1
|
Metha J, Ji Y, Braun C, Nicholson JR, De Lecea L, Murawski C, Hoyer D, Jacobson LH. Hypocretin-1 receptor antagonism improves inhibitory control during the Go/No-Go task in highly motivated, impulsive male mice. Psychopharmacology (Berl) 2024; 241:2171-2187. [PMID: 38886189 PMCID: PMC11442560 DOI: 10.1007/s00213-024-06628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
RATIONALE Motivation and inhibitory control are dominantly regulated by the dopaminergic (DA) and noradrenergic (NA) systems, respectively. Hypothalamic hypocretin (orexin) neurons provide afferent inputs to DA and NA nuclei and hypocretin-1 receptors (HcrtR1) are implicated in reward and addiction. However, the role of the HcrtR1 in inhibitory control is not well understood. OBJECTIVES To determine the effects of HcrtR1 antagonism and motivational state in inhibitory control using the go/no-go task in mice. METHODS n = 23 male C57Bl/6JArc mice were trained in a go/no-go task. Decision tree dendrogram analysis of training data identified more and less impulsive clusters of animals. A HcrtR1 antagonist (BI001, 12.5 mg/kg, per os) or vehicle were then administered 30 min before go/no-go testing, once daily for 5 days, under high (food-restricted) and low (free-feeding) motivational states in a latin-square crossover design. Compound exposure levels were assessed in a satellite group of animals. RESULTS HcrtR1 antagonism increased go accuracy and decreased no-go accuracy in free-feeding animals overall, whereas it decreased go accuracy and increased no-go accuracy only in more impulsive, food restricted mice. HcrtR1 antagonism also showed differential effects in premature responding, which was increased in response to the antagonist in free-feeding, less impulsive animals, and decreased in food restricted, more impulsive animals. HcrtR1 receptor occupancy by BI001 was estimated at ~ 66% during the task. CONCLUSIONS These data indicate that hypocretin signalling plays roles in goal-directed behaviour and inhibitory control in a motivational state-dependant manner. While likely not useful in all settings, HcrtR1 antagonism may be beneficial in improving inhibitory control in impulsive subpopulations.
Collapse
Affiliation(s)
- Jeremy Metha
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Finance, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Yijun Ji
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
- Circadian Misalignment and Shift Work Laboratory, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Notting Hill, VIC, 3162, Australia
| | - Clemens Braun
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Janet R Nicholson
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Luis De Lecea
- Department of Psychiatry and Behavioural Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Carsten Murawski
- Department of Finance, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Daniel Hoyer
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Laura H Jacobson
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia.
- Department of Biochemistry and Pharmacology, School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
2
|
Muñoz-Redondo C, Parras GG, Andreu-Sánchez C, Martín-Pascual MÁ, Delgado-García JM, Gruart A. Functional states of prelimbic and related circuits during the acquisition of a GO/noGO task in rats. Cereb Cortex 2024; 34:bhae271. [PMID: 38997210 DOI: 10.1093/cercor/bhae271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 07/14/2024] Open
Abstract
GO/noGO tasks enable assessing decision-making processes and the ability to suppress a specific action according to the context. Here, rats had to discriminate between 2 visual stimuli (GO or noGO) shown on an iPad screen. The execution (for GO) or nonexecution (for noGO) of the selected action (to touch or not the visual display) were reinforced with food. The main goal was to record and to analyze local field potentials collected from cortical and subcortical structures when the visual stimuli were shown on the touch screen and during the subsequent activities. Rats were implanted with recording electrodes in the prelimbic cortex, primary motor cortex, nucleus accumbens septi, basolateral amygdala, dorsolateral and dorsomedial striatum, hippocampal CA1, and mediodorsal thalamic nucleus. Spectral analyses of the collected data demonstrate that the prelimbic cortex was selectively involved in the cognitive and motivational processing of the learning task but not in the execution of reward-directed behaviors. In addition, the other recorded structures presented specific tendencies to be involved in these 2 types of brain activity in response to the presentation of GO or noGO stimuli. Spectral analyses, spectrograms, and coherence between the recorded brain areas indicate their specific involvement in GO vs. noGO tasks.
