1
|
Arboit F, Pereira GC, Fialho MFP, Becker G, Brum EDS, Pillat MM, Bochi GV, Portela LOC, Zanchet EM. Dual Approach to Depression: The Combined Efficacy of Intermittent Hypoxia and Fluoxetine in Modulating Behavioral and Inflammatory Responses. Biomedicines 2024; 12:2116. [PMID: 39335629 PMCID: PMC11430548 DOI: 10.3390/biomedicines12092116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Mental disorders pose a significant public health challenge, affecting millions worldwide. Given the limitations of current therapies, many patients experience inadequate responses and adverse effects. Intermittent hypoxia (IH) has demonstrated anxiolytic, antidepressant, and neuroprotective properties in various protocols. This study investigated the effects of acute IH (13% O2, 1 h), fluoxetine (FLX) and their combination on depression-like behavior, serum corticosterone, and inflammatory cytokine levels induced by acute restraint stress in C57BL/6 female mice. Methods: Behavioral assessments included the tail suspension test, forced swim test, and open field test. Results: The combined IH + FLX treatment exhibited a synergistic effect, reducing immobility time and increasing latency time, respectively, in the tail suspension test (46%, p = 0.0014; 73%, p = 0.0033) and forced swim test (56%, p = 0.0082; 48%, p = 0.0322) compared to the ARS group. Biochemical analysis revealed that individual and combined treatments significantly reduced most inflammatory interleukins by up to 96%. Corticosterone levels were reduced by 30% only in the IH group. Conclusions: These findings highlight the potential of a one-hour IH session, particularly when combined with fluoxetine, to alleviate depressive-like behaviors and exert anti-inflammatory effects, suggesting a promising therapeutic approach for depression.
Collapse
Affiliation(s)
- Francini Arboit
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Gabriele Cheiran Pereira
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Maria Fernanda Pessano Fialho
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Gabriela Becker
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Evelyne da Silva Brum
- Center of Natural and Exact Sciences, Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (M.F.P.F.); (G.B.); (E.d.S.B.)
| | - Micheli Mainardi Pillat
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
| | - Guilherme Vargas Bochi
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| | - Luiz Osório Cruz Portela
- Center of Physical Education and Sports, Federal University of Santa Maria, Santa Maria 97105-900, Brazil;
| | - Eliane Maria Zanchet
- Center of Health Sciences, Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil; (F.A.); (G.C.P.); (M.M.P.); (G.V.B.)
- Center of Health Sciences, Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria 97105-900, Brazil
| |
Collapse
|
2
|
Skripkina DV, Abramova AY, Shoibonov BB, Alekseeva IV, Nikenina EV, Pertsov SS. Level of Cytokines and C3 Complement in the Blood of Rats under Conditions of Chronic Unpredictable Stress of Different Durations. Bull Exp Biol Med 2024; 177:297-300. [PMID: 39126541 DOI: 10.1007/s10517-024-06177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 08/12/2024]
Abstract
The parameters of the cytokine profile and functional activity of the complement system in the blood of rats were studied during different time periods of chronic unpredictable mild stress using a model of sequentially alternating low-intensity stress effects for 1, 2, 3, and 4 weeks. In the dynamics of observation, a general tendency towards multidirectional fluctuations in the concentration of cytokines was revealed: an increase in IL-10, but a decrease in IL-4 in comparison with the control. Statistically significant changes in the level of IL-10 were noted after 2, 3, and 4 weeks, IL-4 - after 2 and 4 weeks of stress loads. The percentage of lysis of the C3 component in rats gradually increased by the 2nd week of chronic stress, but then decreased and practically did not differ from the control values (intact animals) by the end of the study. These results illustrate the specificity of changes in the indicators of the C component of the complement system and the cytokine profile of the blood reflecting activity of the cellular and humoral components of the immune response in rats exposed to repeated stress factors of different origins and duration.
Collapse
Affiliation(s)
- D V Skripkina
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia.
| | - A Yu Abramova
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - B B Shoibonov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - I V Alekseeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - E V Nikenina
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| | - S S Pertsov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, P. K. Anokhin Research Institute of Normal Physiology, Moscow, Russia
| |
Collapse
|
3
|
Deng Q, Parker E, Wu C, Zhu L, Liu TCY, Duan R, Yang L. Repurposing Ketamine in the Therapy of Depression and Depression-Related Disorders: Recent Advances and Future Potential. Aging Dis 2024:AD.2024.0239. [PMID: 38916735 DOI: 10.14336/ad.2024.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Depression represents a prevalent and enduring mental disorder of significant concern within the clinical domain. Extensive research indicates that depression is very complex, with many interconnected pathways involved. Most research related to depression focuses on monoamines, neurotrophic factors, the hypothalamic-pituitary-adrenal axis, tryptophan metabolism, energy metabolism, mitochondrial function, the gut-brain axis, glial cell-mediated inflammation, myelination, homeostasis, and brain neural networks. However, recently, Ketamine, an ionotropic N-methyl-D-aspartate (NMDA) receptor antagonist, has been discovered to have rapid antidepressant effects in patients, leading to novel and successful treatment approaches for mood disorders. This review aims to summarize the latest findings and insights into various signaling pathways and systems observed in depression patients and animal models, providing a more comprehensive view of the neurobiology of anxious-depressive-like behavior. Specifically, it highlights the key mechanisms of ketamine as a rapid-acting antidepressant, aiming to enhance the treatment of neuropsychiatric disorders. Moreover, we discuss the potential of ketamine as a prophylactic or therapeutic intervention for stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Qianting Deng
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chongyun Wu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Ling Zhu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Rui Duan
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Schwartzer JJ, Church JS, Russo JN, Ragoonaden S. Offspring behavioral outcomes following maternal allergic asthma in the IL-4-deficient mouse. J Neuroimmunol 2024; 390:578341. [PMID: 38613873 PMCID: PMC11088503 DOI: 10.1016/j.jneuroim.2024.578341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Maternal allergic asthma (MAA) during pregnancy has been associated with increased risk of neurodevelopmental disorders in humans, and rodent studies have demonstrated that inducing a T helper-2-mediated allergic response during pregnancy leads to an offspring behavioral phenotype characterized by decreased social interaction and increased stereotypies. The interleukin (IL)-4 cytokine is hypothesized to mediate the neurobehavioral impact of MAA on offspring. Utilizing IL-4 knockout mice, this study assessed whether MAA without IL-4 signaling would still impart behavioral deficits. C57 and IL-4 knockout female mice were sensitized to ovalbumin, exposed to repeated MAA inductions, and their offspring performed social, cognitive, and motor tasks. Only C57 offspring of MAA dams displayed social and cognitive deficits, while IL-4 knockout mice showed altered motor activity compared with C57 mice. These findings highlight a key role for IL-4 signaling in MAA-induced behavioral deficits and more broadly in normal brain development.
