protocols, and strategies for evaluating sensorimotor, affective and cognitive-associated comorbid behaviors in epilepsy, traumatic brain injury (TBI), stroke, spinal cord injury (SCI), and many other neurological disorders. First, we delve into clinical evidence elucidating the profound impact of comorbidities, e.g., psychiatric disorders and cognitive deficits, in individuals with epilepsy. Then, we discuss diverse approaches to assess these comorbidities in experimental models of brain diseases. Finally, we explore the methodologies for assessing motor function, sensorimotor, behavior, and psychiatric health. We cover strategies and protocols enabling these assays, including implementing behavioral paradigms to assess learning and memory, anxiety, and depression-like behaviors in rodents in health and disease conditions. It is essential to consider a comprehensive battery of tests to investigate various behavioral deficits, considering environment, age, and sex differences relevant to the disease, such as TBI, SCI, epilepsy, stroke, and other complex neurological conditions. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
- Institute of Pharmacology and Neurotherapeutics, Texas A&M University Health Science Center, Bryan, Texas
| | - Yue Li
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Taha Qamari
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| | - Sreevidhya Ramakrishnan
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, Texas
| |
Collapse
|
3
|
Jan A, Shah M, Shah SA, Habib SH, Ehtesham E, Ahmed N. Melatonin rescues pregnant female mice and their juvenile offspring from high fat diet-induced alzheimer disease neuropathy. Heliyon 2024; 10:e36921. [PMID: 39281480 PMCID: PMC11395765 DOI: 10.1016/j.heliyon.2024.e36921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
High fat diet (HFD) is a prime factor, which contributes to the present epidemic of metabolic syndrome. Prolonged intake of HFD induces oxidative stress (OS) that in turn causes neuroinflammation, neurodegeneration, insulin resistance, amyloid burden, synaptic dysfunction and cognitive impairment hence leading to Alzheimer's disease neuropathy. Melatonin (secreted by the Pineal gland) has the potential to nullify the toxic effects of reactive oxygen species (ROS) and have been shown to ameliorate various complications induced by HFD in rodent models. This study aimed to assess the neurotherapeutic effects of melatonin on HFD-induced neuroinflammation and neurodegeneration mediated by OS in pregnant female mice and their offspring. Western blotting, immunohistochemistry and antioxidant enzyme assays were used for quantification of samples from the hippocampal region of the brain of pregnant albino mice and their offspring. Short- and long-term memory was assessed by Y-maze and Morris Water Maze tests. HFD significantly induced OS leading to AD like neuropathology in the pregnant mice and their offspring while melatonin administration simultaneously with the HFD significantly prevented this neuropathy. This study reports that melatonin exerts these effects through the stimulation of SIRT1/Nrf2/HO-1 pathway that in turn reduces the HFD-induced OS and its downstream signaling. In conclusion melatonin prevents HFD-induced multiple complications that ultimately leads to the memory dysfunction in pregnant female mice and their successive generation via activation of SIRT1/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Amin Jan
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Mohsin Shah
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shahid Ali Shah
- Department of Biochemistry, Haripur University, Haripur, Pakistan
| | - Syed Hamid Habib
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Ehtesham Ehtesham
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Naseer Ahmed
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
4
|
Khamies SM, El-Yamany MF, Ibrahim SM. Canagliflozin Mitigated Cognitive Impairment in Streptozotocin-Induced Sporadic Alzheimer's Disease in Mice: Role of AMPK/SIRT-1 Signaling Pathway in Modulating Neuroinflammation. J Neuroimmune Pharmacol 2024; 19:39. [PMID: 39073453 DOI: 10.1007/s11481-024-10140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Sporadic Alzheimer's disease (SAD) represents a major health concern especially among elderly. Noteworthy, neuroinflammation and oxidative stress are highly implicated in AD pathogenesis resulting in enhanced disease progression. Moreover, most of the available anti-Alzheimer drugs have several adverse effects with variable efficacy, therefore new strategies, including agents with anti-inflammatory and antioxidant effects, are encouraged. Along these lines, canagliflozin (CAN), with its anti-inflammatory and anti-apoptotic activities, presents a promising candidate for AD treatment. Therefore, this study aimed to evaluate the therapeutic potential of CAN via regulation of AMPK/SIRT-1/BDNF/GSK-3β signaling pathway in SAD. SAD model was induced by intracerebroventricular streptozotocin injection (ICV-STZ;3 mg/kg, once), while CAN was administered (10 mg/kg/day, orally) to STZ-treated mice for 21 days. Behavioral tests, novel object recognition (NOR), Y-Maze, and Morris Water Maze (MWM) tests, histopathological examination, total adenosine monophosphate-activated protein kinase (T-AMPK) expression, p-AMPK, and silent information regulator-1 (SIRT-1) were evaluated. Furthermore, brain-derived neurotrophic factor (BDNF), glycogen synthase kinase-3β (GSK-3β), acetylcholinesterase (AChE), Tau protein, insulin-degrading enzyme (IDE), nuclear factor erythroid-2 (Nrf-2), interleukin-6 (IL-6), nuclear factor kappa-B-p65 (NFκB-p65), beta-site APP cleaving enzyme 1 (BACE-1), and amyloid beta (Aβ) plaque were assessed. CAN restored STZ-induced cognitive deficits, confirmed by improved behavioral tests and histopathological examination. Besides, CAN halted STZ-induced neurotoxicity through activation of p-AMPK/SIRT-1/BDNF pathway, subsequently reduction of GSK-3β, Tau protein, AChE, NFκB-p65, IL-6, BACE-1, and Aβ plaque associated with increased IDE and Nrf-2. Consequentially, our findings assumed that CAN, via targeting p-AMPK/SIRT-1 pathway, combated neuroinflammation and oxidative stress in STZ-induced AD. Thus, this study highlighted the promising effect of CAN for treating AD.
Collapse
Affiliation(s)
- Sara M Khamies
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Menoufia University, Menoufia, 32511, Egypt
| | - Mohammed F El-Yamany
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt
| | - Sherehan M Ibrahim
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
5
|
Dong A, Gao Z, Wang H, Wu R, Wang W, Jin X, Ji Y, Yang F, Zhu T, Jiang Z, Xu Y, Guo J, Ji L. Acupuncture Alleviates Chronic Ischemic White Matter Injury in SHR Rats via JNK-NMDAR Circuit. Mol Neurobiol 2024; 61:3144-3160. [PMID: 37976026 DOI: 10.1007/s12035-023-03759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
To study the protective mechanism of acupuncture at "Jiangya Recipe" on chronic ischemic white matter injury in spontaneously hypertensive rats (SHR) and the regulation of Jun N-terminal kinase-N-methyl-D-aspartate receptor (JNK-NMDAR) loop. A hypertensive white matter injury model was established in 46 male SHR rats aged 11 weeks by bilateral common carotid artery tapering (SHR-2VGO). In the SHR sham operation group, only bilateral common carotid arteries were isolated and in the SHR-2VGO modeling group, 36 rats were used for microcoil spring clip implantation to narrow the common carotid arteries and then, after 2 weeks of modeling, rats with impaired motor function were removed, and SHR-2VGO rats with successful final models were randomly divided into the model group, JNK blocking group, and acupuncture group. The sham operation group, model group, and JNK blocking group underwent the same grasping fixation, and the acupuncture group received acupuncture at acupoints "Jiangya Fang" once daily. In the JNK blocker group, an injection cannula was implanted into the lateral ventricle and sp600125 was injected into the lateral ventricle at 4.5 ul/day for 4 weeks. One week after the end of the intervention, white matter lesions were detected by MRI DWI and T2 imaging, and the learning and memory ability of rats was tested by Y-Maze and Passive Avoidance. Myelin density was detected by luxol fast blue (LFB) staining, also axon arrangement, myelin integrity, and thickness of neurons were detected by electron microscopy; neuronal morphology and the number of Nissl bodies in the hippocampus were detected by Nissl staining, dendritic spine density changes were detected by Golgi staining, and JNK, NMDAR1, and N-methyl-D-receptor 2B (NMDAR2B) in DG, CA3 region of hippocampus were detected by immunohistochemistry, protein expression of p-JNK/JNK, p-NMDAR1/NMDAR1, NMDAR2B, GSK3β protein expression in the fimbria of hippocampus was detected by Western blot. The Y maze test of SHR-2VGO+Acu and SHR-2VGO+ sp600125 group showed that the spontaneous alternating reaction rate increased significantly. At the same time, the incubation period increased significantly and the number of errors decreased significantly in Passive Avoidance. MRI T2WI showed that the white matter high signal of the corpus callosum, internal capsule and hippocampal fimbria in the SHR-2VGO+ sp600125 and SHR-2VGO+Acu groups was significantly lower than that in the SHR-2VGO model group, and the striatum and anterior commissure were not obvious. DWI showed that the SHR-2VGO model group had scattered high signal and limited diffusion movement in both the internal capsule and striatum, but the difference between groups was not obvious. Compared with SHR-2VGO rats, LFB staining of SHR-2VGO + sp600125 and SHR-2VGO +Acu groups showed significant relaxation of myelin porosity in corpus callosum, striatum, inner capsule, anterior commissure and hippocampal fimbria, and electron microscopy showed improved axonal myelin integrity and thickness in corpus callosum region. Also, the number of blue patchy Nissl bodies increased, and the number and complexity of dendritic spines increased significantly in Golgi staining. Immunohistochemical detection showed that JNK levels in DG and CA3 region were increased and NMDAR1 and NMDAR2B levels were decreased in SHR-2VGO+Acu and SHR-2VGO+ sp600125 groups. Meanwhile, protein expressions of GSK3β, NMDAR1/p-NMDAR1 and NMDAR2B in fimbria of hippocampus were increased, and JNK/P-JNK protein expression decreased. Acupuncture can increase the density and thickness of myelin sheath in white matter areas of corpus callosum, anterior commissure and hippocampal fimbria, increase the number and length of hippocampal neuronal dendrites, and improve hypertensive white matter injury and cognitive decline through JNK-NMDAR pathway.