Collapse
Affiliation(s)
| | - Gloria G Parras
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| | - Celia Andreu-Sánchez
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
- Cerdanyola del Vallès, Institut de Neurociènces, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
| | - Miguel Ángel Martín-Pascual
- Neuro-Com Research Group, Department of Audiovisual Communication and Advertising, Universitat Autònoma de Barcelona, Barcelona 08190, Spain
- Research and Development, Institute of Spanish Public Television (RTVE), Corporación Radio Televisión Española, Barcelona 08190, Spain
| | | | - Agnès Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville 41013, Spain
| |
Collapse
|
3
|
Kahnau P, Jaap A, Urmersbach B, Diederich K, Lewejohann L. Development of an IntelliCage-based cognitive bias test for mice. OPEN RESEARCH EUROPE 2023; 2:128. [PMID: 37799631 PMCID: PMC10548109 DOI: 10.12688/openreseurope.15294.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 03/28/2024]
Abstract
The cognitive bias test is used to measure the emotional state of animals with regard to future expectations. Thus, the test offers a unique possibility to assess animal welfare with regard to housing and testing conditions of laboratory animals. So far, however, performing such a test is time-consuming and requires the presence of an experimenter. Therefore, we developed an automated and home-cage based cognitive bias test based on the IntelliCage system. We present several developmental steps to improve the experimental design leading to a successful measurement of cognitive bias in group-housed female C57BL/6J mice. The automated and home-cage based test design allows to obtain individual data from group-housed mice, to test the mice in their familiar environment, and during their active phase. By connecting the test-cage to the home-cage via a gating system, the mice participated in the test on a self-chosen schedule, indicating high motivation to actively participate in the experiment. We propose that this should have a positive effect on the animals themselves as well as on the data. Unexpectedly, the mice showed an optimistic cognitive bias after enrichment was removed and additional restraining. An optimistic expectation of the future as a consequence of worsening environmental conditions, however, can also be interpreted as an active coping strategy in which a potential profit is sought to be maximized through a higher willingness to take risks.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Anne Jaap
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Birk Urmersbach
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Kai Diederich
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
- Insitute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| |
Collapse
|
4
|
Kahnau P, Jaap A, Urmersbach B, Diederich K, Lewejohann L. Development of an IntelliCage-based cognitive bias test for mice. OPEN RESEARCH EUROPE 2023; 2:128. [PMID: 37799631 PMCID: PMC10548109 DOI: 10.12688/openreseurope.15294.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
The cognitive bias test is used to measure the emotional state of animals with regard to future expectations. Thus, the test offers a unique possibility to assess animal welfare with regard to housing and testing conditions of laboratory animals. So far, however, performing such a test is time-consuming and requires the presence of an experimenter. Therefore, we developed an automated and home-cage based cognitive bias test based on the IntelliCage system. We present several developmental steps to improve the experimental design leading to a successful measurement of cognitive bias in group-housed female C57BL/6J mice. The automated and home-cage based test design allows to obtain individual data from group-housed mice, to test the mice in their familiar environment, and during their active phase. By connecting the test-cage to the home-cage via a gating system, the mice participated in the test on a self-chosen schedule, indicating high motivation to actively participate in the experiment. We propose that this should have a positive effect on the animals themselves as well as on the data. Unexpectedly, the mice showed an optimistic cognitive bias after enrichment was removed and additional restraining. An optimistic expectation of the future as a consequence of worsening environmental conditions, however, can also be interpreted as an active coping strategy in which a potential profit is sought to be maximized through a higher willingness to take risks.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Anne Jaap
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Birk Urmersbach
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Kai Diederich
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
- Insitute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| |
Collapse
|
5
|
Kim H, Kim J, Woo M, Kim T. Changes in inhibitory control, craving and affect after yoga vs. aerobic exercise among smokers with nicotine dependence. Front Psychiatry 2022; 13:940415. [PMID: 35911225 PMCID: PMC9334723 DOI: 10.3389/fpsyt.2022.940415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives This study investigated the acute effects of yoga and aerobic exercise on response inhibition and the underlying neural mechanisms in individuals with nicotine dependence, along with changes in craving and affect. Materials and methods Study participants included 30 yoga-naïve adult smokers with moderate-to-high nicotine dependence. Based on a within-subjects design, all participants participated in three experimental sessions: baseline, 30-min yoga, and 30-min aerobic exercise; one session was conducted per day. The pre- and post-exercise Questionnaire of Smoking Urges and the Visual Analogue Scale were used to measure cigarette craving, and the Positive and Negative Affect Schedule was used to assess affective change. For cognitive measurement of inhibition, participants performed a Go/Nogo task consisting of Smoking-Go, Smoking-Nogo, Neutral-Go, and Neutral-Nogo stimulus conditions. Neuroelectric data were collected and the event-related potential (ERP) N2 and P3 amplitudes and latencies were analyzed. Results Both yoga and aerobic exercise significantly reduced negative affect, whereas a reduction in craving was only observed after yoga. ERP results indicated that the P3 amplitudes after yoga were lower than those after aerobic exercise, suggesting increased neural efficiency after yoga, with reduced neural activity while maintaining the same level of cognitive performance as aerobic exercise. Conclusion As yoga and aerobic exercise were equally effective in attenuating negative affect, smokers may expect greater benefits from yoga in craving reduction and inhibitory control with less physical and cognitive effort. We also believe that video-based yoga practice may provide additional benefits to these effects, reaching a large number of smokers in a non-face-to-face manner.
Collapse
Affiliation(s)
- Hyungsook Kim
- Department of Cognitive Sciences, School of Intelligence, Hanyang University, Seoul, South Korea
- Graduate School of Public Policy, Hanyang University, Seoul, South Korea
- Hanyang Digital Healthcare Center, Hanyang University, Seoul, South Korea
| | - Jingu Kim
- Department of Physical Education, Kyungpook National University, Daegu, South Korea
| | - Minjung Woo
- School of Exercise and Sports Science, University of Ulsan, Ulsan, South Korea
| | - Teri Kim
- Hanyang Digital Healthcare Center, Hanyang University, Seoul, South Korea
- Department of Physical Education, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
Kremer L, van Reenen CG, Engel B, Bokkers EAM, Schnabel SK, van der Werf JTN, Webb LE. Developing a feasible and sensitive judgement bias task in dairy cows. Anim Cogn 2022; 25:425-445. [PMID: 34633570 PMCID: PMC8940804 DOI: 10.1007/s10071-021-01563-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022]
Abstract
Judgement bias tasks (JBTs) are used to assess the influence of farm practices on livestock affective states. The tasks must be adjusted to the species and age group of focus. In cattle, most JBTs were designed for calves instead of adult cows. This study aimed to develop a JBT suitable for adult dairy cows, combining feasibility, validity, sensitivity and repeatability. Three JBTs were developed in which cows were trained to reach or avoid reaching a feeder, the location of which signalled a reward or punisher. The tasks differed in terms of punisher-cows being allocated either to "no-reward", an air puff or an electric shock. Cows were then exposed twice to three ambiguous positions of the feeder, on two separate occasions. Speed of learning and proportions of correct responses to the conditioned locations were used to assess the feasibility of the task. Adjusted latencies to reach the ambiguous feeder positions were used to examine whether response patterns matched the linear and monotonic graded pattern expected in a valid and sensitive JBT at baseline. Latencies to reach the feeders in the two repeated testing sessions were compared to assess ambiguity loss over tasks' repetitions. The validity of using spatial JBTs for dairy cows was demonstrated. While the effect on JBT feasibility was nuanced, the punisher did influence JBT sensitivity. None of the JBTs' repeatability could be supported. We conclude that using an air puf as punisher led to the most sensitive, yet non-repeatable, JBT for dairy cows.
