1
|
Li P, Zhao J, Wei X, Luo L, Chu Y, Zhang T, Zhu A, Yan J. Acupuncture may play a key role in anti-depression through various mechanisms in depression. Chin Med 2024; 19:135. [PMID: 39367470 PMCID: PMC11451062 DOI: 10.1186/s13020-024-00990-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/28/2024] [Indexed: 10/06/2024] Open
Abstract
Depression has emerged as a significant global health concern, exerting a profound impact on individuals, as evidenced by its high prevalence and associated suicide rates. Considering its pervasive nature, the absence of optimal treatment modalities remains a challenge. Acupuncture has garnered substantial clinical and experimental validation for its efficacy in addressing diverse forms of depression, including postpartum, post-stroke, and adolescent depression. This article endeavors to elucidate the distinctive attributes and underlying mechanisms of acupuncture in the contemporary treatment of depression. Research has demonstrated that acupuncture exerts diverse physiological effects in animal models of depression, encompassing modulation of the brain, serum, and brain-gut axis. These effects are attributed to various mechanisms, including anti-inflammatory and anti-oxidative actions, promotion of neuronal plasticity, neuroprotection, neurotrophic effects, modulation of neurotransmitters, regulation of endocrine and immune functions, and modulation of cell signal pathways. Currently, the therapeutic mechanism of acupuncture involves the engagement of multiple targets, pathways, and bidirectional regulation. Hence, acupuncture emerges as a promising alternative medical modality, exhibiting substantial research prospects and meriting comprehensive worth further study and dissemination.
Collapse
Affiliation(s)
- Peng Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Department of clinical medicine, Xiamen medical college, xiamen, China
| | - Jiangna Zhao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiuxiang Wei
- Rehabilitation Medicine Department, Shenzhen Hospital of Traditional Chinese and Western Medicine , Shenzhen, China
| | - Longfei Luo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuzhou Chu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tao Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Anning Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - Juntao Yan
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
2
|
Li J, Jin S, Hu J, Xu R, Xu J, Li Z, Wang M, Fu Y, Liao S, Li X, Chen Y, Gao T, Yang J. Astrocytes in the Ventral Hippocampus Bidirectionally Regulate Innate and Stress-Induced Anxiety-Like Behaviors in Male Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400354. [PMID: 39120568 PMCID: PMC11481230 DOI: 10.1002/advs.202400354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The mechanisms of anxiety disorders, the most common mental illness, remain incompletely characterized. The ventral hippocampus (vHPC) is critical for the expression of anxiety. However, current studies primarily focus on vHPC neurons, leaving the role for vHPC astrocytes in anxiety largely unexplored. Here, genetically encoded Ca2+ indicator GCaMP6m and in vivo fiber photometry calcium imaging are used to label vHPC astrocytes and monitor their activity, respectively, genetic and chemogenetic approaches to inhibit and activate vHPC astrocytes, respectively, patch-clamp recordings to measure glutamate currents, and behavioral assays to assess anxiety-like behaviors. It is found that vHPC astrocytic activity is increased in anxiogenic environments and by 3-d subacute restraint stress (SRS), a well-validated mouse model of anxiety disorders. Genetic inhibition of vHPC astrocytes exerts anxiolytic effects on both innate and SRS-induced anxiety-related behaviors, whereas hM3Dq-mediated chemogenetic or SRS-induced activation of vHPC astrocytes enhances anxiety-like behaviors, which are reversed by intra-vHPC application of the ionotropic glutamate N-methyl-d-aspartate receptor antagonists. Furthermore, intra-vHPC or systemic application of the N-methyl-d-aspartate receptor antagonist memantine, a U.S. FDA-approved drug for Alzheimer's disease, fully rescues SRS-induced anxiety-like behaviors. The findings highlight vHPC astrocytes as critical regulators of stress and anxiety and as potential therapeutic targets for anxiety and anxiety-related disorders.
