1
|
Wang L, Yu C, Zhang Y, Xiao J, Liu ZY, Gao J. Associations of the intake of individual and multiple fatty acids with depressive symptoms among adults in NHANES 2007-2018. J Affect Disord 2024; 365:364-374. [PMID: 39173925 DOI: 10.1016/j.jad.2024.08.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/20/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Previous studies have mainly focused on the effects of individual fatty acids on depressive symptoms, while the combined effect of fatty acids on the risk of depressive symptoms has not yet been extensively reported. This study evaluate the associations between individual and multiple fatty acids with depressive symptoms in U.S. adults. METHODS Data sets were obtained from the National Health and Nutrition Examination Survey (NHANES) 2007-2018 cycles. Both males and females aged above 18 years with complete information about dietary fatty acids intake, depression symptoms, and covariates were included. Weighted linear regression models were conducted to evaluate the relationships between individual fatty acid intake and depressive symptoms, and restricted cubic spline (RCS) models were utilized to explore the corresponding dose-response relationships. Additionally, we implemented the weighted quantile sum (WQS) regression and quantile g-computation (QGC) models to estimate the mixed effects of 19 fatty acids and identify the predominant types. RESULTS After multivariable adjustments, an increase of one unit in Linoleic acid (LA), Alpha-Linolenic Acid (ALA), Arachidonic acid (AA), Docosapentaenoic acid(DPA), Docosahexaenoic acid(DHA), was associated with a decrease in depressive scores by -0.021 (95 % CI: -0.039,-0.003, p = 0.021),-0.028 (95 % CI: -0.045,-0.011, p = 0.002),-0.026 (95 % CI: -0.044,-0.008, p = 0.005), -0.026 (95 % CI: -0.042,-0.009, p = 0.003), and - 0.022 (95 % CI: -0.041,-0.003, p = 0.022), respectively. However, a per unit increase in Hexanoic acid and Octanoic acid was associated with an increase in depressive scores of 0.020 (95 % CI: 0.002,0.038, p = 0.029) and 0.026 (95 % CI: 0.004,0.048, p = 0.020), respectively. Meanwhile, significant dose-response relationships were supported by the RCS models. As for the mixed effects, both WQS and QGC models demonstrated that the mixture of polyunsaturated fatty acids (PUFAs) was inversely related to depressive symptoms, and ALA and DPA were the most critical contributors. DHA was negatively correlated with depressive symptoms in WQS analysis, but positively correlated with depressive symptoms in QGC analysis. LIMITATIONS The cross-sectional design limits our ability to establish causality, and 24-hour dietary recall can lead to potential inaccuracies reflecting participants' true eating habits. CONCLUSION Our study suggests that the single effects of each PUFA were inversely associated with depressive symptoms, except for octadecatetraenoic acid. Moreover, higher combined intake of dietary PUFAs is inversely associated with depressive symptoms in U.S. adults. Among the mixed effects of PUFAs, ALA and DPA may play predominant roles. However, DHA mixed with other fatty acids may have different effects on depressive symptoms, and further study is needed.
Collapse
Affiliation(s)
- Lujie Wang
- Department of Psychiatry, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chuanchuan Yu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuan Zhang
- Internal medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianyun Xiao
- Department of Psychiatry, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhao-Yan Liu
- Department of Nutrition, School of Public Health, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Jian Gao
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Department of Epidemiology, School of Public Health, Guangzhou, China.