Collapse
Affiliation(s)
- Aiai Dong
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Zhen Gao
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Haijun Wang
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Ronglin Wu
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Weifeng Wang
- Shanxi University of Traditional Chinese Medicine Affiliated Hospital of Acupuncture and Massage, Taiyuan, 030006, China
| | - Xiaofei Jin
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Yufang Ji
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Faming Yang
- Shanxi University of Traditional Chinese Medicine Affiliated Hospital of Acupuncture and Massage, Taiyuan, 030006, China
| | - Tao Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ziwen Jiang
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Yongrong Xu
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Jilong Guo
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China
| | - Laixi Ji
- Shanxi University of Traditional Chinese Medicine, Jinzhong, 030619, China.
| |
Collapse
|
6
|
Rostami F, Jaafari Suha A, Janahmadi M, Hosseinmardi N. Aquaporin-4 inhibition attenuates Pentylenetetrazole-induced behavioral seizures and cognitive impairments in kindled rats. Physiol Behav 2024; 278:114521. [PMID: 38492911 DOI: 10.1016/j.physbeh.2024.114521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Epilepsy is a neurological condition distinguished by recurrent and unexpected seizures. Astrocytic channels and transporters are essential for maintaining normal neuronal functionality. The astrocytic water channel, aquaporin-4 (AQP4), which plays a pivotal role in regulating water homeostasis, is a potential target for epileptogenesis. In present study, we examined the effect of different doses (10, 50, 100 μM and 5 mM) of AQP4 inhibitor, 2-nicotinamide-1, 3, 4-thiadiazole (TGN-020), during kindling acquisition, on seizure parameters and seizure-induced cognitive impairments. Animals were kindled by injection of pentylenetetrazole (PTZ: 37.5 mg/kg, i.p.). TGN-020 was administered into the right lateral cerebral ventricle 30 min before PTZ every alternate day. Seizure parameters were assessed 20 min after PTZ administration. One day following the last PTZ injection, memory performance was investigated using spontaneous alternation in Y-maze and novel object recognition (NOR) tests. The inhibition of AQP4 during the kindling process significantly decreased the maximal seizure stage and seizure duration (two-way ANOVA, P = 0.0001) and increased the latency of seizure onset and the number of PTZ injections required to induce different seizure stages (one-way ANOVA, P = 0.0001). Compared to kindled rats, the results of the NOR tests showed that AQP4 inhibition during PTZ-kindling prevented recognition memory impairment. Based on these results, AQP4 could be involved in seizure development and seizure-induced cognitive impairment. More investigation is required to fully understand the complex interactions between seizure activity, water homeostasis, and cognitive dysfunction, which may help identify potential therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Fatemeh Rostami
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jaafari Suha
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology research center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Sun X, Zhou C, Ju M, Feng W, Guo Z, Qi C, Yang K, Xiao R. Roseburia intestinalis Supplementation Could Reverse the Learning and Memory Impairment and m6A Methylation Modification Decrease Caused by 27-Hydroxycholesterol in Mice. Nutrients 2024; 16:1288. [PMID: 38732535 PMCID: PMC11085097 DOI: 10.3390/nu16091288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
The abnormality in N6-methyladenosine (m6A) methylation is involved in the course of Alzheimer's disease (AD), while the intervention of 27-Hydroxycholesterol (27-OHC) can affect the m6A methylation modification in the brain cortex. Disordered gut microbiota is a key link in 27-OHC leading to cognitive impairment, and further studies have found that the abundance of Roseburia intestinalis in the gut is significantly reduced under the intervention of 27-OHC. This study aims to investigate the association of 27-OHC, Roseburia intestinalis in the gut, and brain m6A modification in the learning and memory ability injury. In this study, 9-month-old male C57BL/6J mice were treated with antibiotic cocktails for 6 weeks to sweep the intestinal flora, followed by 27-OHC or normal saline subcutaneous injection, and then Roseburia intestinalis or normal saline gavage were applied to the mouse. The 27-OHC level in the brain, the gut barrier function, the m6A modification in the brain, and the memory ability were measured. From the results, we observed that 27-OHC impairs the gut barrier function, causing a disturbance in the expression of m6A methylation-related enzymes and reducing the m6A methylation modification level in the brain cortex, and finally leads to learning and memory impairment. However, Roseburia intestinalis supplementation could reverse the negative effects mentioned above. This study suggests that 27-OHC-induced learning and memory impairment might be linked to brain m6A methylation modification disturbance, while Roseburia intestinalis, as a probiotic with great potential, could reverse the damage caused by 27-OHC. This research could help reveal the mechanism of 27-OHC-induced neural damage and provide important scientific evidence for the future use of Roseburia intestinalis in neuroprotection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rong Xiao
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing 100069, China; (X.S.); (C.Z.); (M.J.); (W.F.); (Z.G.); (C.Q.); (K.Y.)
| |
Collapse
|
8
|
Jiang N, Zhang Y, Yao C, Chen F, Liu Y, Chen Y, Wang Y, Choudhary MI, Liu X. Hemerocallis citrina Baroni ameliorates chronic sleep deprivation-induced cognitive deficits and depressive-like behaviours in mice. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:35-43. [PMID: 38245346 DOI: 10.1016/j.lssr.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 02/27/2023] [Accepted: 04/05/2023] [Indexed: 01/22/2024]
Abstract
Sleep deprivation (SD) is common during spaceflight. SD is known to cause cognitive deficits and depression, requiring treatment and prevention. Hemerocallis citrina Baroni (Liliaceae) is a perennial herb with antidepressant, antioxidant, antitumor, anti-inflammatory, and neuroprotective effects.The aim of our study was to investigate the effects of H. citrina extract (HCE) on SD-induced cognitive decline and depression-like behavior and possible neuroinflammation-related mechanisms. HCE (2 g/kg/day, i.g.) or vortioxetine (10 mg/kg/day, i.g.) were given to mice by oral gavage for a total of 28 days during the SD process. HCE treatment was found to ameliorate SD-induced impairment of short- and long-term spatial and nonspatial memory, measured using Y-maze, object recognition, and Morris water maze tests, as well as mitigating SD-induced depression-like behaviors, measured by tail suspension and forced swimming tests. HCE also reduced the levels of inflammatory cytokines (IL-1β, IL-18, and IL-6) in the serum and hippocampus. Furthermore, HCE suppressed SD-induced microglial activation in the prefrontal cortex (PFC) and the CA1 and dentate gyrus (DG) regions of the hippocampus. HCE also inhibited the expression of phosphorylated NF-κB and activation of the NLRP3 inflammasome. In summary, our findings indicated that HCE attenuated SD-induced cognitive impairment and depression-like behavior and that this effect may be mediated by the inhibition of inflammatory progression and microglial activation in the hippocampus, as well as the down-regulation of NF-κB and NLRP3 signaling. The findings of these studies showingTthese results indicate that HCE exerts neuroprotective effects and are consistent with the findings of previous studies, suggesting that HCE is beneficial for the prevention and treatment of cognitive decline and depression in SD.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yiwen Zhang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Caihong Yao
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Fang Chen
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yupei Liu
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yuzhen Chen
- Hunan University of Chinese Medicine, Hunan 410000, China
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Hunan University of Chinese Medicine, Hunan 410000, China.
| |
Collapse
|
9
|
Dembeck M, Dieterich DC, Fendt M. The GluN2C/D-specific positive allosteric modulator CIQ rescues delay-induced working memory deficits in mice. Behav Brain Res 2024; 456:114716. [PMID: 37839756 DOI: 10.1016/j.bbr.2023.114716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/17/2023]
Abstract
Working memory is of short duration and is, therefore, particularly sensitive to time delays. Moreover, NMDA receptors are significantly involved in working memory. In the present study, we tested whether a commonly used measure of working memory, spontaneous alternation in the Y-maze, is sensitive to time delays and, if so, whether impairments due to time-delay can be rescued by treatment with CIQ, a positive allosteric modulator of the GluN2C/D subunits of NMDA receptor. Our results indicate that the effects of time delay do depend on the performance of the individual mice under basal condition. Those mice that performed well under basal conditions showed impaired spontaneous alternations when tested with a 45-s delay. Treatment with CIQ resulted in an improvement of spontaneous alternations, regardless of delay, sex, or basal performance. On the one hand, our study shows that repeated measures of individual behavior can better control the effects of confounding factors such as time delays. On the other hand, our study also highlights the potential of GluN2C/D-specific positive allosteric modulators in the treatment of human disorders associated with working memory deficits, such as schizophrenia.