Collapse
Affiliation(s)
- Louise Kremer
- Animal Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands.
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands.
| | - Cornelis G van Reenen
- Animal Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Bas Engel
- Biometris, Wageningen University, Wageningen University and Research, Wageningen, The Netherlands
| | - Eddie A M Bokkers
- Animal Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Sabine K Schnabel
- Biometris, Wageningen University, Wageningen University and Research, Wageningen, The Netherlands
| | - Jozef T N van der Werf
- Wageningen Livestock Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Laura E Webb
- Animal Production Systems Group, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
7
|
Ghafarimoghadam M, Mashayekh R, Gholami M, Fereydani P, Shelley-Tremblay J, Kandezi N, Sabouri E, Motaghinejad M. A review of behavioral methods for the evaluation of cognitive performance in animal models: Current techniques and links to human cognition. Physiol Behav 2022; 244:113652. [PMID: 34801559 DOI: 10.1016/j.physbeh.2021.113652] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Memory is defined as the ability to store, maintain and retrieve information. Learning is the acquisition of information that changes behavior and memory. Stress, dementia, head trauma, amnesia, Alzheimer's, Huntington, Parkinson's, Wernicke-Korsakoff syndrome (WKS) may be mentioned among the diseases in which memory and learning are affected. The task of understanding deficits in memory and learning in humans is daunting due to the complexity of neural and cognitive mechanisms in the nervous system. This job is made more difficult for clinicians and researchers by the fact that many techniques used to research memory are not ethically acceptable or technically feasible for use in humans. Thus, animal models have been necessary alternative for studying normal and disordered learning and memory. This review attempts to bridge these domains to allow biomedical researchers to have a firm grasp of "memory" and "learning" as constructs in humans whereby they may then select the proper animal cognitive test. RESULTS AND CONCLUSION Various tests (open field habituation test, Y-maze test, passive avoidance test, step-down inhibitory avoidance test, active avoidance test, 8-arms radial maze test, Morris water maze test, radial arm water maze, novel object recognition test and gait function test) have been designed to evaluate different kinds of memory. Each of these tests has their strengths and limits. Abnormal results obtained using these tasks in non-human animals indicate malfunctions in memory which may be due to several physiological and psychological diseases of nervous system. Further studies by using the discussed tests can be very beneficial for achieving a therapeutic answer to these diseases.
Collapse
Affiliation(s)
- Maryam Ghafarimoghadam
- Department of pharmaceutical chemistry, faculty of pharmaceutical chemistry, pharmaceutical sciences branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Roya Mashayekh
- Department of pharmaceutical chemistry, faculty of pharmaceutical chemistry, pharmaceutical sciences branch, Islamic Azad University (IUAPS), Tehran, Iran
| | - Mina Gholami
- School of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pardis Fereydani
- Department of pharmaceutical chemistry, faculty of pharmaceutical chemistry, pharmaceutical sciences branch, Islamic Azad University (IUAPS), Tehran, Iran
| | | | - Niyoosha Kandezi
- Department of Psychology, University of South Alabama, Alabama, USA
| | - Erfan Sabouri
- Clinical Research Development Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Majid Motaghinejad
- Chronic Respiratory Disease Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Vallianatou CA, Alonso A, Aleman AZ, Genzel L, Stella F. Learning-Induced Shifts in Mice Navigational Strategies Are Unveiled by a Minimal Behavioral Model of Spatial Exploration. eNeuro 2021; 8:ENEURO.0553-20.2021. [PMID: 34330819 PMCID: PMC8489025 DOI: 10.1523/eneuro.0553-20.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/21/2022] Open
Abstract
Shifts in spatial patterns produced during the execution of a navigational task can be used to track the effects of the accumulation of knowledge and the acquisition of structured information about the environment. Here, we provide a quantitative analysis of mice behavior while performing a novel goal localization task in a large, modular arena, the HexMaze. To demonstrate the effects of different forms of previous knowledge we first obtain a precise statistical characterization of animals' paths with sub-trial resolution and over different phases of learning. The emergence of a flexible representation of the task is accompanied by a progressive improvement of performance, mediated by multiple, multiplexed time scales. We then use a generative mathematical model of the animal behavior to isolate the specific contributions to the final navigational strategy. We find that animal behavior can be accurately reproduced by the combined effect of a goal-oriented component, becoming stronger with the progression of learning, and of a random walk component, producing choices unrelated to the task and only partially weakened in time.
Collapse
Affiliation(s)
| | - Alejandra Alonso
- Donders Institute for Behaviour and Cognition, Radboud University, Nijmegen 6500GL, The Netherlands
| | | | - Lisa Genzel
- Donders Institute for Behaviour and Cognition, Radboud University, Nijmegen 6500GL, The Netherlands
| | - Federico Stella
- Donders Institute for Behaviour and Cognition, Radboud University, Nijmegen 6500GL, The Netherlands
| |
Collapse
|
9
|
The HexMaze: A Previous Knowledge Task on Map Learning for Mice. eNeuro 2021; 8:ENEURO.0554-20.2021. [PMID: 34135006 PMCID: PMC8362685 DOI: 10.1523/eneuro.0554-20.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 11/21/2022] Open
Abstract
New information is rarely learned in isolation; instead, most of what we experience can be incorporated into or uses previous knowledge networks in some form. Previous knowledge in form of a cognitive map can facilitate knowledge acquisition and will influence how we learn new spatial information. Here, we developed a new spatial navigation task where food locations are learned in a large, gangway maze to test how mice learn a large spatial map over a longer time period—the HexMaze. Analyzing performance across sessions as well as on specific trials, we can show simple memory effects as well as multiple effects of previous knowledge of the map accelerating both online learning and performance increases over offline periods when incorporating new information. We could identify the following three main phases: (1) learning the initial goal location; (2) faster learning after 2 weeks when learning a new goal location; and then (3) the ability to express one-session learning, leading to long-term memory effect after 12 weeks. Importantly, we are the first to show that buildup of a spatial map is dependent on how much time passes, not how often the animal is trained.