Collapse
Affiliation(s)
- Jared J Schwartzer
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA.
| | - Jamie S Church
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Jenna N Russo
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Shanthini Ragoonaden
- Program in Neuroscience and Behavior, Department of Psychology and Education, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| |
Collapse
|
5
|
Bai Y, Cai Y, Chang D, Li D, Huo X, Zhu T. Immunotherapy for depression: Recent insights and future targets. Pharmacol Ther 2024; 257:108624. [PMID: 38442780 DOI: 10.1016/j.pharmthera.2024.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/07/2024]
Abstract
Depression stands as a prominent contributor to global disability, entailing an elevated risk of suicide. Substantial evidence supports the notion that immune dysregulation may play a role in the development of depression and impede responses to antidepressant treatments. Immune dysregulation may cause depression in susceptible individuals through raising inflammatory responses. Differences in immune cell types and the release of pro-inflammatory mediators are observed in the blood and cerebrospinal fluid of patients with major depressive disorder, which is associated with neuroimmune dysfunction. Therefore, the interaction of peripheral and central immune targets in depression needs to be understood. Urgent attention is required for the development of innovative therapeutics directed at modulating immune responses for the treatment of depression. This review delineates the immune mechanisms involved in the pathogenesis of depression, assesses the therapeutic potential of immune system targeting for depression treatment, and deliberates on the merits and constraints of employing immunotherapy in the management of depression.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Yang Cai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Di Chang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing 210009, China
| | - Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
6
|
Zhang Y, Yang S, Fan A, Du J, Gao N, Pan L, Li T. Decreased IL-4 is the risk factor of depression in patients with Takayasu arteritis. Front Med (Lausanne) 2024; 11:1337206. [PMID: 38426163 PMCID: PMC10902065 DOI: 10.3389/fmed.2024.1337206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Objective Depression is a common complication in Takayasu arteritis (TA). Disorders of the immune system play an important role in both diseases. This study aimed to clarify the feature of cytokines in TA patients with depression. Methods In this cross-sectional study, serum cytokines were tested in 40 TA patients and 11 healthy controls using the Bio-Plex Magpix System (Bio-Rad®). The state of depression was measured by the Zung Self-Rating Depression Scale (SDS) in TA patients. Logistic regression analysis was performed to find the risk factors of depression in patients with TA. Results TA patients with depression had higher ESR, hsCRP, NIH, and ITAS.A than patients without depression (16.00 [10.00, 58.50]mm/H vs. 7.50 [4.50, 17.75]mm/H, p = 0.013; 7.60 [2.32, 46.52]mg/L vs. 0.71 [0.32, 4.37]mg/L, p = 0.001; 2.00 [2.00, 3.00] vs. 1.00 [0.00, 2.00], p = 0.007; 7.00 [4.00, 9.50] vs. 1.50 [0.00, 5.75], p = 0.012, respectively). Additionally, the lower age of onset and levels of IL-4, IL-13, eotaxin, and IP-10 were observed in the depressed group compared with the non-depressed (23.50 [19.25, 32.50]pg./ml vs. 37.00 [23.25, 42.50]pg./ml, p = 0.017; 2.80 [2.17, 3.18]pg./ml vs. 3.51 [3.22, 4.66]pg./ml, p < 0.001; 0.66 [0.60, 1.12]pg./ml vs. 1.04 [0.82, 1.25]pg./ml, p = 0.008; 46.48 [37.06, 61.75]pg./ml vs. 69.14 [59.30, 92.80]pg./ml, p = 0.001; 184.50 [138.23, 257.25]pg./ml vs. 322.32 [241.98, 412.60]pg./ml, p = 0.005, respectively). The lower level of IL-4 and age of onset were the independent risk factors for depression in TA patients (OR [95% CI] 0.124 [0.018, 0.827], p = 0.031; 0.870 [0.765, 0.990], p = 0.035, respectively). Conclusion Our data suggested that lower cytokine levels, especially IL-4, might be involved in the development of TA patients with depression. Clinicians can probably use serum IL-4 level testing as a potential indicator of depression in TA.
Collapse
Affiliation(s)
- Yaxin Zhang
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shiyu Yang
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Anyuyang Fan
- Department of the National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital and the Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Juan Du
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Na Gao
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Lili Pan
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Taotao Li
- Department of Rheumatology and Immunology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Nagasubramanian K, Gupta K. Interactome analysis implicates class II transactivator (CIITA) in depression and other neuroinflammatory disorders. Int J Neurosci 2023:1-19. [PMID: 37933915 DOI: 10.1080/00207454.2023.2279502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE Inappropriate inflammatory responses within the nervous system (neuroinflammation) have been implicated in several neurological conditions. Class II transactivator (CIITA), a principal regulator of the major histocompatibility complex II (MHCII), is known to play essential roles in inflammation. Hence, CIITA and its interactors could be potentially involved in multiple neurological disorders. However, the molecular mechanisms underlying CIITA-mediated neuroinflammation (NI) are yet to be understood. MATERIALS AND METHODS In this regard, we analyzed the potential involvement of CIITA and its interactome in the regulation of neuroinflammation. In the present study, using various computational tools, we aimed (1) to identify NI-related proteins, (2) to filter the critical interactors in the CIITA-NI network, and (3) to analyze the protein-disease interactions and the associated molecular pathways through which CIITA could influence neuroinflammation. RESULTS CIITA was found to interact with P T GS2, GSK3B, and NR3C1 and may influence depressive disorders. Further, the IL4/IL13 pathway was found to be potentially underlying the CIITA-interactomemediated effects on neurological disorders. Moreover, CIITA was found to be connected to genes associated with depressive disorder through IL4, wherein CIITA was found to be potentially involved in depressive disorders through IL-4/IL-13 and hippo pathways. However, the present study is based on the existing data on protein interactomes and could be re-evaluated as newer interactions are discovered. Also, the functional mechanisms of CIITA's roles in neuroinflammation must be evaluated further. CONCLUSION Notwithstanding these limitations, the results presented here, could form a basis for further experimental studies to assess CIITA as a potential therapeutic target in managing depression and other neuroinflammatory disorders.
Collapse
Affiliation(s)
- Kishore Nagasubramanian
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Krishnakant Gupta
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
- NCCS, Pune, India
| |
Collapse
|
8
|
Bravo J, Magalhães C, Andrade EB, Magalhães A, Summavielle T. The impact of psychostimulants on central and peripheral neuro-immune regulation: a scoping review of cytokine profiles and their implications for addiction. Front Cell Neurosci 2023; 17:1109611. [PMID: 37305435 PMCID: PMC10251407 DOI: 10.3389/fncel.2023.1109611] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/06/2023] [Indexed: 06/13/2023] Open
Abstract
It is now well-accepted that psychostimulants act on glial cells causing neuroinflammation and adding to the neurotoxic effects of such substances. Neuroinflammation can be described as an inflammatory response, within the CNS, mediated through several cytokines, reactive oxygen species, chemokines and other inflammatory markers. These inflammatory players, in particular cytokines, play important roles. Several studies have demonstrated that psychostimulants impact on cytokine production and release, both centrally and at the peripheral level. Nevertheless, the available data is often contradictory. Because understanding how cytokines are modulated by psychoactive substances seems crucial to perspective successful therapeutic interventions, here, we conducted a scoping review of the available literature. We have focused on how different psychostimulants impact on the cytokine profile. Publications were grouped according to the substance addressed (methamphetamine, cocaine, methylphenidate, MDMA or other amphetamines), the type of exposure and period of evaluation (acute, short- or long-term exposure, withdrawal, and reinstatement). Studies were further divided in those addressing central cytokines, circulating (peripheral) levels, or both. Our analysis showed that the classical pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were those more investigated. The majority of studies have reported increased levels of these cytokines in the central nervous system after acute or repeated drug. However, studies investigating cytokine levels during withdrawal or reinstatement have shown higher variability in their findings. Although we have identified fewer studies addressing circulating cytokines in humans, the available data suggest that the results may be more robust in animal models than in patients with problematic drug use. As a major conclusion, an extensive use of arrays for relevant cytokines should be considered to better determine which cytokines, upon the classical ones, may be involved in the progression from episodic use to the development of addiction. A concerted effort is still necessary to address the link between peripheral and central immune players, including from a longitudinal perspective. Until there, the identification of new biomarkers and therapeutic targets to envision personalized immune-based therapeutics will continue to be unlikely.