Collapse
Affiliation(s)
- Jing‐Ting Li
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Shi‐Yang Jin
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jian Hu
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Ru‐Xia Xu
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jun‐Nan Xu
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zi‐Ming Li
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Meng‐Ling Wang
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yi‐Wen Fu
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Shi‐Han Liao
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xiao‐Wen Li
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yi‐Hua Chen
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Tian‐Ming Gao
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jian‐Ming Yang
- State Key Laboratory of Organ Failure ResearchKey Laboratory of Mental Health of the Ministry of EducationGuangdong‐Hong Kong‐Macao Greater Bay Area Center for Brain Science and Brain‐Inspired IntelligenceGuangdong Province Key Laboratory of Psychiatric DisordersDepartment of NeurobiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
3
|
Fu YW, Jin SY, Li JT, Li XW, Gao TM, Yang JM. Mature astrocytes as source for astrocyte repopulation after deletion in the medial prefrontal cortex: Implications for depression. Glia 2024; 72:1646-1662. [PMID: 38801194 DOI: 10.1002/glia.24573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The adult brain retains a high repopulation capacity of astrocytes after deletion, and both mature astrocytes in the neocortex and neural stem cells in neurogenic regions possess the potential to generate astrocytes. However, the origin and the repopulation dynamics of the repopulating astrocytes after deletion remain largely unclear. The number of astrocytes is reduced in the medial prefrontal cortex (mPFC) of patients with depression, and selective elimination of mPFC astrocytes is sufficient to induce depression-like behaviors in rodents. However, whether astrocyte repopulation capacity is impaired in depression is unknown. In this study, we used different transgenic mouse lines to genetically label different cell types and demonstrated that in the mPFC of normal adult mice of both sexes, mature astrocytes were a major source of the repopulating astrocytes after acute deletion induced by an astrocyte-specific toxin, L-alpha-aminoadipic acid (L-AAA), and astrocyte regeneration was accomplished within two weeks accompanied by reversal of depression-like behaviors. Furthermore, re-ablation of mPFC astrocytes post repopulation led to reappearance of depression-like behaviors. In adult male mice subjected to 14-day chronic restraint stress, a well-validated mouse model of depression, the number of mPFC astrocytes was reduced; however, the ability of mPFC astrocytes to repopulate after L-AAA-induced deletion was largely unaltered. Our study highlights a potentially beneficial role for repopulating astrocytes in depression and provides novel therapeutic insights into enhancing local mature astrocyte generation in depression.
Collapse
Affiliation(s)
- Yi-Wen Fu
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jing-Ting Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- State Key Laboratory of Organ Failure Research, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
4
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
5
|
Domin H, Konieczny J, Cieślik P, Pochwat B, Wyska E, Szafarz M, Lenda T, Biała D, Gąsior Ł, Śmiałowska M, Szewczyk B. The antidepressant-like and glioprotective effects of the Y2 receptor antagonist SF-11 in the astroglial degeneration model of depression in rats: Involvement of glutamatergic inhibition. Behav Brain Res 2024; 457:114729. [PMID: 37871655 DOI: 10.1016/j.bbr.2023.114729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
In this study, we explored the potential antidepressant-like properties of the brain-penetrant Y2 receptor (Y2R) antagonist SF-11 [N-(4-ethoxyphenyl)- 4-(hydroxydiphenylmethyl)- 1-piperidinecarbothioamide] in the astroglial degeneration model of depression with an emphasis on checking the possible mechanisms implicated in this antidepressant-like effect. The model of depression relies on the loss of astrocytes in the medial prefrontal cortex (mPFC) in Sprague-Dawley rats after administering the gliotoxin L-alpha-aminoadipic acid (L-AAA). SF-11 was administered intraperitoneally (i.p.) once (10 mg/kg) or for three consecutive days (10 mg/kg/day), and the effects of L-AAA and SF-11 injected alone or in combination were investigated using the forced swim test (FST), sucrose intake test (SIT), Western blotting, immunohistochemical staining, and microdialysis. SF-11 produced an antidepressant-like effect after single or three-day administration in rats subjected to astrocyte impairment, as demonstrated by the FST and SIT, respectively. Immunoblotting and immunohistochemical analyses showed that SF-11 reversed the L-AAA-induced astrocyte cell death in the mPFC, suggesting it is glioprotective. Microdialysis studies showed that SF-11 decreased extracellular glutamate (Glu) levels compared to basal value when administered alone and compared to the basal value and control group in LAAA-treated rats. The results from immunoblotting analysis indicated the involvement of Y2Rs in the astrocyte ablation model of depression and the antidepressant-like effect of SF-11. In addition, we observed the participation of the caspase-3 apoptotic pathway in the mechanism of gliotoxin action induced by L-AAA. These findings demonstrate that SF-11, a Y2R antagonist, elicited a rapid antidepressant-like response, possibly linked to its ability to inhibit glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Helena Domin
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland.