Collapse
|
10
|
Resasco A, MacLellan A, Ayala MA, Kitchenham L, Edwards AM, Lam S, Dejardin S, Mason G. Cancer blues? A promising judgment bias task indicates pessimism in nude mice with tumors. Physiol Behav 2021; 238:113465. [PMID: 34029586 DOI: 10.1016/j.physbeh.2021.113465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
In humans, affective states can bias responses to ambiguous information: a phenomenon termed judgment bias (JB). Judgment biases have great potential for assessing affective states in animals, in both animal welfare and biomedical research. New animal JB tasks require construct validation, but for laboratory mice (Mus musculus), the most common research vertebrate, a valid JB task has proved elusive. Here (Experiment 1), we demonstrate construct validity for a novel mouse JB test: an olfactory Go/Go task in which subjects dig for high- or low-value food rewards. In C57BL/6 and Balb/c mice faced with ambiguous cues, latencies to dig were sensitive to high/low welfare housing: environmentally-enriched animals responded with relative 'optimism' through shorter latencies. Illustrating the versatility of this validated JB task across different fields of research, it further allowed us to test hypotheses about the mood-altering effects of cancer in male and female nude mice (Experiment 2). Males, although not females, treated ambiguous cues as intermediate; and males bearing subcutaneous lung adenocarcinomas also responded more pessimistically to these than did healthy controls. To our knowledge, this is the first evidence of a valid mouse JB task, and the first demonstration of pessimism in tumor-bearing animals. This task still needs to be refined to improve its sensitivity. However, it has great potential for investigating mouse welfare, the links between affective state and disease, depression-like states in animals, and hypotheses regarding the neurobiological mechanisms that underlie affect-mediated biases in judgment.
Collapse
Affiliation(s)
- A Resasco
- Institute of Cell Biology and Neurosciences, National Scientific and Technical Research Council-University of Buenos Aires, Autonomous City of Buenos Aires, Argentina; Laboratory of Experimental Animals, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - A MacLellan
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M A Ayala
- Laboratory of Experimental Animals, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - L Kitchenham
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - A M Edwards
- Ontario Agricultural College, University of Guelph, Guelph, Canada
| | - S Lam
- Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - S Dejardin
- Formerly Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - G Mason
- Department of Integrative Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
11
|
Esteves M, Moreira PS, Sousa N, Leite-Almeida H. Assessing Impulsivity in Humans and Rodents: Taking the Translational Road. Front Behav Neurosci 2021; 15:647922. [PMID: 34025369 PMCID: PMC8134540 DOI: 10.3389/fnbeh.2021.647922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Impulsivity is a multidimensional construct encompassing domains of behavioral inhibition as well as of decision making. It is often adaptive and associated with fast responses, being in that sense physiological. However, abnormal manifestations of impulsive behavior can be observed in contexts of drug abuse and attention-deficit/hyperactivity disorder (ADHD), among others. A number of tools have therefore been devised to assess the different facets of impulsivity in both normal and pathological contexts. In this narrative review, we systematize behavioral and self-reported measures of impulsivity and critically discuss their constructs and limitations, establishing a parallel between assessments in humans and rodents. The first rely on paradigms that are typically designed to assess a specific dimension of impulsivity, within either impulsive action (inability to suppress a prepotent action) or impulsive choice, which implies a decision that weighs the costs and benefits of the options. On the other hand, self-reported measures are performed through questionnaires, allowing assessment of impulsivity dimensions that would be difficult to mimic in an experimental setting (e.g., positive/negative urgency and lack of premeditation) and which are therefore difficult (if not impossible) to measure in rodents.
Collapse
Affiliation(s)
- Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal.,Psychological Neuroscience Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Clinical Academic Center - Braga, Braga, Portugal
| |
Collapse
|
12
|
Dal-Pizzol F, de Medeiros GF, Michels M, Mazeraud A, Bozza FA, Ritter C, Sharshar T. What Animal Models Can Tell Us About Long-Term Psychiatric Symptoms in Sepsis Survivors: a Systematic Review. Neurotherapeutics 2021; 18:1393-1413. [PMID: 33410107 PMCID: PMC8423874 DOI: 10.1007/s13311-020-00981-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Lower sepsis mortality rates imply that more patients are discharged from the hospital, but sepsis survivors often experience sequelae, such as functional disability, cognitive impairment, and psychiatric morbidity. Nevertheless, the mechanisms underlying these long-term disabilities are not fully understood. Considering the extensive use of animal models in the study of the pathogenesis of neuropsychiatric disorders, it seems adopting this approach to improve our knowledge of postseptic psychiatric symptoms is a logical approach. With the purpose of gathering and summarizing the main findings of studies using animal models of sepsis-induced psychiatric symptoms, we performed a systematic review of the literature on this topic. Thus, 140 references were reviewed, and most of the published studies suggested a time-dependent recovery from behavior alterations, despite the fact that some molecular alterations persist in the brain. This review reveals that animal models can be used to understand the mechanisms that underlie anxiety and depression in animals recovering from sepsis.