Collapse
Affiliation(s)
- Joana Bravo
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| | - Catarina Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Centro Hospitalar Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Elva B. Andrade
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
- Immunobiology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Magalhães
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
- Instituto Universitário de Ciências da Saúde, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Gandra, Portugal
| | - Teresa Summavielle
- Addiction Biology, i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- Escola Superior de Saúde, Polytechnic of Porto, Porto, Portugal
| |
Collapse
|
9
|
Lu L, Hu X, Jin X. IL-4 as a potential biomarker for differentiating major depressive disorder from bipolar depression. Medicine (Baltimore) 2023; 102:e33439. [PMID: 37058046 PMCID: PMC10101271 DOI: 10.1097/md.0000000000033439] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 04/15/2023] Open
Abstract
We aimed to investigate the differential diagnosis of depressive episodes in patients with major depressive disorder (MDD) and bipolar disorder (BD) using peripheral blood cytokine expression levels. The levels of interleukin (IL)-2, IL-6, IL-10, IL-17, IL4, and IL-12; interferon (IFN)-γ; and tumor necrosis factor (TNF)-α were measured in patients with MDD and BD presenting acute episodes in an inpatient psychiatric setting. The expression levels of IL-6, IL-10, IL-17, and IFN-γ in the MDD and BD groups were higher than those in the control group (P < .05), but there was no significant difference between the patient groups and control group. Only the expression levels of TNF-α and IL-4 were higher in both groups than in the control group, and the BD group had higher levels than the MDD group (P < .05). The expression levels of IL-17, IFN-γ, IL-10, and IL-4 were significantly higher in BD-related manic episodes than in BD-related depressive episodes (P < .05). IL-6, IFN-γ, TNF-α, IL-10, and IL-4 levels were higher in BD-related depressive episodes than in MDD-related depressive episodes (P < .05). The receiver operating characteristic curve test for MDD and BD and the area under the curve for IL-4 revealed good clinical predictability. Patients with MDD and BD exhibited different cytokine profiles when experiencing acute episodes; patients with BD exhibited a more severe immune-inflammatory response system-compensatory immunoregulatory response system (CIRS) imbalance. IL-4 was found to have diagnostic value in differentiating between active depressive episodes in MDD and BD.
Collapse
Affiliation(s)
- Lingna Lu
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Xiwen Hu
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xin Jin
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
10
|
Smaniotto TÂ, Casaril AM, de Andrade Lourenço D, Sousa FS, Seixas FK, Collares T, Woloski R, da Silva Pinto L, Alves D, Savegnago L. Intranasal administration of interleukin-4 ameliorates depression-like behavior and biochemical alterations in mouse submitted to the chronic unpredictable mild stress: modulation of neuroinflammation and oxidative stress. Psychopharmacology (Berl) 2023; 240:935-950. [PMID: 36856802 DOI: 10.1007/s00213-023-06336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023]
Abstract
Physical and psychological stress modulates the hypothalamic pituitary adrenal (HPA) axis, and the redox and inflammatory systems. Impairments in these systems have been extensively reported in major depression (MD) patients. Therefore, our study aimed to investigate the effects of the intranasal administration of interleukin-4 (IL-4) in mice with depressive-like behavior induced by chronic unpredictable mild stress (CUMS) for 28 days. On the 28th day, mice received IL-4 intranasally (1 ng/mouse) or vehicle (sterile saline), and after 30 min, they were submitted to behavioral tests or euthanasia for blood collection and removal of the adrenal glands, axillary lymph nodes, spleen, thymus, prefrontal cortices (PFC), and hippocampi (HC). A single administration of IL-4 reversed CUMS-induced depression-like behavior in the tail suspension test and splash test, without evoking locomotor changes. IL-4 administration reduced the plasma levels of corticosterone and the increased weight of suprarenal glands in stressed mice. Moreover, IL-4 restored the expression of nuclear factor erythroid 2-related factor 2 (NRF2), nuclear factor kappa B (NF-kB), interleukin 1 beta (IL-1β), IL-4, brain derived neurotrophic factor (BDNF), and indoleamine 2,3-dioxygenase (IDO) in the PFC and HC and modulated oxidative stress markers in these brain structures in stressed mice. Our results showed for the first time the antidepressant-like effect of IL-4 through the modulation of neuroinflammation and oxidative stress. The potential effect of IL-4 administered intranasally arises as an innovative strategy for MD treatment.
Collapse
Affiliation(s)
- Thiago Ângelo Smaniotto
- Technology Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Angela Maria Casaril
- Technology Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Darling de Andrade Lourenço
- Technology Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Fernanda S Sousa
- Technology Development Center, Division of Biotechnology, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Fabiana K Seixas
- Technology Development Center, Division of Biotechnology, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Tiago Collares
- Technology Development Center, Division of Biotechnology, Cancer Biotechnology Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Rafael Woloski
- Technology Development Center, Division of Biotechnology, Bioinformatics and Proteomics Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Luciano da Silva Pinto
- Technology Development Center, Division of Biotechnology, Bioinformatics and Proteomics Laboratory, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Diego Alves
- Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil
| | - Lucielli Savegnago
- Technology Development Center, Division of Biotechnology, Neurobiotechnology Research Group, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil. .,Center of Chemical, Pharmaceutical and Food Sciences, Laboratory of Clean Organic Synthesis, Federal University of Pelotas, Pelotas, RS, 96010900, Brazil.
| |
Collapse
|
11
|
Harsanyi S, Kupcova I, Danisovic L, Klein M. Selected Biomarkers of Depression: What Are the Effects of Cytokines and Inflammation? Int J Mol Sci 2022; 24:578. [PMID: 36614020 PMCID: PMC9820159 DOI: 10.3390/ijms24010578] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022] Open
Abstract
Depression is one of the leading mental illnesses worldwide and lowers the quality of life of many. According to WHO, about 5% of the worldwide population suffers from depression. Newer studies report a staggering global prevalence of 27.6%, and it is rising. Professionally, depression belonging to affective disorders is a psychiatric illness, and the category of major depressive disorder (MDD) comprises various diagnoses related to persistent and disruptive mood disorders. Due to this fact, it is imperative to find a way to assess depression quantitatively using a specific biomarker or a panel of biomarkers that would be able to reflect the patients' state and the effects of therapy. Cytokines, hormones, oxidative stress markers, and neuropeptides are studied in association with depression. The latest research into inflammatory cytokines shows that their relationship with the etiology of depression is causative. There are stronger cytokine reactions to pathogens and stressors in depression. If combined with other predisposing factors, responses lead to prolonged inflammatory processes, prolonged dysregulation of various axes, stress, pain, mood changes, anxiety, and depression. This review focuses on the most recent data on cytokines as markers of depression concerning their roles in its pathogenesis, their possible use in diagnosis and management, their different levels in bodily fluids, and their similarities in animal studies. However, cytokines are not isolated from the pathophysiologic mechanisms of depression or other psychiatric disorders. Their effects are only a part of the whole pathway.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Ida Kupcova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| |
Collapse
|
12
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
13
|
Beurel E, Medina-Rodriguez EM, Jope RS. Targeting the Adaptive Immune System in Depression: Focus on T Helper 17 Cells. Pharmacol Rev 2022; 74:373-386. [PMID: 35302045 PMCID: PMC8973514 DOI: 10.1124/pharmrev.120.000256] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is a vital need to understand mechanisms contributing to susceptibility to depression to improve treatments for the 11% of Americans who currently suffer from this debilitating disease. The adaptive immune system, comprising T and B cells, has emerged as a potential contributor to depression, as demonstrated in the context of lymphopenic mice. Overall, patients with depression have reduced circulating T and regulatory B cells, "immunosuppressed" T cells, and alterations in the relative abundance of T cell subtypes. T helper (Th) cells have the capacity to differentiate to various lineages depending on the cytokine environment, antigen stimulation, and costimulation. Regulatory T cells are decreased, and the Th1/Th2 ratio and the Th17 cells are increased in patients with depression. Evidence for changes in each Th lineage has been reported to some extent in patients with depression. However, the evidence is strongest for the association of depression with changes in Th17 cells. Th17 cells produce the inflammatory cytokine interleukin (IL)-17A, and the discovery of Th17 cell involvement in depression evolved from the well established link that IL-6, which is required for Th17 cell differentiation, contributes to the onset, and possibly maintenance, of depression. One intriguing action of Th17 cells is their participation in the gut-brain axis to mediate stress responses. Although the mechanisms of action of Th17 cells in depression remain unclear, neutralization of IL-17A by anti-IL-17A antibodies, blocking stress-induced production, or release of gut Th17 cells represent feasible therapeutic approaches and might provide a new avenue to improve depression symptoms. SIGNIFICANCE STATEMENT: Th17 cells appear as a promising therapeutic target for depression, for which efficacious therapeutic options are limited. The use of neutralizing antibodies targeting Th17 cells has provided encouraging results in depressed patients with comorbid autoimmune diseases.