| | - Jolanta Konieczny
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Paulina Cieślik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Bartłomiej Pochwat
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Elżbieta Wyska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Małgorzata Szafarz
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmacokinetics and Physical Pharmacy, Medyczna 9, 30-688 Kraków, Poland
| | - Tomasz Lenda
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Dominika Biała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neuropsychopharmacology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Łukasz Gąsior
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Maria Śmiałowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| | - Bernadeta Szewczyk
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Neurobiology, 12 Smętna Street, 31-343 Kraków, Poland
| |
Collapse
|
6
|
Zhang Y, Chen X, Mo X, Xiao R, Cheng Q, Wang H, Liu L, Xie P. Enterogenic metabolomics signatures of depression: what are the possibilities for the future. Expert Rev Proteomics 2023; 20:397-418. [PMID: 37934939 DOI: 10.1080/14789450.2023.2279984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION An increasing number of studies indicate that the microbiota-gut-brain axis is an important pathway involved in the onset and progression of depression. The responses of the organism (or its microorganisms) to external cues cannot be separated from a key intermediate element: their metabolites. AREAS COVERED In recent years, with the rapid development of metabolomics, an increasing amount of metabolites has been detected and studied, especially the gut metabolites. Nevertheless, the increasing amount of metabolites described has not been reflected in a better understanding of their functions and metabolic pathways. Moreover, our knowledge of the biological interactions among metabolites is also incomplete, which limits further studies on the connections between the microbial-entero-brain axis and depression. EXPERT OPINION This paper summarizes the current knowledge on depression-related metabolites and their involvement in the onset and progression of this disease. More importantly, this paper summarized metabolites from the intestine, and defined them as enterogenic metabolites, to further clarify the function of intestinal metabolites and their biochemical cross-talk, providing theoretical support and new research directions for the prevention and treatment of depression.
Collapse
Affiliation(s)
- Yangdong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xueyi Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Xiaolong Mo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xiao
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Faculty of Basic Medicine, Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Qisheng Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lanxiang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
David-Bercholz J, Acker L, Caceres AI, Wu PY, Goenka S, Franklin NO, Rodriguiz RM, Wetsel WC, Devinney M, Wright MC, Zetterberg H, Yang T, Berger M, Terrando N. Conserved YKL-40 changes in mice and humans after postoperative delirium. Brain Behav Immun Health 2022; 26:100555. [PMID: 36457825 PMCID: PMC9706140 DOI: 10.1016/j.bbih.2022.100555] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Delirium is a common postoperative neurologic complication among older adults. Despite its prevalence (14%-50%) and likely association with inflammation, the exact mechanisms that underpin postoperative delirium are unclear. This project aimed to characterize systemic and central nervous system (CNS) inflammatory changes following surgery in mice and humans. Matched plasma and cerebrospinal fluid (CSF) samples from the "Investigating Neuroinflammation Underlying Postoperative Brain Connectivity Changes, Postoperative Cognitive Dysfunction, Delirium in Older Adults" (INTUIT; NCT03273335) study were compared to murine endpoints. Delirium-like behavior was evaluated in aged mice using the 5-Choice Serial Reaction Time Test (5-CSRTT). Using a well established orthopedic surgical model in the FosTRAP reporter mouse we detected neuronal changes in the prefrontal cortex, an area implicated in attention, but notably not in the hippocampus. In aged mice, plasma interleukin-6 (IL-6), chitinase-3-like protein 1 (YKL-40), and neurofilament light chain (NfL) levels increased after orthopedic surgery, but hippocampal YKL-40 expression was decreased. Given the growing evidence for a YKL-40 role in delirium and other neurodegenerative conditions, we assayed human plasma and CSF samples. Plasma YKL-40 levels were similarly increased after surgery, with a trend toward a greater postoperative plasma YKL-40 increase in patients with delirium. However, YKL-40 levels in CSF decreased following surgery, which paralleled the findings in the mouse brain. Finally, we confirmed changes in the blood-brain barrier (BBB) as early as 9 h after surgery in mice, which warrants more detailed and acute evaluations of BBB integrity following surgery in humans. Together, these results provide a nuanced understanding of neuroimmune interactions underlying postoperative delirium in mice and humans, and highlight translational biomarkers to test potential cellular targets and mechanisms.