Collapse
Affiliation(s)
- Marianne Dembeck
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg Germany
| | - Daniela C Dieterich
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Faculty of Medicine, Otto-von-Guericke University Magdeburg, Magdeburg Germany; Center of Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
10
|
Brinza I, Boiangiu RS, Cioanca O, Hancianu M, Dumitru G, Hritcu L, Birsan GC, Todirascu-Ciornea E. Direct Evidence for Using Coriandrum sativum var. microcarpum Essential Oil to Ameliorate Scopolamine-Induced Memory Impairment and Brain Oxidative Stress in the Zebrafish Model. Antioxidants (Basel) 2023; 12:1534. [PMID: 37627529 PMCID: PMC10451280 DOI: 10.3390/antiox12081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oil from Coriandrum sativum has been demonstrated to provide various pharmacological properties, such as antioxidant, antimicrobial, antibacterial, antifungal, antidiabetic, anticonvulsive, anxiolytic-antidepressant, and anti-aging properties. This study investigated the mechanism of Coriandrum sativum var. microcarpum essential oil (CSEO, 25, 150, and 300 μL/L) and cognitive impairment and brain oxidative stress in a scopolamine (SCOP, 100 μM) zebrafish model (Danio rerio) of cognitive impairment. Spatial memory, response to novelty, and recognition memory were assessed using the Y-maze test and the novel object recognition test (NOR), while anxiety-like behavior was investigated using the novel tank diving test (NTT). The cholinergic system activity and brain oxidative stress were also evaluated. CSEO was administered to zebrafish once a day for 21 days, while SCOP and galantamine (GAL, 1 mg/L) were delivered 30 min before behavioral testing and euthanasia. Our data revealed that SCOP induced memory dysfunction and anxiety-like behavior, while CSEO improved memory performance, as evidenced by behavioral tasks. Moreover, CSEO attenuated SCOP-induced brain oxidative stress and decreased acetylcholinesterase (AChE) activity. The results demonstrated the potential use of the CSEO in providing beneficial effects by reducing memory deficits and brain oxidative stress involved in the genesis of a dementia state.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Oana Cioanca
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, Grigore T Popa University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania
| | - Gabriela Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Gheorghe-Ciprian Birsan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| | - Elena Todirascu-Ciornea
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania (R.S.B.)
| |
Collapse
|
11
|
Yang S, Wang L, Zeng Y, Wang Y, Pei T, Xie Z, Xiong Q, Wei H, Li W, Li J, Su Q, Wei D, Cheng W. Salidroside alleviates cognitive impairment by inhibiting ferroptosis via activation of the Nrf2/GPX4 axis in SAMP8 mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154762. [PMID: 36965372 DOI: 10.1016/j.phymed.2023.154762] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurogenerative disease and remains no effective method for stopping its progress. Ferroptosis and adaptive immunity have been proven to contribute to AD pathogenesis. Salidroside exhibits neuroprotective and immunomodulatory effects. However, the underlying mechanisms linking salidroside, ferroptosis, and adaptive immunity in AD remain uncertain. PURPOSE The objective of this study is to explore the neuroprotective effects and the potential molecular mechanisms of salidroside against neuronal ferroptosis and CD8+ T cell infiltration in senescence-accelerated mouse prone 8 (SAMP8) mice. STUDY DESIGN AND METHODS SAMP8 mice were employed as an AD model and were treated with salidroside for 12 weeks. Behavioral tests, immunohistochemistry, HE and Nissl staining, immunofluorescence, transmission electron microscopy, quantitative proteomics, bioinformatic analysis, flow cytometry, iron staining, western blotting, and molecular docking were performed. RESULTS Treatment with salidroside dose-dependently attenuated cognitive impairment, reduced the accumulation of Aβ plaques and restored neuronal damage. Salidroside also suppressed the infiltration of CD8+T cells, oxidative stress, and inflammatory cytokines, and improved mitochondrial metabolism, iron metabolism, lipid metabolism, and redox in the SAMP8 mice brain. The administration of salidroside decreased iron deposition, reduced TFR1, and ACSL4 protein expression, upregulated SLC7A11, and GPX4 protein expression, and promoted the Nrf2/GPX4 axis activation. CONCLUSION In conclusion, neuronal ferroptosis and CD8+T cells are involved in the process of cognitive impairment in SAMP8 mice. Salidroside alleviates cognitive impairment and inhibits neuronal ferroptosis. The underlying mechanisms may involve the Nrf2/GPX4 axis activation and reduction in CD8+T cells infiltration. This study provides some evidence for the roles of salidroside in adaptive immunity and neuronal ferroptosis in SAMP8 mice.
Collapse
Affiliation(s)
- Sixia Yang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Linshuang Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China
| | - Yi Zeng
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Yong Wang
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China
| | - Tingting Pei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Zeping Xie
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qiaowu Xiong
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Hui Wei
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Wenxu Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Jiaqi Li
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Qian Su
- School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China
| | - Dongfeng Wei
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16, Nanxiao Street, Dongzhimen Nei, Dongcheng District, Beijing 100700, China.
| | - Weidong Cheng
- Department of Pharmacy, Zhu Jiang Hospital, Southern Medical University, Guangzhou 510260, China; School of Traditional Chinese Medicine, Southern Medical University, No.1838, North Guangzhou Avenue, Baiyun District, Guangzhou 510515, China.
| |
Collapse
|
12
|
Navarro D, Gasparyan A, Martí Martínez S, Díaz Marín C, Navarrete F, García Gutiérrez MS, Manzanares J. Methods to Identify Cognitive Alterations from Animals to Humans: A Translational Approach. Int J Mol Sci 2023; 24:ijms24087653. [PMID: 37108813 PMCID: PMC10143375 DOI: 10.3390/ijms24087653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
The increasing prevalence of cognitive dysfunction and dementia in developed countries, associated with population aging, has generated great interest in characterizing and quantifying cognitive deficits in these patients. An essential tool for accurate diagnosis is cognitive assessment, a lengthy process that depends on the cognitive domains analyzed. Cognitive tests, functional capacity scales, and advanced neuroimaging studies explore the different mental functions in clinical practice. On the other hand, animal models of human diseases with cognitive impairment are essential for understanding disease pathophysiology. The study of cognitive function using animal models encompasses multiple dimensions, and deciding which ones to investigate is necessary to select the most appropriate and specific tests. Therefore, this review studies the main cognitive tests for assessing cognitive deficits in patients with neurodegenerative diseases. Cognitive tests, the most commonly used functional capacity scales, and those resulting from previous evidence are considered. In addition, the leading behavioral tests that assess cognitive functions in animal models of disorders with cognitive impairment are highlighted.
Collapse
Affiliation(s)
- Daniela Navarro
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Silvia Martí Martínez
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Servicio de Neurología, Hospital General Dr. Balmis, 03010 Alicante, Spain
| | - Carmen Díaz Marín
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
- Servicio de Neurología, Hospital General Dr. Balmis, 03010 Alicante, Spain
| | - Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - María Salud García Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Avda de Ramón y Cajal s/n, San Juan de Alicante, 03550 Alicante, Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), 03010 Alicante, Spain
| |
Collapse
|
13
|
Remonde CG, Gonzales EL, Adil KJ, Jeon SJ, Shin CY. Augmented impulsive behavior in febrile seizure-induced mice. Toxicol Res 2023; 39:37-51. [PMID: 36726823 PMCID: PMC9839938 DOI: 10.1007/s43188-022-00145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/04/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Febrile seizure (FS) is one of the most prevalent etiological events in childhood affecting 2-5% of children from 3 months to 5 years old. Debates on whether neurodevelopmental consequences rise in later life following a febrile seizure or not are still ongoing however there is limited evidence of its effect, especially in a laboratory setting. Moreover, the comparative study using both male and female animal models is sparse. To examine the effect of FS on the behavioral features of mice, both sexes of ICR mice were induced with hyperthermic seizures through exposure to an infrared heat lamp. The mice were divided into two groups, one receiving a single febrile seizure at postnatal day 11 (P11) and one receiving three FS at P11, P13, and P15. Starting at P30 the FS-induced mice were subjected to a series of behavioral tests. Mice with seizures showed no locomotor and motor coordination deficits, repetitive, and depressive-like behavior. However, the FS-induced mice showed impulsive-like behavior in both elevated plus maze and cliff avoidance tests, which is more prominent in male mice. A greater number of mice displayed impaired CAT in both males and females in the three-time FS-induced group compared to the single induction group. These results demonstrate that after induction of FS, male mice have a higher susceptibility to consequences of febrile seizure than female mice and recurrent febrile seizure has a higher chance of subsequent disorders associated with decreased anxiety and increased impulsivity. We confirmed the dysregulated expression of impulsivity-related genes such as 5-HT1A and tryptophan hydroxylase 2 from the prefrontal cortices of FS-induced mice implying that the 5-HT system would be one of the mechanisms underlying the increased impulsivity after FS. Taken together, these findings are useful in unveiling future discoveries about the effect of childhood febrile seizure and the mechanism behind it.