Collapse
Affiliation(s)
- Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| | - Richard S Jope
- Department of Psychiatry and Behavioral Sciences (E.B., E.M.M.-R., R.S.J.) and Department of Biochemistry and Molecular Biology Miller School of Medicine (E.B., R.S.J.), University of Miami, Miami, Florida and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida (E.M.M.-R., R.S.J.)
| |
Collapse
|
14
|
Stress induced microglial activation contributes to depression. Pharmacol Res 2022; 179:106145. [DOI: 10.1016/j.phrs.2022.106145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
|
15
|
Yang B, Ryu JS, Rim C, Shin JU, Kwon MS. Possible role of arginase 1 positive microglia on depressive/anxiety-like behaviors in atopic dermatitis mouse model. Arch Pharm Res 2022; 45:11-28. [DOI: 10.1007/s12272-022-01369-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
|
16
|
Amoroso M, Langgartner D, Lowry CA, Reber SO. Rapidly Growing Mycobacterium Species: The Long and Winding Road from Tuberculosis Vaccines to Potent Stress-Resilience Agents. Int J Mol Sci 2021; 22:ijms222312938. [PMID: 34884743 PMCID: PMC8657684 DOI: 10.3390/ijms222312938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Inflammatory diseases and stressor-related psychiatric disorders, for which inflammation is a risk factor, are increasing in modern Western societies. Recent studies suggest that immunoregulatory approaches are a promising tool in reducing the risk of suffering from such disorders. Specifically, the environmental saprophyte Mycobacterium vaccae National Collection of Type Cultures (NCTC) 11659 has recently gained attention for the prevention and treatment of stress-related psychiatric disorders. However, effective use requires a sophisticated understanding of the effects of M. vaccae NCTC 11659 and related rapidly growing mycobacteria (RGMs) on microbiome–gut–immune–brain interactions. This historical narrative review is intended as a first step in exploring these mechanisms and provides an overview of preclinical and clinical studies on M. vaccae NCTC 11659 and related RGMs. The overall objective of this review article is to increase the comprehension of, and interest in, the mechanisms through which M. vaccae NCTC 11659 and related RGMs promote stress resilience, with the intention of fostering novel clinical strategies for the prevention and treatment of stressor-related disorders.
Collapse
Affiliation(s)
- Mattia Amoroso
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
| | - Christopher A. Lowry
- Department of Integrative Physiology, Center for Neuroscience and Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA;
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), The Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA
- Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA
- Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, 89081 Ulm, Germany; (M.A.); (D.L.)
- Correspondence:
| |
Collapse
|
17
|
Zhang J, Rong P, Zhang L, He H, Zhou T, Fan Y, Mo L, Zhao Q, Han Y, Li S, Wang Y, Yan W, Chen H, You Z. IL4-driven microglia modulate stress resilience through BDNF-dependent neurogenesis. SCIENCE ADVANCES 2021; 7:7/12/eabb9888. [PMID: 33731342 PMCID: PMC7968840 DOI: 10.1126/sciadv.abb9888] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 01/28/2021] [Indexed: 05/15/2023]
Abstract
Adult neurogenesis in the dentate gyrus of the hippocampus is regulated by specific microglia groups and functionally implicated in behavioral responses to stress. However, the role of microglia in hippocampal neurogenesis and stress resilience remains unclear. We identified interleukin 4 (IL4)-driven microglia characterized by high expression of Arg1, which is critical in maintaining hippocampal neurogenesis and stress resistance. Decreasing Arg1+ microglia in the hippocampus by knocking down the microglial IL4R suppressed hippocampal neurogenesis and enhanced stress vulnerability. Increasing Arg1+ microglia in the hippocampus by enhancing IL4 signaling restored hippocampal neurogenesis and the resilience to stress-induced depression. Brain-derived neurotrophic factor (BDNF) was found necessary for the proneurogenesis effects of IL4-driven microglia. Together, our findings suggest that IL4-driven microglia in the hippocampus trigger BDNF-dependent neurogenesis responding to chronic stress, helping protect against depressive-like symptoms. These findings identify the modulation of a specific microglial phenotype as a treatment strategy for mood disorders.
Collapse
Affiliation(s)
- Jinqiang Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijuan Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hui He
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Yonghua Fan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Li Mo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qiuying Zhao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yue Han
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wan Yan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huafu Chen
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Zili You
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
18
|
Sun CY, Li JR, Wang YY, Lin SY, Ou YC, Lin CJ, Wang JD, Liao SL, Chen CJ. Indoxyl sulfate caused behavioral abnormality and neurodegeneration in mice with unilateral nephrectomy. Aging (Albany NY) 2021; 13:6681-6701. [PMID: 33621199 PMCID: PMC7993681 DOI: 10.18632/aging.202523] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022]
Abstract
Chronic Kidney Disease (CKD) and neurodegenerative diseases are aging-related diseases. CKD with declined renal function is associated with an elevation of circulating indoxyl sulfate, a metabolite synthesized by gut microbes. We explored the roles of gut microbial metabolites in linking with Central Nervous System (CNS) diseases by administrating indoxyl sulfate intraperitoneally to male C57BL/6 mice with unilateral nephrectomy. Upon exposure, the accumulation of indoxyl sulfate was noted in the blood, prefrontal cortical tissues, and cerebrospinal fluid. Mice showed behavioral signs of mood disorders and neurodegeneration such as anxiety, depression, and cognitive impairment. Those behavioral changes were accompanied by disturbed neuronal survival, neural stem cell activity, expression of Brain-Derived Neurotrophic Factor, serotonin, corticosterone, and Repressor Element-1 Silencing Transcription Factor, and post-receptor intracellular signaling, as well as upregulated oxidative stress and neuroinflammation. Uremic toxin adsorbent AST-120 improved the above mentioned changes. Intriguingly, intracerebroventricular indoxyl sulfate administration only caused limited alterations in the normal mice and the alterations were reversed by aryl hydrocarbon receptor antagonism. The findings suggest pathogenic roles of indoxyl sulfate in the development of CNS diseases, and highlight gut microbiota as alternative targets for intervention with the aim of slowing down the progression of CKD and decreasing CNS complications.