Collapse
Key Words
- 4-OHT, 4-hydroxytamoxifen
- 5-CSRTT, 5-Choice Serial Reaction Time Test
- AD, Alzheimer’s disease
- Aging
- Attention
- BBB, blood-brain barrier
- Biomarkers
- CAM, Confusion AssessmentMethod
- CNS, central nervous system
- CSF, cerebrospinal fluid
- Delirium
- ELISA, enzyme-linked immunosorbent assay
- GFAP, glial fibrillary acidic protein
- IHC, immunohistochemistry
- IL-6, interleukin-6
- MMSE, mini-mental status exam
- NfL, neurofilament light chain
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- PLC, prelimbic cortex
- ROI, regions of interest
- SIMOA, single molecule array
- Surgery
- TRAP, Targeted Recombination in Active Populations
- YKL-40
- YKL-40, chitinase-3-like protein 1
Collapse
Affiliation(s)
| | - Leah Acker
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Ana I. Caceres
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Pau Yen Wu
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Saanvi Goenka
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Nathan O. Franklin
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
| | - Ramona M. Rodriguiz
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
| | - William C. Wetsel
- Department of Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, NC, United States
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Michael Devinney
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Mary Cooter Wright
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Ting Yang
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
8
|
Lei L, Ji M, Yang J, Chen S, Gu H, Yang JJ. Gut microbiota-mediated metabolic restructuring aggravates emotional deficits after anesthesia/surgery in rats with preoperative stress. Front Immunol 2022; 13:819289. [PMID: 36003406 PMCID: PMC9393357 DOI: 10.3389/fimmu.2022.819289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Patients with preoperative stress are prone to postoperative emotional deficits. However, the underlying mechanisms are largely unknown. Here, we characterize the changes of microbial composition and specific metabolites after anesthesia/surgery in rats with preoperative stress based on 16S rRNA gene sequencing and non-targeted metabolomics technique. Consequently, we found that anesthesia/surgery aggravated anxiety-like and depression-like behaviors in rats under preoperative stress. Microglia were activated and pro-inflammatory cytokines, including interleukin 6 (IL-6) and tumor necrosis factor ɑ (TNF-α) were upregulated after anesthesia/surgery. The postoperative gut microbiota and metabolite composition of rats exposed to preoperative stress differed from those of control rats. Lastly, emotional impairments, metabolic alterations, and neuroinflammation returned normal in antibiotics-treated rats. Our findings provide further evidence that abnormalities in the gut microbiota contribute to postoperative metabolic restructuring, neuroinflammation, and psychiatric deficits in rats under preoperative stress.
Collapse
Affiliation(s)
- Lei Lei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition, and Emotion, Zhengzhou, China
| | - Muhuo Ji
- Department of Anesthesiology, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jinjin Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sai Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanwen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Province International Joint Laboratory of Pain, Cognition, and Emotion, Zhengzhou, China
- *Correspondence: Jian-jun Yang,
| |
Collapse
|
9
|
Liu X, Wang J. NMDA receptors mediate synaptic plasticity impairment of hippocampal neurons due to arsenic exposure. Neuroscience 2022; 498:300-310. [PMID: 35905926 DOI: 10.1016/j.neuroscience.2022.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022]
Abstract
Endemic arsenism is a worldwide health problem. Chronic arsenic exposure results in cognitive dysfunction due to arsenic and its metabolites accumulating in hippocampus. As the cellular basis of cognition, synaptic plasticity is pivotal in arsenic-induced cognitive dysfunction. N-methyl-D-aspartate receptors (NMDARs) serve physiological functions in synaptic transmission. However, excessive NMDARs activity contributes to exitotoxicity and synaptic plasticity impairment. Here, we provide an overview of the mechanisms that NMDARs and their downstream signaling pathways mediate synaptic plasticity impairment due to arsenic exposure in hippocampal neurons, ways of arsenic exerting on NMDARs, as well as the potential therapeutic targets except for water improvement.
Collapse
Affiliation(s)
- Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081
| | - Jing Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, National Health Commission & Education Bureau of Heilongjiang Province, Key Laboratory of Etiology and Epidemiology, Harbin Medical University(23618504), Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, China, 150081.
| |
Collapse
|
10
|
Li Y, Guo Q, Huang J, Wang Z. Antidepressant Active Ingredients From Chinese Traditional Herb Panax Notoginseng: A Pharmacological Mechanism Review. Front Pharmacol 2022; 13:922337. [PMID: 35795547 PMCID: PMC9252462 DOI: 10.3389/fphar.2022.922337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Depression is one of the most common mental illnesses in the world and is highly disabling, lethal, and seriously endangers social stability. The side effects of clinical drugs used to treat depression are obvious, and the onset time is longer. Therefore, there is a great demand for antidepressant drugs with better curative effects, fewer side effects, and shorter onset time. Panax notoginseng, a Chinese herbal medication, has been used to treat depression for thousands of years and shown to have a therapeutic effect on depression. This review surveyed PubMed’s most recent 20 years of research on Panax notoginseng’s use for treating depression. We mainly highlight animal model research and outlined the pathways influenced by medicines. We provide a narrative review of recent empirical evidence of the anti-depressive effects of Panax Notoginseng and novel ideas for developing innovative clinical antidepressants with fewer side effects.