| |
Collapse
|
2
|
Cardona E, Segret E, Heraud C, Roy J, Vigor C, Gros V, Reversat G, Sancho-Zubeldia B, Oger C, Durbec A, Bertrand-Michel J, Surget A, Galano JM, Corraze G, Cachelou Y, Marchand Y, Durand T, Cachelou F, Skiba-Cassy S. Adverse effects of excessive dietary arachidonic acid on survival, PUFA-derived enzymatic and non-enzymatic oxylipins, stress response in rainbow trout fry. Sci Rep 2024; 14:12376. [PMID: 38811794 PMCID: PMC11137042 DOI: 10.1038/s41598-024-63173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Arachidonic acid (C20: 4n-6, AA) plays a fundamental role in fish physiology, influencing growth, survival and stress resistance. However, imbalances in dietary AA can have detrimental effects on fish health and performance. Optimal AA requirements for rainbow trout have not been established. This study aimed to elucidate the effects of varying dietary AA levels on survival, growth, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic capacity, oxylipin profiles, lipid peroxidation, and stress resistance of rainbow trout fry. Over a period of eight weeks, 4000 female rainbow trout fry at the resorptive stage (0.12 g) from their first feeding were fed diets with varying levels of AA (0.6%, 1.1% or 2.5% of total fatty acids) while survival and growth metrics were closely monitored. The dietary trial was followed by an acute confinement stress test. Notably, while the fatty acid profiles of the fish reflected dietary intake, those fed an AA-0.6% diet showed increased expression of elongase5, highlighting their inherent ability to produce LC-PUFAs from C18 PUFAs and suggesting potential AA or docosapentaenoic acidn-6 (DPAn-6) biosynthesis. However, even with this biosynthetic capacity, the trout fed reduced dietary AA had higher mortality rates. The diet had no effect on final weight (3.38 g on average for the three diets). Conversely, increased dietary AA enhanced eicosanoid production from AA, suggesting potential inflammatory and oxidative consequences. This was further evidenced by an increase in non-enzymatic lipid oxidation metabolites, particularly in the AA-2.5% diet group, which had higher levels of phytoprostanes and isoprostanes, markers of cellular oxidative damage. Importantly, the AA-1.1% diet proved to be particularly beneficial for stress resilience. This was evidenced by higher post-stress turnover rates of serotonin and dopamine, neurotransmitters central to the fish's stress response. In conclusion, a dietary AA intake of 1.1% of total fatty acids appears to promote overall resilience in rainbow trout fry.
Collapse
Affiliation(s)
- Emilie Cardona
- Viviers de Rébénacq, 64260, Rébénacq, France.
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France.
| | | | - Cécile Heraud
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | - Jerome Roy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | - Claire Vigor
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Valérie Gros
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Guillaume Reversat
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | | | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Anaelle Durbec
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, 31077, Toulouse, France
| | - Justine Bertrand-Michel
- I2MC, Université de Toulouse, Inserm, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, 31077, Toulouse, France
| | - Anne Surget
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | - Geneviève Corraze
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| | | | | | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), Pôle Chimie Balard Recherche, UMR5247, CNRS, Université de Montpellier, ENSCM, 34293, Montpellier, France
| | | | - Sandrine Skiba-Cassy
- INRAE, Univ. Pau & Pays Adour, E2S UPPA, NUMEA, 64310, Saint Pée-sur-Nivelle, France
| |
Collapse
|
3
|
Wang X, Yang C, Zhang X, Ye C, Liu W, Wang C. Marine natural products: potential agents for depression treatment. Acta Biochim Pol 2024; 71:12569. [PMID: 38812493 PMCID: PMC11135343 DOI: 10.3389/abp.2024.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/08/2024] [Indexed: 05/31/2024]
Abstract
Depression is a common psychiatric disorder. Due to the disadvantages of current clinical drugs, including poor efficacy and unnecessary side effects, research has shifted to novel natural products with minimal or no adverse effects as therapeutic alternatives. The ocean is a vast ecological home, with a wide variety of organisms that can produce a large number of natural products with unique structures, some of which have neuroprotective effects and are a valuable source for the development of new drugs for depression. In this review, we analyzed preclinical and clinical studies of natural products derived from marine organisms with antidepressant potential, including the effects on the pathophysiology of depression, and the underlying mechanisms of these effects. It is expected to provide a reference for the development of new antidepressant drugs.