Collapse
Affiliation(s)
- Chiao-Yin Sun
- Department of Nephrology, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Kidney Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Jian-Ri Li
- Division of Urology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Ya-Yu Wang
- Department of Family Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Institute of Clinical Medicine, National Yang Ming University, Taipei 112, Taiwan
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang Ming University, Taipei 112, Taiwan
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Yen-Chuan Ou
- Department of Urology, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Cheng-Jui Lin
- Division of Nephrology, Department of Internal Medicine, Mackay Memorial Hospital, Taipei 104, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei 251, Taiwan
| | - Jiaan-Der Wang
- Children’s Medical Center, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Industrial Engineering and Enterprise Information, Tunghai University, Taichung 407, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
- Ph.D. Program in Translational Medicine, College of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
19
|
Achour M, Ben Salem I, Ferdousi F, Nouira M, Ben Fredj M, Mtiraoui A, Isoda H, Saguem S. Rosemary Tea Consumption Alters Peripheral Anxiety and Depression Biomarkers: A Pilot Study in Limited Healthy Volunteers. J Am Coll Nutr 2021; 41:240-249. [PMID: 33565922 DOI: 10.1080/07315724.2021.1873871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: Rosmarinus officinalis L.is traditionally used as an infusion in the treatment of several diseases and in particular against neuropsychiatric disorders, such as anxiety and depression. It was established that rosemary extracts show an antidepressant effect on animal models. However, to the best of our knowledge, there is no scientific data that highlights the therapeutic effects of rosemary intake on human mental health.Aim:This study investigated whether rosemary tea consumption affects the plasma levels of anxiety and depression biomarkers in healthy volunteers.Methods:Twenty-two healthy volunteers aged between 20 and 50 years old consumed rosemary tea prepared from 5 g of dried rosemary in 100 mL boiled water once a day for 10 days. Plasma concentrations of Brain-Derived Neurotrophic Factor (BDNF), Interleukine-6 (IL-6), Interleukine-4 (IL-4), Tumor Necrosis Factor- alpha (TNF-α), Interferon-gamma (IFNϒ), and cortisol were measured by enzyme-linked immunosorbent assay using commercial ELISA kits (R&D systems) before rosemary consumption and at the end of the experiment.Results:Rosemary tea consumption significantly increased the concentration of BDNF([BDNF]D0 = 22363.86 ± 12987.66 pg/mL, [BDNF]D10 = 41803.64 ± 28109.19, p = 0.006) and TNF-α([TNF-α] D0 = 39.49 ± 14.44 pg/mL, [TNF-α] D10 = 56.24 ± 39.01, p = 0.016). However, a slight variation that was statistically non-significant in INFϒ, cortisol, IL-4, IL-6 levels and in the ratio IL-4/INFϒ was observed (p > 0.05).Conclusion:Our findings highlight the promising anxiolytic and/or antidepressant effects of rosemary tea consumption in healthy volunteers since it increases the level of the most reliable depression biomarker BDNF. However, more powerful studies with larger sample size, carefully-chosen target population and, an extended intervention period are required.
Collapse
Affiliation(s)
- Mariem Achour
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia.,Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Intidhar Ben Salem
- Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia.,Faculty of Dental Medicine, Laboratory for Research on Biologically Compatible Compounds, Monastir, Tunisia
| | - Farhana Ferdousi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Manel Nouira
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Maha Ben Fredj
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| | - Ali Mtiraoui
- Research laboratory 'LR12ES03', Department of Family and Community Medicine, Faculty of Medicine Ibn El Jazzar of Sousse, University of Sousse, Sousse, Tunisia
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Saad Saguem
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse, Tunisia
| |
Collapse
|
20
|
Reddaway J, Brydges NM. Enduring neuroimmunological consequences of developmental experiences: From vulnerability to resilience. Mol Cell Neurosci 2020; 109:103567. [PMID: 33068720 PMCID: PMC7556274 DOI: 10.1016/j.mcn.2020.103567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is crucial for normal neuronal development and function (neuroimmune system). Both immune and neuronal systems undergo significant postnatal development and are sensitive to developmental programming by environmental experiences. Negative experiences from infection to psychological stress at a range of different time points (in utero to adolescence) can permanently alter the function of the neuroimmune system: given its prominent role in normal brain development and function this dysregulation may increase vulnerability to psychiatric illness. In contrast, positive experiences such as exercise and environmental enrichment are protective and can promote resilience, even restoring the detrimental effects of negative experiences on the neuroimmune system. This suggests the neuroimmune system is a viable therapeutic target for treatment and prevention of psychiatric illnesses, especially those related to stress. In this review we will summarise the main cells, molecules and functions of the immune system in general and with specific reference to central nervous system development and function. We will then discuss the effects of negative and positive environmental experiences, especially during development, in programming the long-term functioning of the neuroimmune system. Finally, we will review the sparse but growing literature on sex differences in neuroimmune development and response to environmental experiences. The immune system is essential for development and function of the central nervous system (neuroimmune system) Environmental experiences can permanently alter neuroimmune function and associated brain development Altered neuroimmune function following negative developmental experiences may play a role in psychiatric illnesses Positive experiences can promote resilience and rescue the effects of negative experiences on the neuroimmune system The neuroimmune system is therefore a viable therapeutic target for preventing and treating psychiatric illnesses
Collapse
Affiliation(s)
- Jack Reddaway
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
21
|
Levchenko A, Vyalova NM, Nurgaliev T, Pozhidaev IV, Simutkin GG, Bokhan NA, Ivanova SA. NRG1, PIP4K2A, and HTR2C as Potential Candidate Biomarker Genes for Several Clinical Subphenotypes of Depression and Bipolar Disorder. Front Genet 2020; 11:936. [PMID: 33193575 PMCID: PMC7478333 DOI: 10.3389/fgene.2020.00936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
GSK3B, BDNF, NGF, NRG1, HTR2C, and PIP4K2A play important roles in molecular mechanisms of psychiatric disorders. GSK3B occupies a central position in these molecular mechanisms and is also modulated by psychotropic drugs. BDNF regulates a number of key aspects in neurodevelopment and synaptic plasticity. NGF exerts a trophic action and is implicated in cerebral alterations associated with psychiatric disorders. NRG1 is active in neural development, synaptic plasticity, and neurotransmission. HTR2C is another important psychopharmacological target. PIP4K2A catalyzes the phosphorylation of PI5P to form PIP2, the latter being implicated in various aspects of neuronal signal transduction. In the present study, the six genes were sequenced in a cohort of 19 patients with bipolar affective disorder, 41 patients with recurrent depressive disorder, and 55 patients with depressive episode. The study revealed a number of genetic variants associated with antidepressant treatment response, time to recurrence of episodes, and depression severity. Namely, alleles of rs35641374 and rs10508649 (NRG1 and PIP4K2A) may be prognostic biomarkers of time to recurrence of depressive and manic/mixed episodes among patients with bipolar affective disorder. Alleles of NC_000008.11:g.32614509_32614510del, rs61731109, and rs10508649 (also NRG1 and PIP4K2A) seem to be predictive biomarkers of response to pharmacological antidepressant treatment on the 28th day assessed by the HDRS-17 or CGI-I scale. In particular, the allele G of rs10508649 (PIP4K2A) may increase resistance to antidepressant treatment and be at the same time protective against recurrent manic/mixed episodes. These results support previous data indicating a biological link between resistance to antidepressant treatment and mania. Bioinformatic functional annotation of associated variants revealed possible impact for transcriptional regulation of PIP4K2A. In addition, the allele A of rs2248440 (HTR2C) may be a prognostic biomarker of depression severity. This allele decreases expression of the neighboring immune system gene IL13RA2 in the putamen according to the GTEx portal. The variant rs2248440 is near rs6318 (previously associated with depression and effects of psychotropic drugs) that is an eQTL for the same gene and tissue. Finally, the study points to several protein interactions relevant in the pathogenesis of mood disorders. Functional studies using cellular or animal models are warranted to support these results.