Collapse
Affiliation(s)
- Yanwei Li
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qingwan Guo
- Interdisciplinary Institute for Personalized Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Junqing Huang
- Guangzhou Key Laboratory of Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Junqing Huang, ; Ziying Wang,
| | - Ziying Wang
- Interdisciplinary Institute for Personalized Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- *Correspondence: Junqing Huang, ; Ziying Wang,
| |
Collapse
|
11
|
Hastings N, Kuan WL, Osborne A, Kotter MRN. Therapeutic Potential of Astrocyte Transplantation. Cell Transplant 2022; 31:9636897221105499. [PMID: 35770772 PMCID: PMC9251977 DOI: 10.1177/09636897221105499] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell transplantation is an attractive treatment strategy for a variety of brain disorders, as it promises to replenish lost functions and rejuvenate the brain. In particular, transplantation of astrocytes has come into light recently as a therapy for amyotrophic lateral sclerosis (ALS); moreover, grafting of astrocytes also showed positive results in models of other conditions ranging from neurodegenerative diseases of older age to traumatic injury and stroke. Despite clear differences in etiology, disorders such as ALS, Parkinson's, Alzheimer's, and Huntington's diseases, as well as traumatic injury and stroke, converge on a number of underlying astrocytic abnormalities, which include inflammatory changes, mitochondrial damage, calcium signaling disturbance, hemichannel opening, and loss of glutamate transporters. In this review, we examine these convergent pathways leading to astrocyte dysfunction, and explore the existing evidence for a therapeutic potential of transplantation of healthy astrocytes in various models. Existing literature presents a wide variety of methods to generate astrocytes, or relevant precursor cells, for subsequent transplantation, while described outcomes of this type of treatment also differ between studies. We take technical differences between methodologies into account to understand the variability of therapeutic benefits, or lack thereof, at a deeper level. We conclude by discussing some key requirements of an astrocyte graft that would be most suitable for clinical applications.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei-Li Kuan
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Andrew Osborne
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Pereira MF, Amaral IM, Lopes C, Leitão C, Madeira D, Lopes JP, Gonçalves FQ, Canas PM, Cunha RA, Agostinho P. l-α-aminoadipate causes astrocyte pathology with negative impact on mouse hippocampal synaptic plasticity and memory. FASEB J 2021; 35:e21726. [PMID: 34196433 DOI: 10.1096/fj.202100336r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/26/2022]
Abstract
Increasing evidence shows that astrocytes, by releasing and uptaking neuroactive molecules, regulate synaptic plasticity, considered the neurophysiological basis of memory. This study investigated the impact of l-α-aminoadipate (l-AA) on astrocytes which sense and respond to stimuli at the synaptic level and modulate hippocampal long-term potentiation (LTP) and memory. l-AA selectivity toward astrocytes was proposed in the early 70's and further tested in different systems. Although it has been used for impairing the astrocytic function, its effects appear to be variable in different brain regions. To test the effects of l-AA in the hippocampus of male C57Bl/6 mice we performed two different treatments (ex vivo and in vivo) and took advantage of other compounds that were reported to affect astrocytes. l-AA superfusion did not affect the basal synaptic transmission but decreased LTP magnitude. Likewise, trifluoroacetate and dihydrokainate decreased LTP magnitude and occluded the effect of l-AA on synaptic plasticity, confirming l-AA selectivity. l-AA superfusion altered astrocyte morphology, increasing the length and complexity of their processes. In vivo, l-AA intracerebroventricular injection not only reduced the astrocytic markers but also LTP magnitude and impaired hippocampal-dependent memory in mice. Interestingly, d-serine administration recovered hippocampal LTP reduction triggered by l-AA (2 h exposure in hippocampal slices), whereas in mice injected with l-AA, the superfusion of d-serine did not fully rescue LTP magnitude. Overall, these data show that both l-AA treatments affect astrocytes differently, astrocytic activation or loss, with similar negative outcomes on hippocampal LTP, implying that opposite astrocytic adaptive alterations are equally detrimental for synaptic plasticity.