Collapse
Affiliation(s)
- Chilly Gay Remonde
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| | - Edson Luck Gonzales
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| | - Keremkleroo Jym Adil
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| | - Chan Young Shin
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
14
|
Yu YH, Kim SW, Kang J, Song Y, Im H, Kim SJ, Yoo DY, Lee MR, Park DK, Oh JS, Kim DS. Phosphodiesterase-5 Inhibitor Attenuates Anxious Phenotypes and Movement Disorder Induced by Mild Ischemic Stroke in Rats. J Korean Neurosurg Soc 2022; 65:665-679. [PMID: 35430790 PMCID: PMC9452378 DOI: 10.3340/jkns.2021.0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/03/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Patients with mild ischemic stroke experience various sequela and residual symptoms, such as anxious behavior and deficits in movement. Few approaches have been proved to be effective and safe therapeutic approaches for patients with mild ischemic stroke by acute stroke. Sildenafil (SIL), a phosphodiesterase-5 inhibitor (PDE5i), is a known remedy for neurodegenerative disorders and vascular dementia through its angiogenesis and neurogenesis effects. In this study, we investigated the efficacy of PDE5i in the emotional and behavioral abnormalities in rats with mild ischemic stroke.
Methods We divided the rats into four groups as follows (n=20, respectively) : group 1, naïve; group 2, middle cerebral artery occlusion (MCAo30); group 3, MCAo30+SIL-pre; and group 4, MCAo30+SIL-post. In the case of drug administration groups, single dose of PDE5i (sildenafil citrate, 20 mg/kg) was given at 30-minute before and after reperfusion of MCAo in rats. After surgery, we investigated and confirmed the therapeutic effect of sildenafil on histology, immunofluorescence, behavioral assays and neural oscillations.
Results Sildenafil alleviated a neuronal loss and reduced the infarction volume. And results of behavior task and immunofluorescence shown possibility that anti-inflammation process and improve motor deficits sildenafil treatment after mild ischemic stroke. Furthermore, sildenafil treatment attenuated the alteration of theta-frequency rhythm in the CA1 region of the hippocampus, a known neural oscillatory marker for anxiety disorder in rodents, induced by mild ischemic stroke.
Conclusion PDE5i as effective therapeutic agents for anxiety and movement disorders and provide robust preclinical evidence to support the development and use of PDE5i for the treatment of mild ischemic stroke residual disorders.
Collapse
|
15
|
Belén Sanz-Martos A, Fernández-Felipe J, Merino B, Cano V, Ruiz-Gayo M, Del Olmo N. Butyric Acid Precursor Tributyrin Modulates Hippocampal Synaptic Plasticity and Prevents Spatial Memory Deficits: Role of PPARγ and AMPK. Int J Neuropsychopharmacol 2022; 25:498-511. [PMID: 35152284 PMCID: PMC9211015 DOI: 10.1093/ijnp/pyac015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Short chain fatty acids (SCFA), such as butyric acid (BA), derived from the intestinal fermentation of dietary fiber and contained in dairy products, are gaining interest in relation to their possible beneficial effects on neuropsychological disorders. METHODS C57BL/6J male mice were used to investigate the effect of tributyrin (TB), a prodrug of BA, on hippocampus (HIP)-dependent spatial memory, HIP synaptic transmission and plasticity mechanisms, and the expression of genes and proteins relevant to HIP glutamatergic transmission. RESULTS Ex vivo studies, carried out in HIP slices, revealed that TB can transform early-LTP into late-LTP (l-LTP) and to rescue LTP-inhibition induced by scopolamine. The facilitation of l-LTP induced by TB was blocked both by GW9662 (a PPARγ antagonist) and C-Compound (an AMPK inhibitor), suggesting the involvement of both PPARγ and AMPK on TB effects. Moreover, 48-hour intake of a diet containing 1% TB prevented, in adolescent but not in adult mice, scopolamine-induced impairment of HIP-dependent spatial memory. In the adolescent HIP, TB upregulated gene expression levels of Pparg, leptin, and adiponectin receptors, and that of the glutamate receptor subunits AMPA-2, NMDA-1, NMDA-2A, and NMDA-2B. CONCLUSIONS Our study shows that TB has a positive influence on LTP and HIP-dependent spatial memory, which suggests that BA may have beneficial effects on memory.
Collapse
Affiliation(s)
- Ana Belén Sanz-Martos
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Jesús Fernández-Felipe
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Beatriz Merino
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | - Victoria Cano
- Department of Health and Pharmaceutical Sciences, School of Pharmacy, Universidad CEU-San Pablo, CEU Universities, Madrid, Spain
| | | | - Nuria Del Olmo
- Correspondence: Nuria Del Olmo, PhD, Department of Psychobiology, School of Psychology, National University for Distance Education (UNED), C/ Juan del Rosal 10, 28040 Madrid, Spain ()
| |
Collapse
|
16
|
Spatial working memory is disparately interrelated with social status through different developmental stages in rats. Behav Brain Res 2022; 416:113547. [PMID: 34437940 DOI: 10.1016/j.bbr.2021.113547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/15/2021] [Accepted: 08/21/2021] [Indexed: 02/02/2023]
Abstract
Social life necessitates cognitive competence to meet the dynamic demands of social development. The formation of dominance hierarchy is a general phenomenon in social groups. As an essential element of executive and cognitive function, working memory could influence and be influenced by social status in a dominance hierarchy. However, the direction and degree of the association between them through different developmental stages remain unclear. To address this issue and clarify the "cause or consequence" problem, we investigated the spatial working memory performance in a Y-maze and Morris water maze in home-caged sibling Wistar rats (N = 26 cages, three rats/cage) through three stages of their life: before (week 7), during (week 10), and after (week 20) assumed timings of the social dominance hierarchy formation (SDHF). We used the social dominance tube test during the assumed time of hierarchy formation (weeks 9-11) to measure the relative dominance status in each cage. Here, we found that higher working memory index before SDHF could be predictive of later acquisition of higher social status. Working memory performance declined for all animals during SDHF, in which agonistic conflicts are increased. However, living within an established hierarchical social network for several weeks deteriorated the working memory performance of dominant and middle-ranked animals, while the performance of subordinates improved and got significantly better than higher-ranked animals. In conclusion, while working memory and social status were correlated positively before dominance hierarchy formation, there was a trade-off between them after the formation of it. In contrast to the common view, these results highlight the adverse effect of higher social status on cognitive behavior.
Collapse
|
17
|
Buckinx A, Van Schuerbeek A, Bossuyt J, Allaoui W, Van Den Herrewegen Y, Smolders I, De Bundel D. Exploring Refinement Strategies for Single Housing of Male C57BL/6JRj Mice: Effect of Cage Divider on Stress-Related Behavior and Hypothalamic-Pituitary-Adrenal-Axis Activity. Front Behav Neurosci 2021; 15:743959. [PMID: 34776890 PMCID: PMC8581484 DOI: 10.3389/fnbeh.2021.743959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Single housing of laboratory mice is a common practice to meet experimental needs, or to avoid intermale aggression. However, single housing is considered to negatively affect animal welfare and may compromise the scientific validity of experiments. The aim of this study was to investigate whether the use of a cage with a cage divider, which avoids physical contact between mice while maintaining sensory contact, may be a potential refinement strategy for experiments in which group housing of mice is not possible. Methods: Eight-week-old male C57BL/6JRj mice were single housed, pair housed or pair housed with a cage divider for four (experiment 1) or ten (experiment 2) weeks, after which we performed an open field test, Y-maze spontaneous alternation test, elevated plus maze test, an auditory fear conditioning task, and assessed responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis. Results: Housing conditions did not affect body weight, exploratory activity, anxiety, working memory, fear memory processing or markers for HPA-axis functioning in either experiment 1 or experiment 2. There was an increased distance traveled in mice housed with a cage divider compared to pair housed mice after 4 weeks, and after 10 weeks mice housed with a cage divider made significantly more arm entries in the Y-maze spontaneous alternation test. Conclusion: Taken together, our study did not provide evidence for robust differences in exploratory activity, anxiety, working memory and fear memory processing in male C57BL/6JRj mice that were single housed, pair housed or pair housed with a cage divider.