Collapse
Affiliation(s)
- Anastasia Levchenko
- Theodosius Dobzhansky Center for Genome Bioinformatics, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia M Vyalova
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Timur Nurgaliev
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Ivan V Pozhidaev
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - German G Simutkin
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia
| | - Nikolay A Bokhan
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia.,National Research Tomsk State University, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia
| | - Svetlana A Ivanova
- Tomsk National Research Medical Center, Mental Health Research Institute, Russian Academy of Sciences, Tomsk, Russia.,Siberian State Medical University, Tomsk, Russia.,National Research Tomsk Polytechnic University, Tomsk, Russia
| |
Collapse
|
22
|
He Y, Li W, Wang Y, Tian Y, Chen X, Wu Z, Lan T, Li Y, Bai M, Liu J, Cheng K, Xie P. Major depression accompanied with inflammation and multiple cytokines alterations: Evidences from clinical patients to macaca fascicularis and LPS-induced depressive mice model. J Affect Disord 2020; 271:262-271. [PMID: 32479325 DOI: 10.1016/j.jad.2020.03.131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/09/2020] [Accepted: 03/29/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Inflammation progress has been consistently implicated in the pathophysiology of major depressive disorder (MDD). However, the underlying mechanism of inflammation and depressive symptoms still far from being fully elucidated. In addition, studies on emotional disorders could also benefit from model of the non-human primates. To explore the difference of serum multi-cytokines levels among the MDD patients and depressed macaca fascicularis as well as LPS-treated mice, thus may find the reliable potential biomarkers for MDD. METHODS Serum multi-cytokines levels among MDD patients (n = 44) and depressed macaca fascicularis (n = 6) together with controls (n = 22 for human, n = 6 for macaques) were detected by the Bio-Plex cytokines panel. Then five of these serum cytokines in LPS-treated mice were measured via ELISA. Furthermore, these cytokines protein expressions were validated by western blotting in three depression-related regions of LPS-treated mice. RESULTS Here, we found that MDD patients displayed increased concentration of 13 proinflammatory and anti-inflammatory cytokines accompanied with one decreased cytokine in peripheral serum. Meanwhile, the naturally occurring depression (NOD) macaca fascicularis merely exhibited elevated concentration of 4 peripheral cytokines (IL-6, IL-8, MCP-1, VEGF), which were in accordance with the outcomes of MDD patients. Importantly, the serum and brain tissues of LPS-treated mice also emerged similar cytokines alterations. CONCLUSION In summary, our findings strengthen the evidence that cytokines were associated with the depression, and the IL-6 and VEGF may as predictive biomarkers for novel diagnostic as well as therapeutic of depression. The hypothalamus may as a key brain region involve in the inflammatory related depressive-like behaviors.
Collapse
Affiliation(s)
- Yong He
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Wei Li
- Department of Neurology, Army medical Center of PLA, Chongqing 400042, China
| | - Yue Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Institute of Neuroscience, Basic Medical College, Chongqing Medical University, Chongqing 400016, China
| | - Yu Tian
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Xi Chen
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Zhonghao Wu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Tianlan Lan
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, China
| | - Yan Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Mengge Bai
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Laboratory Medical Diagnostics of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jie Liu
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China
| | - Ke Cheng
- Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402460, China; Chongqing Key Laboratory of Neurobiology, Chongqing 400016, China; Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
23
|
Neuron-glia interaction through Serotonin-BDNF-NGFR axis enables regenerative neurogenesis in Alzheimer's model of adult zebrafish brain. PLoS Biol 2020; 18:e3000585. [PMID: 31905199 PMCID: PMC6964913 DOI: 10.1371/journal.pbio.3000585] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/16/2020] [Accepted: 12/12/2019] [Indexed: 11/23/2022] Open
Abstract
It was recently suggested that supplying the brain with new neurons could counteract Alzheimer’s disease (AD). This provocative idea requires further testing in experimental models in which the molecular basis of disease-induced neuronal regeneration could be investigated. We previously found that zebrafish stimulates neural stem cell (NSC) plasticity and neurogenesis in AD and could help to understand the mechanisms to be harnessed for developing new neurons in diseased mammalian brains. Here, by performing single-cell transcriptomics, we found that amyloid toxicity-induced interleukin-4 (IL4) promotes NSC proliferation and neurogenesis by suppressing the tryptophan metabolism and reducing the production of serotonin. NSC proliferation was suppressed by serotonin via down-regulation of brain-derived neurotrophic factor (BDNF)-expression in serotonin-responsive periventricular neurons. BDNF enhances NSC plasticity and neurogenesis via nerve growth factor receptor A (NGFRA)/ nuclear factor 'kappa-light-chain-enhancer' of activated B-cells (NFkB) signaling in zebrafish but not in rodents. Collectively, our results suggest a complex neuron-glia interaction that regulates regenerative neurogenesis after AD conditions in zebrafish. Can regeneration of lost neurons counteract neurodegenerative disease? This study shows that serotonergic neurons alter neural stem cell proliferation and neurogenesis via a complex neuron-glia interaction involving interleukin-4, BDNF and NGF receptor in a zebrafish model of Alzheimer's disease.
Collapse
|
24
|
Jha MK, Cai L, Minhajuddin A, Fatt CC, Furman JL, Gadad BS, Mason BL, Greer TL, Hughes JL, Xiao G, Emslie G, Kennard B, Mayes T, Trivedi MH. Dysfunctional adaptive immune response in adolescents and young adults with suicide behavior. Psychoneuroendocrinology 2020; 111:104487. [PMID: 31756521 DOI: 10.1016/j.psyneuen.2019.104487] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Immune system dysfunction has been implicated in the pathophysiology of suicide behavior. Here, we conducted an exploratory analysis of immune profile differences of three groups of adolescents and young adults (ages 10-25 years): healthy controls (n = 39), at risk of major depressive disorder (MDD; at-risk, n = 33), and MDD with recent suicide behavior/ ideation (suicide behavior, n = 37). METHODS Plasma samples were assayed for chemokines and cytokines using Bio-Plex Pro Human Chemokine 40-plex assay. Log-transformed cytokine and chemokine levels were compared after controlling for age, gender, body mass index, race, ethnicity, and C-reactive protein (CRP) levels. In post-hoc analyses to understand the effect of dysregulated immune markers identified in this exploratory analysis, their association with autoantibodies was tested in an unrelated sample (n = 166). RESULTS Only levels of interleukin 4 (IL-4) differed significantly among the three groups [false discovery rate (FDR) adjusted p = 0.0007]. Participants with suicide behavior had lower IL-4 [median = 16.8 pg/ml, interquartile range (IQR) = 7.9] levels than healthy controls (median = 29.1 pg/ml, IQR = 16.1, effect size [ES] = 1.30) and those at-risk (median = 24.4 pg/ml, IQR = 16.3, ES = 1.03). IL-4 levels were negatively correlated with depression severity (r= -0.38, p = 0.024). In an unrelated sample of outpatients with MDD, levels of IL-4 were negatively correlated (all FDR p < 0.05) with several autoantibodies [54/117 in total and 12/18 against innate immune markers]. CONCLUSIONS Adolescent and young adult patients with recent suicide behavior exhibit lower IL-4 levels. One biological consequence of reduced IL-4 levels may be increased risk of autoimmunity.