Collapse
Affiliation(s)
| | - Inês M Amaral
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Cátia Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Catarina Leitão
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Daniela Madeira
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - João P Lopes
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | | | - Paula M Canas
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal
| | - Rodrigo A Cunha
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| | - Paula Agostinho
- Center for Neuroscience and Cell Biology, CNC, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, FMUC, Coimbra, Portugal
| |
Collapse
|
13
|
Yin YY, Wang YH, Liu WG, Yao JQ, Yuan J, Li ZH, Ran YH, Zhang LM, Li YF. The role of the excitation:inhibition functional balance in the mPFC in the onset of antidepressants. Neuropharmacology 2021; 191:108573. [PMID: 33945826 DOI: 10.1016/j.neuropharm.2021.108573] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Currently available antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), generally require weeks to months to produce a therapeutic response, but the mechanism of action underlying the delayed onset of antidepressant-like action remains to be elucidated. The balance between excitatory glutamatergic pyramidal neurons and inhibitory γ-aminobutyric acid (GABA) interneurons, i.e., the excitation:inhibition functional (E:I) balance, in the medial prefrontal cortex (mPFC) is critical in regulating several behaviors and might play an important mediating role in the mechanism of rapid antidepressant-like action reported by several studies. In the present study, the multichannel electrophysiological technique was used to record the firing activities of pyramidal neurons and interneurons and investigate the effects of a single dose of fluoxetine and ketamine (both 10 mg/kg, i.p.) on the E:I functional balance in the rat mPFC after 90 min or 24 h, and the forced swimming test (FST) was used to evaluate the antidepressant-like effects of fluoxetine and ketamine. The present study also explored the effects of chronic treatment with fluoxetine (10 mg/kg, i.g.) for 7 d or 21 d on the E:I functional balance in the mPFC. The present results suggested that a single dose of ketamine could both significantly increase the firing activities of pyramidal neurons and significantly decrease the firing activities of interneurons in the mPFC and exerted significant antidepressant-like action on the FST after 90 min and 24 h, but fluoxetine had no such effects under the same conditions. However, chronic treatment with fluoxetine for 21 d (but not 7 d) could significantly affect the firing activities of pyramidal neurons and interneurons in the mPFC. Taken together, the present results indicated that rapid regulation of the E:I functional balance in the mPFC might be an important common mechanism of rapid-acting antidepressants and the delayed onset of SSRIs might be partly attributed to their inability to rapidly regulate the E:I functional balance in the mPFC. The present study provided a new entry point to the development of rapid-acting antidepressants.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Hui Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | | | - Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jin Yuan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Ze-Han Li
- Capital Normal University High School, Beijing, China
| | - Yu-Hua Ran
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
14
|
Charvériat M, Guiard BP. Serotonergic neurons in the treatment of mood disorders: The dialogue with astrocytes. PROGRESS IN BRAIN RESEARCH 2021; 259:197-228. [PMID: 33541677 DOI: 10.1016/bs.pbr.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Astrocytes were traditionally regarded as cells important to neuronal activity, providing both metabolic and structural supports. Recent evidence suggests that they may also play a crucial role in the control of higher brain functions. In keeping with this hypothesis, it is now well accepted that astrocytes contribute to stress but also react to antidepressant drugs as they express serotonergic transporters and receptors. However, the downstream mechanisms leading to the fine-tuned regulation of mood are still unknown. This chapter pays attention to the role of astrocytes in the regulation of emotional behavior and related serotonergic neurotransmission. In particular, it gives a current state of the clinical and preclinical evidence showing that astrocytes respond to environmental conditions and antidepressant drugs through the release of gliotransmitters and neurotrophic factors which in turn, influence serotonergic tone in discrete brain areas. This state-of-the-art review aims at demonstrating the remarkable potential for novel therapeutic antidepressant strategies targeting these glial cells.
Collapse
Affiliation(s)
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
15
|
Portal B, Guiard BP. [Role of astrocytic connexins in the regulation of extracellular glutamate levels: implication for the treatment of major depressive episodes]. Biol Aujourdhui 2020; 214:71-83. [PMID: 33357364 DOI: 10.1051/jbio/2020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 11/14/2022]
Abstract
Major depression is a psychiatric disorder relying on different neurobiological mechanisms. In particular, a hypersensitivity of the hypothalamic-pituitary-adrenal axis leading to an excess of cortisol in blood and a deficit in monoaminergic neurotransmission have been associated with mood disorders. In keeping with these mechanisms, currently available antidepressant drugs act by increasing the extracellular levels of monoamines in the synaptic cleft. Since the discovery of the rapid and long-lasting antidepressant effects of ketamine, an NMDA receptor antagonist, a growing attention in psychiatry is paid to the pharmacological tools able to attenuate glutamatergic neurotransmission. Astrocytes play an important role in the excitatory/inhibitory balance of the central nervous system through the regulation of glutamate reuptake and secretion. Interestingly, the release of this excitatory amino acid is controlled, at least in part, by plasma membrane proteins (i.e. connexins) that cluster together to form gap junctions or hemichannels. Preclinical evidence suggests that these functional entities play a critical role in emotional behaviour. After a brief overview of the literature on mood disorders and related treatments, this review describes the role of astrocytes and connexins in glutamatergic neurotransmission and major depression. Moreover, we highlight the arguments supporting the therapeutic potential of connexins blockers but also the practical difficulties to target the hemichannels while maintaining gap junctions intact.