Collapse
Affiliation(s)
- An Buckinx
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andries Van Schuerbeek
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jo Bossuyt
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wissal Allaoui
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yana Van Den Herrewegen
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ilse Smolders
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Dimitri De Bundel
- Research Group Experimental Pharmacology, Department of Pharmaceutical Sciences, Center for Neurosciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
18
|
Cai HY, Yang D, Qiao J, Yang JT, Wang ZJ, Wu MN, Qi JS, Hölscher C. A GLP-1/GIP Dual Receptor Agonist DA4-JC Effectively Attenuates Cognitive Impairment and Pathology in the APP/PS1/Tau Model of Alzheimer's Disease. J Alzheimers Dis 2021; 83:799-818. [PMID: 34366339 DOI: 10.3233/jad-210256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a degenerative disorder, accompanied by progressive cognitive decline, for which there is no cure. Recently, the close correlation between AD and type 2 diabetes mellitus (T2DM) has been noted, and a promising anti-AD strategy is the use of anti-T2DM drugs. OBJECTIVE To investigate if the novel glucagon-like peptide-1 (GLP-1)/glucose-dependent insulinotropic polypeptide (GIP) receptor agonist DA4-JC shows protective effects in the triple APP/PS1/tau mouse model of AD. METHODS A battery of behavioral tests were followed by in vivo recording of long-term potentiation (LTP) in the hippocampus, quantified synapses using the Golgi method, and biochemical analysis of biomarkers. RESULTS DA4-JC improved cognitive impairment in a range of tests and relieved pathological features of APP/PS1/tau mice, enhanced LTP in the hippocampus, increased numbers of synapses and dendritic spines, upregulating levels of post-synaptic density protein 95 (PSD95) and synaptophysin (SYP), normalized volume and numbers of mitochondria and improving the phosphatase and tensin homologue induced putative kinase 1 (PINK1) - Parkin mitophagy signaling pathway, while downregulating amyloid, p-tau, and autophagy marker P62 levels. CONCLUSION DA4-JC is a promising drug for the treatment of AD.
Collapse
Affiliation(s)
- Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China.,Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China
| | - Dan Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jing Qiao
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, China
| | - Jun-Ting Yang
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhao-Jun Wang
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Mei-Na Wu
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jin-Shun Qi
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan, China.,Key Laboratory of Cellular Physiology, Shanxi Province, China.,Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Christian Hölscher
- Neuroscience Research Group, Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
19
|
Bracko O, Njiru BN, Swallow M, Ali M, Haft-Javaherian M, Schaffer CB. Increasing cerebral blood flow improves cognition into late stages in Alzheimer's disease mice. J Cereb Blood Flow Metab 2020; 40:1441-1452. [PMID: 31495298 PMCID: PMC7308509 DOI: 10.1177/0271678x19873658] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease is associated with a 20-30% reduction in cerebral blood flow. In the APP/PS1 mouse model of Alzheimer's disease, inhibiting neutrophil adhesion using an antibody against the neutrophil specific protein Ly6G was recently shown to drive rapid improvements in cerebral blood flow that was accompanied by an improvement in performance on short-term memory tasks. Here, in a longitudinal aging study, we assessed how far into disease development a single injection of anti-Ly6G treatment can acutely improve short-term memory function. We found that APP/PS1 mice as old as 15-16 months had improved performance on the object replacement and Y-maze tests of spatial and working short-term memory, measured at one day after anti-Ly6G treatment. APP/PS1 mice at 17-18 months of age or older did not show acute improvements in cognitive performance, although we did find that capillary stalls were still reduced and cerebral blood flow was still increased by 17% in 21-22-months-old APP/PS1 mice given anti-Ly6G antibody. These data add to the growing body of evidence suggesting that cerebral blood flow reductions are an important contributing factor to the cognitive dysfunction associated with neurodegenerative disease. Thus, interfering with neutrophil adhesion could be a new therapeutic approach for Alzheimer's disease.
Collapse
Affiliation(s)
- Oliver Bracko
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Brendah N Njiru
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Madisen Swallow
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Muhammad Ali
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Mohammad Haft-Javaherian
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Chris B Schaffer
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
20
|
Stephan M, Volkmann P, Rossner MJ. Assessing behavior and cognition in rodents, nonhuman primates, and humans: where are the limits of translation?
. DIALOGUES IN CLINICAL NEUROSCIENCE 2020; 21:249-259. [PMID: 31749649 PMCID: PMC6829167 DOI: 10.31887/dcns.2019.21.3/mrossner] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New psychopharmacological treatments are needed for affective and nonaffective
psychoses, especially for the associated negative and cognitive symptoms. Earlier
developments mostly failed, probably partly because of limitations in behavioral models
used for validation. Now, deeper understanding of the genetics underlying disease
pathogenesis and progress in genetic engineering will generate many rodent models with
increased construct validity. To improve these models’ translational value, we need
complementary data from nonhuman primates. We also have to improve and streamline
behavioral test systems to cope with increased demand. Here, we propose a comprehensive
neurocognitive test battery that should overcome the disadvantages of single tests and
yield cognitive/behavioral profiles for modeling subsets of patient symptoms. Further,
we delineate a concept for classifying disease-relevant cognitive endophenotypes to
balance between face and construct validity and clinical diagnostics. In summary, this
review discusses new concepts and the limitations and future potential of translational
research on cognition in psychiatry.
Collapse
Affiliation(s)
- Marius Stephan
- Molecular and Behavioural Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | - Paul Volkmann
- Molecular and Behavioural Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| | - Moritz J Rossner
- Molecular and Behavioural Neurobiology, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Germany
| |
Collapse
|
21
|
Liu B, Huang B, Liu J, Shi JS. Dendrobium nobile Lindl alkaloid and metformin ameliorate cognitive dysfunction in senescence-accelerated mice via suppression of endoplasmic reticulum stress. Brain Res 2020; 1741:146871. [PMID: 32380088 DOI: 10.1016/j.brainres.2020.146871] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/06/2020] [Accepted: 04/28/2020] [Indexed: 12/25/2022]
Abstract
The senescence-accelerated mouse prone 8 (SAMP8) mice have many pathological features of Alzheimer's disease (AD) with aging. We previously reported that Dendrobium nobile Lindl alkaloid (DNLA) effectively improved cognitive deficits in multiple Alzheimer's disease (AD) models. This study further used SAMP8 mice to study the anti-aging effects of DNLA, focusing on endoplasmic reticulum (ER) stress. DNLA and metformin were orally administered to SAMP8 mice starting at 4-month of age for 6 months. Behavioral tests were performed in 10-month-old SAMP8 mice and age-matched SAMR1 control mice. At the end of experiment, neuron damage was evaluated by histology and transmission electron microscopy. ER stress-related proteins were analyzed with Western-blot. DNLA improved learning and memory impairments, reduced the loss of neurons and Nissl bodies in the hippocampus and cortex. DNLA ameliorated ER dilation and swelling in the hippocampal neurons. DNLA down-regulated the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway, decreased calpain 1, GSK-3β and Cdk5 activities and the Tau hyper-phosphorylation. The effects of DNLA were comparable to metformin. In summary, DNLA was effective in improving cognitive deficits in aged SAMP8 mice, possibly via suppression of ER stress-related PERK signaling pathway, sequential inhibition of calpain 1, GSK-3β and Cdk5 activities, and eventually reducing the hyper-phosphorylation of Tau.
Collapse
Affiliation(s)
- Bo Liu
- Shanghai University of Traditional Chinese Medicine, Shanghai, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Bo Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jie Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Lab of Ethnomedicine of Ministry of Education, Zunyi Medical University, China.
| |
Collapse
|
22
|
Yang B, Xu J, Li Y, Dong Y, Li Y, Tucker L, Yang L, Zong X, Wu C, Xu T, Hu S, Zhang Q, Yan X. Photobiomodulation therapy for repeated closed head injury in rats. JOURNAL OF BIOPHOTONICS 2020; 13:e201960117. [PMID: 31657525 DOI: 10.1002/jbio.201960117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Repeated traumatic brain injury, leads to cumulative neuronal injury and neurological impairments. There are currently no effective treatments to prevent these consequences. Growing interest is building in the use of transcranial photobiomodulation (PBM) therapy to treat traumatic brain injury. Here, we examined PBM in a repeated closed head injury (rCHI) rat model. Rats were administered a total of three closed head injuries, with each injury separated by 5 days. PBM treatment was initiated 2 hours after the first injury and administered daily for a total of 15 days. We found that PBM-treated rCHI rats had a significant reduction in motor ability, anxiety and cognitive deficits compared to CHI group. PBM group showed an increase of synaptic proteins and surviving neurons, along with a reduction in reactive gliosis and neuronal injury. These findings highlight the complexity of gliosis and neuronal injury following rCHI and suggest that PBM may be a viable treatment option to mitigate these effects and their detrimental consequences.