Collapse
Affiliation(s)
- Manish K Jha
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ling Cai
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, United States
| | - Abu Minhajuddin
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Cherise Chin Fatt
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jennifer L Furman
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Bharathi S Gadad
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States; Department of Psychiatry, Texas Tech University Health Science Center, El Paso, Texas, United States
| | - Brittany L Mason
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Tracy L Greer
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Jennifer L Hughes
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, United States
| | - Graham Emslie
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
| | - Betsy Kennard
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States
| | - Taryn Mayes
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States
| | - Madhukar H Trivedi
- Center for Depression Research and Clinical Care, UT Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
25
|
Zhang G, Xu S, Yuan Z, Shen L. Weighted Gene Coexpression Network Analysis Identifies Specific Modules and Hub Genes Related to Major Depression. Neuropsychiatr Dis Treat 2020; 16:703-713. [PMID: 32214815 PMCID: PMC7079285 DOI: 10.2147/ndt.s244452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Despite advances in characterizing the neurobiology of emotional disorders, there is still a significant lack of scientific understanding of the pathophysiological mechanisms governing major depressive disorder (MDD). This study attempted to elucidate the molecular circuitry of MDD and to identify more potential genes associated with the pathogenesis of the disease. PATIENTS AND METHODS Microarray data from the GSE98793 dataset were downloaded from the NCBI Gene Expression Omnibus (GEO) database, including 128 patients with MDD and 64 healthy controls. Weighted gene coexpression network analysis (WGCNA) was performed to find modules of differentially expressed genes (DEGs) with high correlations followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses to obtain further biological insight into the top three key modules. The protein-protein interaction (PPI) network, the modules from the PPI network, and the gene annotation enrichment of modules were analyzed, as well. RESULTS We filtered 3276 genes that were considered significant DEGs for further WGCNA analysis. By performing WGCNA, we found that the turquoise, blue and brown functional modules were all strongly correlated with MDD development, including immune response, neutrophil degranulation, ribosome biogenesis, T cell activation, glycosaminoglycan biosynthetic process, and protein serine/threonine kinase activator activity. Hub genes were identified in the key functional modules that might have a role in the progression of MDD. Functional annotation showed that these modules primarily enriched such KEGG pathways as the TNF signaling pathway, T cell receptor signaling pathway, primary immunodeficiency, Th1, Th2 and Th17 cell differentiation, autophagy and RNA degradation and oxidative phosphorylation. These results suggest that these genes are closely related to autophagy and cellular immune function. CONCLUSION The results of this study may help to elucidate the pathophysiology of MDD development at the molecular level and explore the potential molecular mechanisms for new interventional strategies.
Collapse
Affiliation(s)
- Guangyin Zhang
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Shixin Xu
- Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome; Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Zhuo Yuan
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| | - Li Shen
- Department of Psychosomatic Medicine, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
| |
Collapse
|
26
|
Brydges NM, Reddaway J. Neuroimmunological effects of early life experiences. Brain Neurosci Adv 2020; 4:2398212820953706. [PMID: 33015371 PMCID: PMC7513403 DOI: 10.1177/2398212820953706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Exposure to adverse experiences during development increases the risk of psychiatric illness later in life. Growing evidence suggests a role for the neuroimmune system in this relationship. There is now substantial evidence that the immune system is critical for normal brain development and behaviour, and responds to environmental perturbations experienced early in life. Severe or chronic stress results in dysregulated neuroimmune function, concomitant with abnormal brain morphology and function. Positive experiences including environmental enrichment and exercise exert the opposite effect, promoting normal brain and immune function even in the face of early life stress. The neuroimmune system may therefore provide a viable target for prevention and treatment of psychiatric illness. This review will briefly summarise the neuroimmune system in brain development and function, and review the effects of stress and positive environmental experiences during development on neuroimmune function. There are also significant sex differences in how the neuroimmune system responds to environmental experiences early in life, which we will briefly review.
Collapse
Affiliation(s)
- Nichola M. Brydges
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| | - Jack Reddaway
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
27
|
Frank MG, Fonken LK, Dolzani SD, Annis JL, Siebler PH, Schmidt D, Watkins LR, Maier SF, Lowry CA. Immunization with Mycobacterium vaccae induces an anti-inflammatory milieu in the CNS: Attenuation of stress-induced microglial priming, alarmins and anxiety-like behavior. Brain Behav Immun 2018; 73:352-363. [PMID: 29807129 PMCID: PMC6129419 DOI: 10.1016/j.bbi.2018.05.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 05/17/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Exposure to stressors induces anxiety- and depressive-like behaviors, which are mediated, in part, by neuroinflammatory processes. Recent findings demonstrate that treatment with the immunoregulatory and anti-inflammatory bacterium, Mycobacterium vaccae (M. vaccae), attenuates stress-induced exaggeration of peripheral inflammation and stress-induced anxiety-like behavioral responses. However, the effects of M. vaccae on neuroimmune processes have largely been unexplored. In the present study, we examined the effect of M. vaccae NCTC11659 on neuroimmune regulation, stress-induced neuroinflammatory processes and anxiety-like behavior. Adult male rats were immunized 3× with a heat-killed preparation of M. vaccae (0.1 mg, s.c.) or vehicle. M. vaccae induced an anti-inflammatory immunophenotype in hippocampus (increased interleukin (Il)4, Cd200r1, and Mrc1 mRNA expression) and increased IL4 protein 8 d after the last immunization. Central administration of recombinant IL4 recapitulated the effects of M. vaccae on Cd200r1 and Mrc1 mRNA expression. M. vaccae reduced basal levels of genes (Nlrp3 and Nfkbia) involved in microglial priming; thus, we explored the effects of M. vaccae on stress-induced hippocampal microglial priming and HMGB1, which mediates priming. We found that M. vaccae blocked stress-induced decreases in Cd200r1, increases in the alarmin HMGB1, and priming of the microglial response to immune challenge. Furthermore, M. vaccae prevented stress-induced increases in anxiety-like behavior. The present findings suggest that M. vaccae enhances immunomodulation in the CNS and mitigates the neuroinflammatory and behavioral effects of stress, which may underpin its capacity to impart a stress resilient phenotype.
Collapse
Affiliation(s)
- Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA.