Collapse
Affiliation(s)
- Benjamin Portal
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000 Toulouse, France
| | - Bruno P Guiard
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, 31000 Toulouse, France
| |
Collapse
|
16
|
Stenovec M, Li B, Verkhratsky A, Zorec R. Astrocytes in rapid ketamine antidepressant action. Neuropharmacology 2020; 173:108158. [PMID: 32464133 DOI: 10.1016/j.neuropharm.2020.108158] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/14/2022]
Abstract
Ketamine, a general anaesthetic and psychotomimetic drug, exerts rapid, potent and long-lasting antidepressant effect, albeit the cellular and molecular mechanisms of this action are yet to be discovered. Besides targeting neuronal NMDARs fundamental for synaptic transmission, ketamine affects the function of astroglia the key homeostatic cells of the central nervous system that contribute to pathophysiology of psychiatric diseases including depression. Here we review studies revealing that (sub)anaesthetic doses of ketamine elevate intracellular cAMP concentration ([cAMP]i) in astrocytes, attenuate stimulus-evoked astrocyte calcium signalling, which regulates exocytotic secretion of gliosignalling molecules, and stabilize the vesicle fusion pore in a narrow configuration possibly hindering cargo discharge or vesicle recycling. Next we discuss how ketamine affects astroglial capacity to control extracellular K+ by reducing cytoplasmic mobility of vesicles delivering the inward rectifying potassium channel (Kir4.1) to the plasmalemma. Modified astroglial K+ buffering impacts upon neuronal excitability as demonstrated in the lateral habenula rat model of depression. Finally, we highlight the recent discovery that ketamine rapidly redistributes cholesterol in the plasmalemma of astrocytes, but not in fibroblasts nor in neuronal cells. This alteration of membrane structure may modulate a host of processes that synergistically contribute to ketamine's rapid and prominent antidepressant action.
Collapse
Affiliation(s)
- Matjaž Stenovec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| | - Baoman Li
- Practical Teaching Centre, School of Forensic Medicine, China Medical University, Shenyang, People's Republic of China; Department of Poison Analysis, School of Forensic Medicine, China Medical University, Shenyang, China.
| | - Alexei Verkhratsky
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, 48011, Bilbao, Spain.
| | - Robert Zorec
- Celica BIOMEDICAL, Tehnološki Park 24, 1000, Ljubljana, Slovenia; Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000, Ljubljana, Slovenia.
| |
Collapse
|
17
|
Portal B, Delcourte S, Rovera R, Lejards C, Bullich S, Malnou CE, Haddjeri N, Déglon N, Guiard BP. Genetic and pharmacological inactivation of astroglial connexin 43 differentially influences the acute response of antidepressant and anxiolytic drugs. Acta Physiol (Oxf) 2020; 229:e13440. [PMID: 31925934 DOI: 10.1111/apha.13440] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022]
Abstract
AIM Astroglial connexins (Cxs) 30 and 43 are engaged in gap junction and hemichannel activities. Evidence suggests that these functional entities contribute to regulating neurotransmission, thereby influencing brain functions. In particular, preclinical and clinical findings highlight a role of Cx43 in animal models of depression. However, the role of these proteins in response to currently available psychotropic drugs is still unknown. METHODS To investigate this, we evaluated the behavioural effects of the genetic and pharmacological inactivation of Cx43 on the antidepressant- and anxiolytic-like activities of the selective serotonin reuptake inhibitor fluoxetine and the benzodiazepine diazepam, respectively. RESULTS A single administration of fluoxetine (18 mg/kg; i.p.) produced a higher increase in hippocampal extracellular serotonin levels, and a greater antidepressant-like effect in the tail suspension test in Cx43 knock-down (KD) mice bred on a C57BL/6 background compared to their wild-type littermates. Similarly, in outbred Swiss wild-type mice, the intra-hippocampal injection of a shRNA-Cx43 or the acute systemic injection of the Cxs inhibitor carbenoxolone (CBX: 10 mg/kg; i.p.) potentiated the antidepressant-like effects of fluoxetine. Evaluating the effects of such strategies on diazepam (0.5 mg/kg; i.p.), the results indicate that Cx43 KD mice or wild-types injected with a shRNA-Cx43 in the amygdala, but not in the hippocampus, attenuated the anxiolytic-like effects of this benzodiazepine in the elevated plus maze. The chronic systemic administration of CBX mimicked the latter observations. CONCLUSION Collectively, these data pave the way to the development of potentiating strategies in the field of psychiatry based on the modulation of astroglial Cx43.