Collapse
Affiliation(s)
- Baocheng Yang
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Juanyong Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Yuyu Li
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lorelei Tucker
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Luodan Yang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xuemei Zong
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Tie Xu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Department of Emergency, Nanjing Jiangning Hospital, Nanjing, China
| | - Shuqun Hu
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Quanguang Zhang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia
| | - Xianliang Yan
- Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
- Emergency Center of the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
Wang ZJ, Han YF, Zhao F, Yang GZ, Yuan L, Cai HY, Yang JT, Holscher C, Qi JS, Wu MN. A dual GLP-1 and Gcg receptor agonist rescues spatial memory and synaptic plasticity in APP/PS1 transgenic mice. Horm Behav 2020; 118:104640. [PMID: 31765661 DOI: 10.1016/j.yhbeh.2019.104640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 11/16/2019] [Accepted: 11/16/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that severely affects the health and lifespan of the elderly worldwide. Recently, the correlation between AD and type 2 diabetes mellitus (T2DM) has received intensive attention, and a promising new anti-AD strategy is the use of anti-diabetic drugs. Oxyntomodulin (Oxm) is a peptide hormone and growth factor that acts on neurons in the hypothalamus. OXM activates glucagon-like peptide 1 (GLP-1) and glucagon (Gcg) receptors, facilitates insulin signaling and has neuroprotective effects against Aβ1-42-induced cytotoxicity in primary hippocampal neurons. Here, we tested the effects of the protease-resistant analogue (D-Ser2)Oxm on spatial memory and synaptic plasticity and the underlying molecular mechanisms in the APP/PS1 transgenic mouse model of AD. The results showed that (D-Ser2)Oxm not only alleviated the impairments of working memory and long-term spatial memory, but also reduced the number of Aβ plaques in the hippocampus, and reversed the suppression of hippocampal synaptic long-term potentiation (LTP). Moreover, (D-Ser2)Oxm administration significantly increased p-PI3K/p-AKT1 expression and decreased p-GSK3β levels in the hippocampus. These results are the first to show an in vivo neuroprotective role of (D-Ser2)Oxm in APP/PS1 mice, and this role involves the improvement of synaptic plasticity, clearance of Aβ and normalization of PI3K/AKT/GSK3β cell signaling in the hippocampus. This study suggests that (D-Ser2)Oxm holds promise for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Yu-Fei Han
- Guangzhou Kingmed Diagnostics, Guangzhou, PR China
| | - Fang Zhao
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Guang-Zhao Yang
- Department of Cardiovascular Medicine, The First Hospital of Shanxi Medical University, Taiyuan, PR China
| | - Li Yuan
- Department of Physiology, Changzhi Medical College, Changzhi, PR China
| | - Hong-Yan Cai
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, PR China
| | - Jun-Ting Yang
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China
| | - Christian Holscher
- Neuroscience research group, Henan university of Chinese medicine, Zhengzhou, PR China
| | - Jin-Shun Qi
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China.
| | - Mei-Na Wu
- Department of Physiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, PR China.
| |
Collapse
|
24
|
Hamidi N, Nozad A, Sheikhkanloui Milan H, Salari AA, Amani M. Effect of ceftriaxone on paired-pulse response and long-term potentiation of hippocampal dentate gyrus neurons in rats with Alzheimer-like disease. Life Sci 2019; 238:116969. [DOI: 10.1016/j.lfs.2019.116969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/10/2019] [Accepted: 10/14/2019] [Indexed: 02/08/2023]
|
25
|
Yuyama K, Takahashi K, Usuki S, Mikami D, Sun H, Hanamatsu H, Furukawa J, Mukai K, Igarashi Y. Plant sphingolipids promote extracellular vesicle release and alleviate amyloid-β pathologies in a mouse model of Alzheimer's disease. Sci Rep 2019; 9:16827. [PMID: 31727994 PMCID: PMC6856149 DOI: 10.1038/s41598-019-53394-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/29/2019] [Indexed: 12/22/2022] Open
Abstract
The accumulation of amyloid-β protein (Aβ) in brain is linked to the early pathogenesis of Alzheimer’s disease (AD). We previously reported that neuron-derived exosomes promote Aβ clearance in the brains of amyloid precursor protein transgenic mice and that exosome production is modulated by ceramide metabolism. Here, we demonstrate that plant ceramides derived from Amorphophallus konjac, as well as animal-derived ceramides, enhanced production of extracellular vesicles (EVs) in neuronal cultures. Oral administration of plant glucosylceramide (GlcCer) to APP overexpressing mice markedly reduced Aβ levels and plaque burdens and improved cognition in a Y-maze learning task. Moreover, there were substantial increases in the neuronal marker NCAM-1, L1CAM, and Aβ in EVs isolated from serum and brain tissues of the GlcCer-treated AD model mice. Our data showing that plant ceramides prevent Aβ accumulation by promoting EVs-dependent Aβ clearance in vitro and in vivo provide evidence for a protective role of plant ceramides in AD. Plant ceramides might thus be used as functional food materials to ameliorate AD pathology.
Collapse
Affiliation(s)
- Kohei Yuyama
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan.
| | - Kaori Takahashi
- R & D Headquarters, Daicel Corporation, 2-18-1, Konan, Minato-ku, Tokyo, 108-8230, Japan
| | - Seigo Usuki
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Daisuke Mikami
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Hui Sun
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Hisatoshi Hanamatsu
- Department of Advanced Clinical Glycobiology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Junichi Furukawa
- Department of Advanced Clinical Glycobiology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| | - Katsuyuki Mukai
- R & D Headquarters, Daicel Corporation, 2-18-1, Konan, Minato-ku, Tokyo, 108-8230, Japan
| | - Yasuyuki Igarashi
- Lipid Biofunction Section, Faculty of Advanced Life Science, Hokkaido University, Kita-21, Nishi-11, Kita-ku, Sapporo, 001-0021, Japan
| |
Collapse
|
26
|
High-intensity interval training prevents cognitive-motor impairment and serum BDNF level reduction in parkinson mice model. SPORT SCIENCES FOR HEALTH 2019. [DOI: 10.1007/s11332-019-00586-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Neurobehavioral effects of chronic low-dose risperidone administration in juvenile male rats. Behav Brain Res 2019; 363:155-160. [PMID: 30735760 DOI: 10.1016/j.bbr.2019.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 02/02/2023]
Abstract
Despite substantial increases in the use of antipsychotics to treat various psychiatric conditions in children, there is a lack of literature regarding long-term effects of early treatment. Some studies have indicated that early administration results in differential alterations to neurotransmission systems, but few studies have investigated whether there are long-term behavioral modifications. Therefore, the aim of the current study was to investigate the neurobehavioral effects of low dose risperidone (a commonly prescribed antipsychotic) treatment using juvenile rats. Twenty-four male Sprague-Dawley rats were either subcutaneously implanted with a continuous release risperidone pellet (.04 mg/day) or a placebo pellet. To encompass the peri-adolescent to adolescent timeframe (postnatal day 40-70) thought to be important for brain development, male rats began risperidone treatment at post-natal day 35. Six weeks following commencement of risperidone treatment, all rats were tested on a battery of behavioral assessments including open field, object recognition, Morris Water Maze, and Y-Maze tasks. Risperidone treatment did not affect performance on the open field, object recognition, or Morris Water maze. A significant effect was found on the Y-maze. Although all rats exhibited normal spontaneous alternation, risperidone treated rats demonstrated significantly higher same arm returns, indicative of a working memory deficit. Continued research is needed to determine whether early exposure to risperidone may lead to differences in working memory at longer time-points. These results seem to indicate that early low dose risperidone treatment during the peri-adolescent and adolescent period does not severely impair behavior.
Collapse
|
28
|
Liu T, Ma Y, Zhang R, Zhong H, Wang L, Zhao J, Yang L, Fan X. Resveratrol ameliorates estrogen deficiency-induced depression- and anxiety-like behaviors and hippocampal inflammation in mice. Psychopharmacology (Berl) 2019; 236:1385-1399. [PMID: 30607478 DOI: 10.1007/s00213-018-5148-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022]
Abstract
RATIONALE Resveratrol (RSV) has been indicated to exhibit beneficial effects on depression and anxiety treatment by suppression of inflammatory processes. Depression triggered by deficiency of estrogen and anxiety-like behaviors are associated with inflammation. The role of RSV in ovariectomized mice is unclear. OBJECTIVES We examine whether the RSV, a Sirt1 activator, alleviates ovariectomy-induced anxiety- and depression-like behaviors through the inhibition of inflammatory processes. METHODS Female C57BL/6J mice (6-8 weeks of age, 17-20 g) were ovariectomized and treated with RSV at a dose of 20 mg/kg for 2 weeks. Depression- and anxiety-like behaviors were compared with vehicle-injected control animals. Immunohistochemistry and qPCR were used to detect inflammation in the hippocampal region. RESULTS Ovariectomized mice were observed to suffer from anxiety- and depression-like behaviors. These effects were attenuated by treatment with RSV. Immunohistochemical staining results showed that RSV could reverse the increase of microglial activation in the hippocampal dentate gyrus. At a molecular level, RSV inhibited the activation of NLRP3 and NF-κB in the hippocampal region caused by deficiency of estrogen. CONCLUSIONS RSV suppressed the production of inflammatory cytokines by enhancing Sirt1 levels. Our findings indicated that RSV-induced Sirt1 activation counteracted estrogen deficiency-induced psychobehavioral changes via inhibition of inflammatory processes in the hippocampus. In anxiety and depression disorders, RSV is supposed to be an effective treatment for postmenopausal changes.