Collapse
Affiliation(s)
- Felipe Dal-Pizzol
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | | | - Monique Michels
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Aurélien Mazeraud
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
| | - Fernando Augusto Bozza
- Laboratório de Medicina Intensiva, Instituto Nacional de Infectologia Evandro Chagas (INI), Fundação Oswaldo Cruz (FIOCRUZ), 21040-360 Rio de Janeiro, Brazil
| | - Cristiane Ritter
- Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, Brazil
| | - Tarek Sharshar
- Laboratoire de Neuropathologie Expérimentale, Institut Pasteur, 75015 Paris, France
- Laboratory of Experimental Neuropathology, Institut Pasteur, 75015 Paris, France
- Department of Neuro-Intensive Care Medicine, Sainte-Anne Hospital, Paris-Descartes University, 75015 Paris, France
| |
Collapse
|
13
|
How to Control Behavioral Studies for Rodents-Don't Project Human Thoughts onto Them. eNeuro 2021; 8:ENEURO.0456-20.2021. [PMID: 33468539 PMCID: PMC7877469 DOI: 10.1523/eneuro.0456-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/18/2022] Open
Abstract
In neuroscience research, we often use behavior as an easy tool and assume a straightforward relationship between memory and behavior. However, many factors are often not accounted for and need to be considered when interpreting a behavioral outcome. This opinion article will discuss factors in rodent studies such as handling and how the animal views the world, that will affect whether memory leads to a certain behavior.
Collapse
|
14
|
Neville V, Dayan P, Gilchrist ID, Paul ES, Mendl M. Dissecting the links between reward and loss, decision-making, and self-reported affect using a computational approach. PLoS Comput Biol 2021; 17:e1008555. [PMID: 33417595 PMCID: PMC7819615 DOI: 10.1371/journal.pcbi.1008555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 01/21/2021] [Accepted: 11/19/2020] [Indexed: 12/19/2022] Open
Abstract
Links between affective states and risk-taking are often characterised using summary statistics from serial decision-making tasks. However, our understanding of these links, and the utility of decision-making as a marker of affect, needs to accommodate the fact that ongoing (e.g., within-task) experience of rewarding and punishing decision outcomes may alter future decisions and affective states. To date, the interplay between affect, ongoing reward and punisher experience, and decision-making has received little detailed investigation. Here, we examined the relationships between reward and loss experience, affect, and decision-making in humans using a novel judgement bias task analysed with a novel computational model. We demonstrated the influence of within-task favourability on decision-making, with more risk-averse/‘pessimistic’ decisions following more positive previous outcomes and a greater current average earning rate. Additionally, individuals reporting more negative affect tended to exhibit greater risk-seeking decision-making, and, based on our model, estimated time more poorly. We also found that individuals reported more positive affective valence during periods of the task when prediction errors and offered decision outcomes were more positive. Our results thus provide new evidence that (short-term) within-task rewarding and punishing experiences determine both future decision-making and subjectively experienced affective states. Affective states, such as happiness, are key to well-being. They are thought to reflect characteristics of the environment such as the availability of reward and the inevitability of punishment. However, there is a lack of agreement about: (i) the time scales over which these characteristics are measured; (ii) how and in what combinations actual or expected outcomes influence affect; (iii) how affect itself influences decision-making. A particular stance on the last issue underpins the judgement bias task, which, by measuring an individual’s willingness to make ‘optimistic’ or ‘pessimistic’ choices that are rendered risky by perceptual ambiguity, is one of the few cross-species tests for affect. Here we apply a novel computational analysis to a novel judgement bias task to examine all three issues. We reveal a rich interplay between affect and rewards, punishments, and uncertainty.
Collapse
Affiliation(s)
- Vikki Neville
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, Langford, United Kingdom
- * E-mail:
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Iain D. Gilchrist
- School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Elizabeth S. Paul
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, Langford, United Kingdom
| | - Michael Mendl
- Centre for Behavioural Biology, School of Veterinary Science, University of Bristol, Langford, United Kingdom
| |
Collapse
|
15
|
Linking ecology and cognition: does ecological specialisation predict cognitive test performance? Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-020-02923-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
AbstractVariation in cognitive abilities is thought to be linked to variation in brain size, which varies across species with either social factors (Social Intelligence Hypothesis) or ecological challenges (Ecological Intelligence Hypothesis). However, the nature of the ecological processes invoked by the Ecological Intelligence Hypothesis, like adaptations to certain habitat characteristics or dietary requirements, remains relatively poorly known. Here, we review comparative studies that experimentally investigated interspecific variation in cognitive performance in relation to a species’ degree of ecological specialisation. Overall, the relevant literature was biased towards studies of mammals and birds as well as studies focusing on ecological challenges related to diet. We separated ecological challenges into those related to searching for food, accessing a food item and memorising food locations. We found interspecific variation in cognitive performance that can be explained by adaptations to different foraging styles. Species-specific adaptations to certain ecological conditions, like food patch distribution, characteristics of food items or seasonality also broadly predicted variation in cognitive abilities. A species’ innovative problem-solving and spatial processing ability, for example, could be explained by its use of specific foraging techniques or search strategies, respectively. Further, habitat generalists were more likely to outperform habitat specialists. Hence, we found evidence that ecological adaptations and cognitive performance are linked and that the classification concept of ecological specialisation can explain variation in cognitive performance only with regard to habitat, but not dietary specialisation.