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Samuel D Dolzani
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jessica L Annis
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Philip H Siebler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Dominic Schmidt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Linda R Watkins
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Christopher A Lowry
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine & Rehabilitation, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Denver Veterans Affairs Medical Center (VAMC), Denver, CO 80220, USA; Military and Veteran Microbiome Consortium for Research and Education (MVM-CoRE), Denver, CO 80220, USA
| |
Collapse
|
28
|
ITGB4 deficiency in bronchial epithelial cells directs airway inflammation and bipolar disorder-related behavior. J Neuroinflammation 2018; 15:246. [PMID: 30170608 PMCID: PMC6117971 DOI: 10.1186/s12974-018-1283-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/16/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Chronic persistent airway inflammation has been associated with the comorbidity of asthma and bipolar disorder (BD). However, the direct relevance between airway inflammation and BD-like psychiatric comorbidity is almost unknown. Integrin β4 (ITGB4) is downregulated on the airway epithelial of asthma patients, which might play a critical role in the parthenogenesis of airway inflammation. So this study aimed to examine the role of ITGB4 deficiency in mediating airway inflammation and further leading to the BD-like behaviors. METHODS ITGB4-/- mice were generated by mating ITGB4fl/fl mice with CCSP-rtTAtg/-/TetO-Cretg/tg mice. Mania-like behavior tests were performed, including hyperlocomotion, D-amphetamine-induced hyperactivity, open-field test, and elevated plus-maze test. Depressive-like behavior tests were carried out, including sucrose preference, forced swimming, and learned helplessness. Inflammatory cells (Th17, Th1, Th2) in the lung were examined by flow cytometry. Futhermore, inflammatory cytokines (IL-4, IL-13) in bronchoalveolar lavage fluid and sera were detected by ELISA. Protein expression of the IL-4Rα on choroid plexus, microglial marker (IBA1), and synapse-associated proteins (synaptophysin, SYP) in the hippocampus and prefrontal cortex were examined by western blotting. Additionally, proinflammatory cytokines (IL-1β, IL-6, and TNF-α) in the hippocampus and prefrontal cortex were detected by immunohistochemistry. Inflammatory disorder in the lung, hippocampus, and prefrontal cortex was tested by hematoxylin and eosin (H&E) staining. And cell apoptosis in the hippocampus and prefrontal cortex was measured by TUNEL test. RESULTS ITGB4-/- mice exhibited mania-like behavior, including hyperlocomotion, D-amphetamine-induced hyperactivity, and reduced anxiety-like behavior. While under stressful conditions, ITGB4-/- mice manifested depressive-like behavior, including anhedonia, behavioral despair, and enhanced learned helplessness. At the same time, ITGB4-/- mice mainly exerted Th2-type inflammation in periphery, like the number and major cytokines IL-4 and IL-13 of Th2-type inflammation. ITGB4-/- mice also showed a significant increase of microglia and pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in the hippocampus and prefrontal cortex. Additionally, neuron damage, increased neuron apoptosis, and the decrease of SYP were found in ITGB4-/- mice. CONCLUSIONS These findings confirmed that airway inflammatory induced by ITGB4 deficiency is the important incentive for the BD-like behavior during asthma pathogenesis. The ITGB4-deficient mice provide a validated animal model for us to study the possible mechanism of BD-like psychiatric comorbidity of asthma patients.
Collapse
|
29
|
Schmidt FM, Sander C, Minkwitz J, Mergl R, Dalton B, Holdt LM, Teupser D, Hegerl U, Himmerich H. Serum Markers of Inflammation Mediate the Positive Association Between Neuroticism and Depression. Front Psychiatry 2018; 9:609. [PMID: 30524320 PMCID: PMC6256194 DOI: 10.3389/fpsyt.2018.00609] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
Background: The personality trait neuroticism has been implicated in a poor response to stress, may relate to increased concentrations of cytokines and the development of depression. Inflammatory mechanisms may also be associated with the onset, severity and symptoms of depression. Both are related to poor antidepressant treatment outcome. Therefore, mediators of inflammation may bridge the relationship between neuroticism and depression. Methods: To disentangle these interrelationships, the associations between neuroticism (according to NEO-PIR-N), depressive symptoms (BDI-II scores) and serum levels of hsCRP, TNF-α, IFN-γ, IL-2, IL-4, IL-5, IL-10, IL-12, IL-13, GM-CSF were investigated in a group of 212 participants, consisting of 37 depressed and 175 non-depressed subjects. A mediation model was used to investigate whether the impact of neuroticism on depressive symptoms may be mediated by cytokines. Results: Regression analyses revealed that IFN-γ, IL-5, and IL-12-levels, but none of the anti-inflammatory cytokines, were associated with the overall neuroticism score and several of the cytokines were related to the different facets of neuroticism. TNF-α, IFN-γ, IL-5, IL-12, and IL-13 were further related to the severity of depressive symptoms, as well as the somatic-affective and the cognitive dimensions of depression. Pro-inflammatory IFN-γ, IL-5 and IL-12 were identified as mediators of the positive prediction of depression severity by the degree of neuroticism. Conclusions: The current findings demonstrate that conditions related to long-term stress, such as depression and high neuroticism, are related to an up-regulation of inflammatory agents. Neuroticism may increase stress perception and, thus, increase the production of pro-inflammatory messenger molecules which are involved in the development of depression. This evidence may contribute to future anti-inflammatory interventions, particularly in subjects with high neuroticism who are at risk for developing depression. Furthermore, depressed patients with high neuroticism and cytokine levels may require early escalations in the intensity of treatment, along with additional therapeutic elements to increase the rate of treatment success.
Collapse
Affiliation(s)
- Frank M Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Christian Sander
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Juliane Minkwitz
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany
| | - Roland Mergl
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Bethan Dalton
- Department of Psychological Medicine, King's College London, London, United Kingdom
| | - Lesca M Holdt
- Institute of Laboratory Medicine, University Hospital Munich, LMU Munich, Munich, Germany
| | - Daniel Teupser
- Institute of Laboratory Medicine, University Hospital Munich, LMU Munich, Munich, Germany
| | - Ulrich Hegerl
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Leipzig, Germany
| | - Hubertus Himmerich
- Leipzig University Medical Center, IFB Adiposity Diseases, Leipzig, Germany.,Department of Psychological Medicine, King's College London, London, United Kingdom
| |
Collapse
|
30
|
Treadmill exercise alleviated prenatal buprenorphine exposure-induced depression in rats. Neurochem Int 2017; 110:91-100. [DOI: 10.1016/j.neuint.2017.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/05/2017] [Accepted: 09/24/2017] [Indexed: 01/16/2023]
|
31
|
Beyer DKE, Freund N. Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord 2017; 5:35. [PMID: 29027157 PMCID: PMC5638767 DOI: 10.1186/s40345-017-0104-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder is characterized by recurrent manic and depressive episodes. Patients suffering from this disorder experience dramatic mood swings with a wide variety of typical behavioral facets, affecting overall activity, energy, sexual behavior, sense of self, self-esteem, circadian rhythm, cognition, and increased risk for suicide. Effective treatment options are limited and diagnosis can be complicated. To overcome these obstacles, a better understanding of the neurobiology underlying bipolar disorder is needed. Animal models can be useful tools in understanding brain mechanisms associated with certain behavior. The following review discusses several pathological aspects of humans suffering from bipolar disorder and compares these findings with insights obtained from several animal models mimicking diverse facets of its symptomatology. Various sections of the review concentrate on specific topics that are relevant in human patients, namely circadian rhythms, neurotransmitters, focusing on the dopaminergic system, stressful environment, and the immune system. We then explain how these areas have been manipulated to create animal models for the disorder. Even though several approaches have been conducted, there is still a lack of adequate animal models for bipolar disorder. Specifically, most animal models mimic only mania or depression and only a few include the cyclical nature of the human condition. Future studies could therefore focus on modeling both episodes in the same animal model to also have the possibility to investigate the switch from mania-like behavior to depressive-like behavior and vice versa. The use of viral tools and a focus on circadian rhythms and the immune system might make the creation of such animal models possible.
Collapse
Affiliation(s)
- Dominik K. E. Beyer
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Nadja Freund
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|