Collapse
Affiliation(s)
- Tianyao Liu
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Yuanyuan Ma
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ruiyu Zhang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
- Department of Histology and Embryology, Third Military Medical University, Chongqing, China
| | - Hongyu Zhong
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Lian Wang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Jinghui Zhao
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Ling Yang
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China
| | - Xiaotang Fan
- Department of Developmental Neuropsychology, School of Psychology, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
29
|
Han Y, Nan S, Fan J, Chen Q, Zhang Y. Inonotus obliquus polysaccharides protect against Alzheimer's disease by regulating Nrf2 signaling and exerting antioxidative and antiapoptotic effects. Int J Biol Macromol 2019; 131:769-778. [PMID: 30878614 DOI: 10.1016/j.ijbiomac.2019.03.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 01/05/2023]
Abstract
Inonotus obliquus polysaccharide (IOPS) was initially separated and purified via precipitation from an aqueous extract with 80% alcohol, a DEAE-52 cellulose anion exchange column, and a Sephadex G-100 gel permeation chromatography system. IOPS was found to have a molecular weight of 111.9 kDa. In L-glutamic acid (L-Glu)-damaged HT22 cells, a 3-h pre-incubation with IOPS enhanced cell viability, inhibited apoptosis and caspase-3 activity, reduced the release of lactate dehydrogenase, restored the dissipated mitochondrial membrane potential, and suppressed the excess accumulation of intracellular reactive oxygen species. Compared with L-Glu-exposed cells, IOPS pre-treated cells exhibited reduced levels of Bcl-2 associated X protein (Bax) and Kelch-like ECH-associated protein 1 (Keap1) and enhanced levels of B-cell lymphoma-2 (Bcl-2), NF-E2p45-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), superoxide dismutase-1 (SOD-1), and cysteine ligase catalytic subunit. In amyloid precursor protein/presenilin 1 (APP/PS1) transgenic mice, an 8-week course of IOPS improved the pathological behaviors related to memory and cognition, reduced the deposition of β-amyloid peptides and neuronal fiber tangles induced by enhanced phosphor-Tau in the brain, and modulated the levels of anti- and pro-oxidative stress enzymes. Additionally, IOPS enhanced the expression levels of Nrf2 and its downstream proteins, including HO-1 and SOD-1, in the brains of APP/PS1 mice. The present study successfully demonstrated the protective effect of IOPS against AD and revealed the possible mechanism underlying the ability of IOPS to modulate oxidative stress, especially Nrf2 signaling, and mediate mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yanqiu Han
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Shanji Nan
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Jia Fan
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Qiuhui Chen
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China.
| |
Collapse
|
30
|
Dong M, Ren M, Li C, Zhang X, Yang C, Zhao L, Gao H. Analysis of Metabolic Alterations Related to Pathogenic Process of Diabetic Encephalopathy Rats. Front Cell Neurosci 2019; 12:527. [PMID: 30692917 PMCID: PMC6339875 DOI: 10.3389/fncel.2018.00527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022] Open
Abstract
Diabetic encephalopathy (DE) is a diabetic complication characterized by alterations in cognitive function and nervous system structure. The pathogenic transition from hyperglycemia to DE is a long-term process accompanied by multiple metabolic disorders. Exploring time-dependent metabolic changes in hippocampus will facilitate our understanding of the pathogenesis of DE. In the present study, we first performed behavioral and histopathological experiments to confirm the appearance of DE in rats with streptozotocin-induced diabetes. We then utilized nuclear magnetic resonance-based metabonomics to analyze metabolic disorders in the hippocampus at different stages of DE. After 1 week, we observed no cognitive or structural impairments in diabetic rats, although some metabolic changes were observed in local hippocampal extracts. At 5 weeks, while cognitive function was still normal, we then examined initial levels of neuronal apoptosis. The characteristic metabolic changes of this stage included elevated levels of energy metabolites (i.e., ATP, ADP, AMP, and creatine phosphate/creatine). At 9 weeks, significant cognitive decline and histopathological brain damage were observed, in conjunction with reduced levels of some amino acids. Thus, this stage was classified as the DE period. Our findings indicated that the pathogenesis of DE is associated with time-dependent alterations in metabolic features in hippocampal regions, such as glycolysis, osmoregulation, energy metabolism, choline metabolism, branched-chain amino acid metabolism, and the glutamate-glutamine cycle. Furthermore, we observed alterations in levels of lactate and its receptor in hippocampal cells, which may be involved in the pathogenesis of DE.
Collapse
Affiliation(s)
- Minjian Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengqian Ren
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chen Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Changwei Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Hamidi N, Nozad A, Sheikhkanloui Milan H, Amani M. Okadaic acid attenuates short-term and long-term synaptic plasticity of hippocampal dentate gyrus neurons in rats. Neurobiol Learn Mem 2019; 158:24-31. [PMID: 30630043 DOI: 10.1016/j.nlm.2019.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/13/2018] [Accepted: 01/05/2019] [Indexed: 01/04/2023]
Abstract
Protein phosphorylation states have a pivotal role in regulation of synaptic plasticity and long-term modulation of synaptic transmission. Serine/threonine protein phosphatase 1 (PP1) and 2A (PP2A) have a critical effect on various regulatory mechanisms involved in synaptic plasticity, learning and memory. Okadaic acid (OKA), a potent inhibitor of PP1 and PP2A, reportedly leads to cognitive decline and Alzheimer's disease (AD)-like pathology. The aim of this study was to examine the effect of OKA on electrophysiological characteristics of hippocampal dentate gyrus (DG) neurons in vivo. Male Wistar rats were divided into two control and OKA groups. OKA was injected intracerebroventricularly (i.c.v.) into lateral ventricles and after two weeks the long-term potentiation (LTP) and paired-pulse responses recorded from hippocampal perforant path-DG synapses in order to assess short-term and long-term synaptic plasticity. Results of this study revealed that OKA-induced inhibition of PP1 and PP2A activity drastically attenuates the field excitatory postsynaptic potential (fEPSP) slope and population spike (PS) amplitude following paired pulse and high frequency stimulation (HFS) of hippocampal DG neurons indicating pre- and post-synaptic involvement in electrical activity of these neurons. Administration of OKA impaired the short-term and long-term spatial memories conducted by Y-maze and passive avoidance tests, respectively. OKA-induced attenuation in electrophysiological activity and consequent memory deficits also provide a beneficial tool for studying neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Nasrin Hamidi
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Abdollah Nozad
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | | | - Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
32
|
Wang R, Chen P, Shen Z, Lin G, Xiao G, Dai Z, Zhang B, Chen Y, Lai L, Zong X, Li Y, Tang Y, Wu R. Brain Amide Proton Transfer Imaging of Rat With Alzheimer's Disease Using Saturation With Frequency Alternating RF Irradiation Method. Front Aging Neurosci 2019; 11:217. [PMID: 31507405 PMCID: PMC6713910 DOI: 10.3389/fnagi.2019.00217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023] Open
Abstract
Amyloid-β (Aβ) deposits and some proteins play essential roles in the pathogenesis of Alzheimer's disease (AD). Amide proton transfer (APT) imaging, as an imaging modality to detect tissue protein, has shown promising features for the diagnosis of AD disease. In this study, we chose 10 AD model rats as the experimental group and 10 sham-operated rats as the control group. All the rats underwent a Y-maze test before APT image acquisition, using saturation with frequency alternating RF irradiation (APTSAFARI) method on a 7.0 T animal MRI scanner. Compared with the control group, APT (3.5 ppm) values of brain were significantly reduced in AD models (p < 0.002). The APTSAFARI imaging is more significant than APT imaging (p < 0.0001). AD model mice showed spatial learning and memory loss in the Y-maze experiment. In addition, there was significant neuronal loss in the hippocampal CA1 region and cortex compared with sham-operated rats. In conclusion, we demonstrated that APT imaging could potentially provide molecular biomarkers for the non-invasive diagnosis of AD. APTSAFARI MRI could be used as an effective tool to improve the accuracy of diagnosis of AD compared with conventional APT imaging.