Collapse
|
16
|
Lagisz M, Zidar J, Nakagawa S, Neville V, Sorato E, Paul ES, Bateson M, Mendl M, Løvlie H. Optimism, pessimism and judgement bias in animals: A systematic review and meta-analysis. Neurosci Biobehav Rev 2020; 118:3-17. [PMID: 32682742 DOI: 10.1016/j.neubiorev.2020.07.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/29/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Just as happy people see the proverbial glass as half-full, 'optimistic' or 'pessimistic' responses to ambiguity might also reflect affective states in animals. Judgement bias tests, designed to measure these responses, are an increasingly popular way of assessing animal affect and there is now a substantial, but heterogeneous, literature on their use across different species, affect manipulations, and study designs. By conducting a systematic review and meta-analysis of 459 effect sizes from 71 studies of non-pharmacological affect manipulations on 22 non-human species, we show that animals in relatively better conditions, assumed to generate more positive affect, show more 'optimistic' judgements of ambiguity than those in relatively worse conditions. Overall effects are small when considering responses to all cues, but become more pronounced when non-ambiguous training cues are excluded from analyses or when focusing only on the most divergent responses between treatment groups. Task type (go/no-go; go/go active choice), training cue reinforcement (reward-punishment; reward-null; reward-reward) and sex of animals emerge as potential moderators of effect sizes in judgement bias tests.
Collapse
Affiliation(s)
- Malgorzata Lagisz
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Josefina Zidar
- The Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Shinichi Nakagawa
- Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia.
| | - Vikki Neville
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford, BS40 5DU, United Kingdom
| | - Enrico Sorato
- The Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Elizabeth S Paul
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford, BS40 5DU, United Kingdom
| | - Melissa Bateson
- Centre for Behaviour and Evolution, Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Michael Mendl
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford, BS40 5DU, United Kingdom.
| | - Hanne Løvlie
- The Department of Physics, Chemistry and Biology, IFM Biology, Linköping University, SE-581 83, Linköping, Sweden
| |
Collapse
|
17
|
Kahnau P, Habedank A, Diederich K, Lewejohann L. Behavioral Methods for Severity Assessment. Animals (Basel) 2020; 10:ani10071136. [PMID: 32635341 PMCID: PMC7401632 DOI: 10.3390/ani10071136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 01/02/2023] Open
Abstract
Simple Summary In 2017, 9.4 million animals were used for research and testing in the European Union. Animal testing always entails the potential for harm caused to the animals. In order to minimize animal suffering, it is of ethical and scientific interest to have a research-based severity assessment of animal experiments. In the past, many methods have been developed to investigate animal suffering. Initially, the focus was on physiological parameters, such as body weight or glucocorticoids as an indicator of stress. In addition, the animals’ behavior has come more into focus and has been included as an indicator of severity. However, in order to obtain a comprehensive understanding of animal suffering, an animal’s individual perspective should also be taken into account. Preference tests might be used, for example, to “ask” animals what they prefer, and providing such goods in turn allows, among other things, to improve housing conditions. In this review, different methods are introduced, which can be used to investigate and evaluate animal suffering and well-being with a special focus on animal-centric strategies. Abstract It has become mandatory for the application for allowance of animal experimentation to rate the severity of the experimental procedures. In order to minimize suffering related to animal experimentation it is therefore crucial to develop appropriate methods for the assessment of animal suffering. Physiological parameters such as hormones or body weight are used to assess stress in laboratory animals. However, such physiological parameters alone are often difficult to interpret and leave a wide scope for interpretation. More recently, behavior, feelings and emotions have come increasingly into the focus of welfare research. Tests like preference tests or cognitive bias tests give insight on how animals evaluate certain situations or objects, how they feel and what their emotional state is. These methods should be combined in order to obtain a comprehensive understanding of the well-being of laboratory animals.
Collapse
Affiliation(s)
- Pia Kahnau
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
- Correspondence: ; Tel.: +49-30-18412-29202
| | - Anne Habedank
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
| | - Kai Diederich
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
| | - Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Center for the Protection of Laboratory Animals (Bf3R), 12277 Berlin, Germany; (A.H.); (K.D.); (L.L.)
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
18
|
Buscher N, Ojeda A, Francoeur M, Hulyalkar S, Claros C, Tang T, Terry A, Gupta A, Fakhraei L, Ramanathan DS. Open-source raspberry Pi-based operant box for translational behavioral testing in rodents. J Neurosci Methods 2020; 342:108761. [PMID: 32479970 DOI: 10.1016/j.jneumeth.2020.108761] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Rodents have been used for decades to probe neural circuits involved in behavior. Increasingly, attempts have been developed to standardize training paradigms across labs; and to use visual/auditory paradigms that can be also tested in humans. Commercially available systems are expensive and thus do not scale easily, and are not optimized for electrophysiology. NEW METHOD Using the rich open-source technology built around Raspberry Pi, we were able to develop an inexpensive (<$1000) visual-screen based operant chamber with electrophysiological and optogenetic compatibility. The chamber is operated within MATLAB/Simulink, a commonly used scientific programming language allowing for rapid customization. RESULTS Here, we describe and provide all relevant details needed to develop and produce these chambers, and show examples of behavior and electrophysiology data collected using these chambers. We also include all of the tools needed to allow readers to build and develop their own boxes (CAD models for 3D printing and laser-cutting; PCB-board design; all bill of materials for required parts and supplies, and some examples of Simulink models to operate the boxes). COMPARISON WITH EXISTING METHODS The new boxes are far more cost-effective than commercially available environments and allow for the combination of automated behavioral testing with electrophysiological read-outs with high temporal precision. CONCLUSION These open-source boxes can be used for labs interested in developing high-throughput visual/auditory behavioral assays for ∼ 10th the cost of commercial systems.