Collapse
Affiliation(s)
- Benjamin Portal
- Centre de Recherches sur la Cognition Animale (CRCA) Centre de Biologie Intégrative (CBI) Université Paul Sabatier Toulouse III Toulouse France
| | - Sarah Delcourte
- Univ Lyon Université Claude Bernard Lyon 1 Inserm Stem Cell and Brain Research Institute U1208 Bron France
| | - Renaud Rovera
- Univ Lyon Université Claude Bernard Lyon 1 Inserm Stem Cell and Brain Research Institute U1208 Bron France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale (CRCA) Centre de Biologie Intégrative (CBI) Université Paul Sabatier Toulouse III Toulouse France
| | - Sebastien Bullich
- Centre de Recherches sur la Cognition Animale (CRCA) Centre de Biologie Intégrative (CBI) Université Paul Sabatier Toulouse III Toulouse France
| | - Cécile E. Malnou
- Centre de Physiopathologie Toulouse‐Purpan (CPTP) INSERM CNRS Université de Toulouse Toulouse France
| | - Nasser Haddjeri
- Univ Lyon Université Claude Bernard Lyon 1 Inserm Stem Cell and Brain Research Institute U1208 Bron France
| | - Nicole Déglon
- Department of Clinical Neurosciences Laboratory of Neurotherapies and Neuromodulation (LNTM) Lausanne University Hospital Lausanne Switzerland
- Neuroscience Research Center LNTM Lausanne University Hospital Lausanne Switzerland
| | - Bruno P. Guiard
- Centre de Recherches sur la Cognition Animale (CRCA) Centre de Biologie Intégrative (CBI) Université Paul Sabatier Toulouse III Toulouse France
- Faculté de Pharmacie Université Paris Sud Université Paris‐Saclay Chatenay‐Malabry France
| |
Collapse
|
18
|
Antidepressant effects of ginsenoside Rf on behavioral change in the glial degeneration model of depression by reversing glial loss. J Ginseng Res 2019; 44:603-610. [PMID: 32617040 PMCID: PMC7322760 DOI: 10.1016/j.jgr.2019.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Depression is a common neuropsychiatric disease that shows astrocyte pathology. Ginsenoside Rf (G-Rf) is a saponin found in Panax ginseng which has been used to treat neuropsychiatric diseases. We aimed to investigate antidepressant properties of G-Rf when introduced into the L-alpha-aminoadipic acid (L-AAA)–infused mice model which is representative of a major depressive disorder that features diminished astrocytes in the brain. Methods L-AAA was infused into the prefrontal cortex (PFC) of mice to induce decrease of astrocytes. Mice were orally administered G-Rf (20 mg/kg) as well as vehicle only or imipramine (20 mg/kg) as controls. Depression-like behavior of mice was evaluated using forced swimming test (FST) and tail suspension test (TST). We observed recovery of astroglial impairment and increased proliferative cells in the PFC and its accompanied change in the hippocampus by Western blot and immunohistochemistry to assess the effect of G-Rf. Results After injection of L-AAA into the PFC, mice showed increased immobility time in FST and TST and loss of astrocytes without significant neuronal change in the PFC. G-Rf–treated mice displayed significantly more decreased immobility time in FST and TST than did vehicle-treated mice, and their immobility time almost recovered to those of the sham mice and imipramine-treated mice. G-Rf upregulated glial fibrillary acidic protein (GFAP) expression and Ki-67 expression in the PFC reduced by L-AAA and also alleviated astroglial change in the hippocampus. Conclusion G-Rf markedly reversed depression-like behavioral changes and exhibited protective effect against the astrocyte ablation in the PFC induced by L-AAA. These protective properties suggest that G-Rf might be a therapeutic agent for major depressive disorders.
Collapse
|