Collapse
Affiliation(s)
- Runrun Wang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Peidong Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- Philips Healthcare, Shantou, China
| | - Guisen Lin
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Gang Xiao
- Department of Mathematics and Statistics, Hanshan Normal University, Chaozhou, China
| | - Zhuozhi Dai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Bingna Zhang
- Translational Medicine, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yuanfeng Chen
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Lihua Lai
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Xiaodan Zong
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yan Li
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yanyan Tang
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Renhua Wu
- Department of Medical Imaging, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- *Correspondence: Renhua Wu,
| |
Collapse
|
33
|
Barai P, Raval N, Acharya S, Acharya N. Neuroprotective effects of Bergenia ciliata on NMDA induced injury in SH-SY5Y cells and attenuation of cognitive deficits in scopolamine induced amnesia in rats. Biomed Pharmacother 2018; 108:374-390. [PMID: 30227331 DOI: 10.1016/j.biopha.2018.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023] Open
Abstract
Bergenia ciliata (Haw) Sternb. possess immunomodulatory, anti-inflammatory, antioxidant, anti-urolithiatic, wound healing, anti-malarial, anti-diabetic and anti-cancer properties. Moreover, the methanolic extracts of the rhizomes of the plant were found to demonstrate beneficial neuroprotective effects in the intracerebroventricular streptozotocin-induced model in rats. Thus, the present study was undertaken to further explore the neuroprotective potential of the aqueous (BA) and methanolic extracts (BM) of B. ciliata through various in-vitro and in-vivo studies. Both the extracts at all tested concentrations i.e. 50-50,000 ng/mL did not cause any significant reduction of cell viability of SH-SY5Y cells when tested for 48 h when assessed through MTT and resazurin metabolism- based cell viability assays. The pre-treatment with the extracts could confer significant (p < 0.001) and dose-dependent protective effects against NMDA induced injury in SH-SY5Y cells. BM [IC50: 5.7 and 5.19 μg/mL for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) respectively] led to more potent inhibition of both the enzymes as compared to BA (IC50: 227.12 and 23.25 μg/mL for AChE and BuChE respectively). BM also proved to be a 1.85-fold better scavenger of the DPPH free radicals as compared to BA. Thus, BM was taken further for the evaluation of the beneficial effects of 14-day pre-treatment in rats in the scopolamine (2 mg/kg, i.p.) induced amnesia model at 125, 250 and 500 mg/kg, p.o. BM pre-treatment at 250 and 500 mg/kg could significantly ameliorate the cognitive impairment (p < 0.001), inhibit AChE (p < 0.001) and BuChE (p < 0.05) activity, restore GSH levels (p < 0.05) in serum and brain homogenates and recover the morphology of hippocampal neurons back to normal. Moreover, the BM administration at 500 mg/kg also showed beneficial effects through the significant (p < 0.05) reduction of Aβ1-42, phosphorylated tau (p-tau) and GSK-3β immunoreactivity in the brain homogenates of the intracerebroventricularly streptozotocin (ICV STZ) injected rats as observed from the results of the ELISA assays. The outcomes of the study unveiled that BM exerts its beneficial effects through prevention of NMDA induced excitotoxic cell death, dual cholinesterase inhibition, antioxidant activity coupled with the reduction of the immunoreactivity for the Aβ1-42, p-tau and GSK-3β indicating its potential to be screened further for various other models to determine the exact mechanism of action.
Collapse
Affiliation(s)
- Priyal Barai
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Nisith Raval
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India
| | - Sanjeev Acharya
- SSR College of Pharmacy, Sayli, Silvassa, 306230, U. T. of D&NH, India
| | - Niyati Acharya
- Institute of Pharmacy, Nirma University, S. G. Highway, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
34
|
Barai P, Raval N, Acharya S, Acharya N. Bergenia ciliata ameliorates streptozotocin-induced spatial memory deficits through dual cholinesterase inhibition and attenuation of oxidative stress in rats. Biomed Pharmacother 2018; 102:966-980. [DOI: 10.1016/j.biopha.2018.03.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 03/13/2018] [Accepted: 03/19/2018] [Indexed: 12/29/2022] Open
|
35
|
Stroobants S, Wolf H, Callaerts-Vegh Z, Dierks T, Lübke T, D'Hooge R. Sensorimotor and Neurocognitive Dysfunctions Parallel Early Telencephalic Neuropathology in Fucosidosis Mice. Front Behav Neurosci 2018; 12:69. [PMID: 29706874 PMCID: PMC5906539 DOI: 10.3389/fnbeh.2018.00069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/27/2018] [Indexed: 11/13/2022] Open
Abstract
Fucosidosis is a lysosomal storage disorder (LSD) caused by lysosomal α-L-fucosidase deficiency. Insufficient α-L-fucosidase activity triggers accumulation of undegraded, fucosylated glycoproteins and glycolipids in various tissues. The human phenotype is heterogeneous, but progressive motor and cognitive impairments represent the most characteristic symptoms. Recently, Fuca1-deficient mice were generated by gene targeting techniques, constituting a novel animal model for human fucosidosis. These mice display widespread LSD pathology, accumulation of secondary storage material and neuroinflammation throughout the brain, as well as progressive loss of Purkinje cells. Fuca1-deficient mice and control littermates were subjected to a battery of tests detailing different aspects of motor, emotional and cognitive function. At an early stage of disease, we observed reduced exploratory activity, sensorimotor disintegration as well as impaired spatial learning and fear memory. These early markers of neurological deterioration were related to the respective stage of neuropathology using molecular genetic and immunochemical procedures. Increased expression of the lysosomal marker Lamp1 and neuroinflammation markers was observed throughout the brain, but appeared more prominent in cerebral areas in comparison to cerebellum of Fuca1-deficient mice. This is consistent with impaired behaviors putatively related to early disruptions of motor and cognitive circuits particularly involving cerebral cortex, basal ganglia, and hippocampus. Thus, Fuca1-deficient mice represent a practical and promising fucosidosis model, which can be utilized for pathogenetic and therapeutic studies.
Collapse
Affiliation(s)
- Stijn Stroobants
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,mINT Behavioral Phenotyping Facility, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Heike Wolf
- Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Zsuzsanna Callaerts-Vegh
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,mINT Behavioral Phenotyping Facility, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| | - Thomas Dierks
- Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Torben Lübke
- Biochemistry I, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium.,mINT Behavioral Phenotyping Facility, Faculty of Psychology and Educational Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Zhang W, Liu J, Feng J, Jia M, Zhang G, Wen X. Downregulation of 5-hydroxytryptamine 7 receptor in the medial prefrontal cortex ameliorates impulsive actions in animal models of schizophrenia. Behav Brain Res 2018; 341:212-223. [PMID: 29278697 DOI: 10.1016/j.bbr.2017.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/01/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
R mRNA in the mPFC was significantly decreased to 5-Hydroxytryptamine7 (5-HT7) receptors in the medial prefrontal cortex (mPFC) play a critical role in complex cognitive impairment in schizophrenia. The mouse model of schizophrenia was established through the neonatal administration of phencyclidine (nPCP). Recombinant adeno-associated virus-mediated gene knockdown was used to investigate the role of mPFC 5-HT7 receptor in the schizophrenia-like symptoms in mice. Under baseline conditions in the 5-choice serial reaction time task (5-CSRTT), nPCP produced a significant attentional impairment that was exacerbated when mice were tested under LITI. Premature and perseverative responding in nPCP mice were both increased, thus suggesting deficits in inhibitory response control. The deficits in attentional performance and premature responding of nPCP mice were improved or fully rescued by 5-HT7 receptor downregulation under heavy perceptual load. Downregulation of the 5-HT7 receptor in the mPFC ameliorated spatial working memory and had no effects on nPCP-induced impairments in recognition memory and MA-induced hyperlocomotion. These results suggest that 5-HT7 receptor is involved in the cognitive outcomes of schizophrenia-like symptoms similar to humans. Downregulation of the 5-HT7 receptor in the mPFC exert complex effects in a mouse model of schizophrenia and may be of benefit in treating schizophrenia-related impulsive actions.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Geriatric-Cardiovascular, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Junhui Liu
- Department of Clinical Laboratory, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Jinteng Feng
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Min Jia
- Department of Psychiatry and Psychology, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, China
| | - Xiaopeng Wen
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, China.
| |
Collapse
|
37
|
Wang M, Bi W, Fan K, Li T, Yan T, Xiao F, He B, Bi K, Jia Y. Ameliorating effect of Alpinia oxyphylla—Schisandra chinensis herb pair on cognitive impairment in a mouse model of Alzheimer’s disease. Biomed Pharmacother 2018; 97:128-135. [DOI: 10.1016/j.biopha.2017.10.088] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/14/2017] [Accepted: 10/18/2017] [Indexed: 12/31/2022] Open
|