Collapse
Affiliation(s)
- N Buscher
- Mental Health Service, VA San Diego Healthcare Syst., San Diego, CA 92161, United States; Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States
| | - A Ojeda
- Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States; Dept. of Electrical & Computer Engin., UC San Diego, La Jolla, CA 92093, United States
| | - M Francoeur
- Mental Health Service, VA San Diego Healthcare Syst., San Diego, CA 92161, United States; Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States
| | - S Hulyalkar
- Mental Health Service, VA San Diego Healthcare Syst., San Diego, CA 92161, United States; Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States
| | - C Claros
- Mental Health Service, VA San Diego Healthcare Syst., San Diego, CA 92161, United States; Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States
| | - T Tang
- Mental Health Service, VA San Diego Healthcare Syst., San Diego, CA 92161, United States; Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States
| | - A Terry
- Mental Health Service, VA San Diego Healthcare Syst., San Diego, CA 92161, United States; Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States
| | - A Gupta
- Mental Health Service, VA San Diego Healthcare Syst., San Diego, CA 92161, United States; Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States
| | - L Fakhraei
- Mental Health Service, VA San Diego Healthcare Syst., San Diego, CA 92161, United States; Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States
| | - D S Ramanathan
- Mental Health Service, VA San Diego Healthcare Syst., San Diego, CA 92161, United States; Dept. of Psychiatry, UC San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
19
|
Mendl M, Paul ES. Animal affect and decision-making. Neurosci Biobehav Rev 2020; 112:144-163. [PMID: 31991192 DOI: 10.1016/j.neubiorev.2020.01.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 12/11/2019] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
The scientific study of animal affect (emotion) is an area of growing interest. Whilst research on mechanism and causation has predominated, the study of function is less advanced. This is not due to a lack of hypotheses; in both humans and animals, affective states are frequently proposed to play a pivotal role in coordinating adaptive responses and decisions. However, exactly how they might do this (what processes might implement this function) is often left rather vague. Here we propose a framework for integrating animal affect and decision-making that is couched in modern decision theory and employs an operational definition that aligns with dimensional concepts of core affect and renders animal affect empirically tractable. We develop a model of how core affect, including short-term (emotion-like) and longer-term (mood-like) states, influence decision-making via processes that we label affective options, affective predictions, and affective outcomes and which correspond to similar concepts in schema of the links between human emotion and decision-making. Our framework is generalisable across species and generates questions for future research.
Collapse
Affiliation(s)
- Michael Mendl
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, UK.
| | - Elizabeth S Paul
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, UK
| |
Collapse
|
20
|
Deakin A, Mendl M, Browne WJ, Paul ES, Hodge JJL. State-dependent judgement bias in Drosophila: evidence for evolutionarily primitive affective processes. Biol Lett 2018; 14:rsbl.2017.0779. [PMID: 29491031 PMCID: PMC5830672 DOI: 10.1098/rsbl.2017.0779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/05/2018] [Indexed: 12/20/2022] Open
Abstract
Affective states influence decision-making under ambiguity in humans and other animals. Individuals in a negative state tend to interpret ambiguous cues more negatively than individuals in a positive state. We demonstrate that the fruit fly, Drosophila melanogaster, also exhibits state-dependent changes in cue interpretation. Drosophila were trained on a Go/Go task to approach a positive (P) odour associated with a sugar reward and actively avoid a negative (N) odour associated with shock. Trained flies were then either shaken to induce a purported negative state or left undisturbed (control), and given a choice between: air or P; air or N; air or ambiguous odour (1 : 1 blend of P : N). Shaken flies were significantly less likely to approach the ambiguous odour than control flies. This ‘judgement bias’ may be mediated by changes in neural activity that reflect evolutionarily primitive affective states. We cannot say whether such states are consciously experienced, but use of this model organism's versatile experimental tool kit may facilitate elucidation of their neural and genetic basis.
Collapse
Affiliation(s)
- Amanda Deakin
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford, UK
| | - Michael Mendl
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford, UK
| | - William J Browne
- Centre for Multilevel Modelling, University of Bristol, Bristol, UK
| | - Elizabeth S Paul
- Centre for Behavioural Biology, Bristol Veterinary School, University of Bristol, Langford, UK
| | - James J L Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| |
Collapse
|
21
|
Burman OH, Mendl MT. A novel task to assess mood congruent memory bias in non-human animals. J Neurosci Methods 2018; 308:269-275. [DOI: 10.1016/j.jneumeth.2018.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 06/27/2018] [Accepted: 07/02/2018] [Indexed: 11/15/2022]
|
22
|
Assessing animal affect: an automated and self-initiated judgement bias task based on natural investigative behaviour. Sci Rep 2018; 8:12400. [PMID: 30120315 PMCID: PMC6098098 DOI: 10.1038/s41598-018-30571-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/31/2018] [Indexed: 11/08/2022] Open
Abstract
Scientific methods for assessing animal affect, especially affective valence (positivity or negativity), allow us to evaluate animal welfare and the effectiveness of 3Rs Refinements designed to improve wellbeing. Judgement bias tasks measure valence; however, task-training may be lengthy and/or require significant time from researchers. Here we develop an automated and self-initiated judgement bias task for rats which capitalises on their natural investigative behaviour. Rats insert their noses into a food trough to start trials. They then hear a tone and learn either to stay for 2 s to receive a food reward or to withdraw promptly to avoid an air-puff. Which contingency applies is signalled by two different tones. Judgement bias is measured by responses to intermediate ambiguous tones. In two experiments we show that rats learn the task in fewer sessions than other automated variants, generalise responses across ambiguous tones as expected, self-initiate 4-5 trials/min, and can be tested repeatedly. Affect manipulations generate main effect trends in the predicted directions, although not localised to ambiguous tones, so further construct validation is required. We also find that tone-reinforcer pairings and reinforcement or non-reinforcement of ambiguous trials can affect responses to ambiguity. This translatable task should facilitate more widespread uptake of judgement bias testing.
Collapse
|
23
|
Paul ES, Mendl MT. Animal emotion: Descriptive and prescriptive definitions and their implications for a comparative perspective. Appl Anim Behav Sci 2018; 205:202-209. [PMID: 30078924 PMCID: PMC6041721 DOI: 10.1016/j.applanim.2018.01.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/16/2017] [Accepted: 01/21/2018] [Indexed: 01/24/2023]
Abstract
In recent years there has been a growing research interest in the field of animal emotion. But there is still little agreement about whether and how the word "emotion" should be defined for use in the context of non-human species. Here, we make a distinction between descriptive and prescriptive definitions. Descriptive definitions delineate the ways in which the word emotion is used in everyday life. Prescriptive definitions are used to pick out the set of events that scientific theories of emotion purport to explain. Picking out three prescriptive definitions, we show that the different ways in which emotions are defined correspond to processes that are distributed differentially across the animal kingdom. We propose that these definitions provide a useful starting point for investigating the varying emotional capacities of a wide range of animals, providing a basis for a new, comparative science of emotion.
Collapse
Affiliation(s)
- Elizabeth S. Paul
- School of Veterinary Sciences, University of Bristol, Langford House, Langford, Bristol, BS40 5DU, UK
| | | |
Collapse
|
24
|
Hintze S, Melotti L, Colosio S, Bailoo JD, Boada-Saña M, Würbel H, Murphy E. A cross-species judgement bias task: integrating active trial initiation into a spatial Go/No-go task. Sci Rep 2018; 8:5104. [PMID: 29572529 PMCID: PMC5865189 DOI: 10.1038/s41598-018-23459-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 03/13/2018] [Indexed: 01/29/2023] Open
Abstract
Judgement bias tasks are promising tools to assess emotional valence in animals, however current designs are often time-consuming and lack aspects of validity. This study aimed to establish an improved design that addresses these issues and can be used across species. Horses, rats, and mice were trained on a spatial Go/No-go task where animals could initiate each trial. The location of an open goal-box, at either end of a row of five goal-boxes, signalled either reward (positive trial) or non-reward (negative trial). Animals first learned to approach the goal-box in positive trials (Go) and to re-initiate/not approach in negative trials (No-go). Animals were then tested for responses to ambiguous trials where goal-boxes at intermediate locations were opened. The Go:No-go response ratio was used as a measure of judgement bias. Most animals quickly learned the Go/No-go discrimination and performed trials at a high rate compared to previous studies. Subjects of all species reliably discriminated between reference cues and ambiguous cues, demonstrating a monotonic graded response across the different cue locations, with no evidence of learning about the outcome of ambiguous trials. This novel test protocol is an important step towards a practical task for comparative studies on judgement biases in animals.
Collapse
Affiliation(s)
- Sara Hintze
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland. .,Division of Livestock Sciences, Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences Vienna (BOKU), Gregor-Mendel-Strasse 33, 1180, Vienna, Austria.
| | - Luca Melotti
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland.,RG Behavioural Biology & Animal Welfare, Division of Behavioural Biology, University of Münster, Badestrasse 13, 48149, Münster, Germany
| | - Simona Colosio
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Jeremy D Bailoo
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Maria Boada-Saña
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Hanno Würbel
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| | - Eimear Murphy
- Division of Animal Welfare, University of Bern, Länggassstrasse 120, 3012, Bern, Switzerland
| |
Collapse
|
25
|
Jorratt P, Delano PH, Delgado C, Dagnino-Subiabre A, Terreros G. Difference in Perseverative Errors during a Visual Attention Task with Auditory Distractors in Alpha-9 Nicotinic Receptor Subunit Wild Type and Knock-Out Mice. Front Cell Neurosci 2017; 11:357. [PMID: 29163062 PMCID: PMC5676050 DOI: 10.3389/fncel.2017.00357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/27/2017] [Indexed: 12/14/2022] Open
Abstract
The auditory efferent system is a neural network that originates in the auditory cortex and projects to the cochlear receptor through olivocochlear (OC) neurons. Medial OC neurons make cholinergic synapses with outer hair cells (OHCs) through nicotinic receptors constituted by α9 and α10 subunits. One of the physiological functions of the α9 nicotinic receptor subunit (α9-nAChR) is the suppression of auditory distractors during selective attention to visual stimuli. In a recent study we demonstrated that the behavioral performance of alpha-9 nicotinic receptor knock-out (KO) mice is altered during selective attention to visual stimuli with auditory distractors since they made less correct responses and more omissions than wild type (WT) mice. As the inhibition of the behavioral responses to irrelevant stimuli is an important mechanism of the selective attention processes, behavioral errors are relevant measures that can reflect altered inhibitory control. Errors produced during a cued attention task can be classified as premature, target and perseverative errors. Perseverative responses can be considered as an inability to inhibit the repetition of an action already planned, while premature responses can be considered as an index of the ability to wait or retain an action. Here, we studied premature, target and perseverative errors during a visual attention task with auditory distractors in WT and KO mice. We found that α9-KO mice make fewer perseverative errors with longer latencies than WT mice in the presence of auditory distractors. In addition, although we found no significant difference in the number of target error between genotypes, KO mice made more short-latency target errors than WT mice during the presentation of auditory distractors. The fewer perseverative error made by α9-KO mice could be explained by a reduced motivation for reward and an increased impulsivity during decision making with auditory distraction in KO mice.
Collapse
Affiliation(s)
- Pascal Jorratt
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Paul H Delano
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento de Otorrinolaringología, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Carolina Delgado
- Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Departamento Neurología y Neurocirugía, Hospital Clínico de la Universidad de Chile, Santiago, Chile
| | - Alexies Dagnino-Subiabre
- Laboratorio de Neurobiología del Stress, Centro de Neurobiología y Plasticidad Cerebral (CNPC), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Gonzalo Terreros
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| |
Collapse
|