Collapse
Affiliation(s)
| | | | | | | | | | - Chengmin Wang
- Department of Psychiatry, Shenzhen Longgang Center for Chronic Disease Control, Shenzhen, China
| |
Collapse
|
4
|
Chang YY, Ting B, Chen DTL, Hsu WT, Lin SC, Kuo CY, Wang MF. Omega-3 Fatty Acids for Depression in the Elderly and Patients with Dementia: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2024; 12:536. [PMID: 38470647 PMCID: PMC10931076 DOI: 10.3390/healthcare12050536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
This study aimed to evaluate the efficacy of omega-3 fatty acid supplementation interventions in improving depression in patients with dementia. To achieve this objective, randomized controlled trials (RCTs) were identified from primary electronic databases, focusing on the relationship between omega-3 fatty acids and depression in patients with dementia. The primary outcome was the impact of omega-3 fatty acids on post-intervention depression in patients with dementia, with subgroup analyses conducted based on the type of intervention (docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) combination), duration of intervention (3 months, 6 months, 12 months, ≥24 months), cognitive function (ranging from mild cognitive impairment (MCI) to severe dementia), and daily dosage (high, medium, low, applicable to both DHA and EPA). The study has been duly registered with PROSPERO (registration ID: CRD42023408744). A meta-analysis of five studies (n = 517) included in nine systematic reviews showed that omega-3 supplementation had a non-significant trend toward affecting depressive symptoms in patients with dementia (standardized mean difference (SMD): 0.147; 95% confidence interval (CI): -0.324 to 0.049; p = 0.141). Subgroup analyses revealed that DHA supplementation significantly reduced depressive symptoms (SMD: -0.247; p = 0.039). There was no significant effect for high (SMD: -0.169; 95% CI: -0.454 to 0.116; p = 0.246) or medium (SMD: -0.061; 95% CI: -0.228 to 0.105; p = 0.470) doses of EPA. However, low doses of EPA were significantly effective (SMD: -0.953; 95% CI: -1.534 to -0.373; p = 0.001), with notable improvements in patients with MCI (SMD: -0.934; p < 0.001). The study concludes that omega-3 fatty acids, particularly through DHA supplementation, may alleviate depressive symptoms in patients with MCI. Given the limited sample size, further long-term RCTs are recommended to better understand the efficacy and optimal management of omega-3 supplementation in this population using different dosages.
Collapse
Affiliation(s)
- Yen-Yun Chang
- Department of Food and Nutrition, Providence University, Taichung 433719, Taiwan;
| | - Berne Ting
- Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung 404333, Taiwan;
| | - Daniel Tzu-Li Chen
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung 404327, Taiwan;
- Graduate Institute of Biomedicine, College of Medicine, China Medical University, Taichung 404327, Taiwan;
- College of Chinese Medicine, China Medical University, Taichung 404327, Taiwan
| | - Wei-Ti Hsu
- Graduate Institute of Biomedicine, College of Medicine, China Medical University, Taichung 404327, Taiwan;
- College of Chinese Medicine, China Medical University, Taichung 404327, Taiwan
- Department of Anesthesiology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Song-Chow Lin
- Department of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chun-Yen Kuo
- Ph.D. Program in Health and Social Welfare for Indigenous Peoples, Providence University, Taichung 433719, Taiwan;
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Taichung 433719, Taiwan;
| |
Collapse
|
5
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
6
|
Tang M, Liu T, Shen Y, Wang L, Xue Y, Zhao T, Xie K, Gong Z, Yin T. Potential antidepressant-like effects of N-3 polyunsaturated fatty acids through inhibition of endoplasmic reticulum stress. Psychopharmacology (Berl) 2023; 240:1877-1889. [PMID: 37612456 DOI: 10.1007/s00213-023-06377-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/25/2023] [Indexed: 08/25/2023]
Abstract
RATIONALE The growing evidence has demonstrated the importance of endoplasmic reticulum stress (ERS) in the pathophysiology of depression. ERS genes were considered to be potential novel therapeutic targets for depression. OBJECTIVES To clarify the mechanisms of the chronic unpredictable mild stress (CUMS)-induced ERS response and the potential contributing pathways in depression, and further investigate the potential link between N-3 polyunsaturated fatty acids (PUFAs) and stress-induced ERS disturbances. METHODS This study analyzed the expression of ERS-related genes including GRP78, ATF-4, ATF-6, XBP-1, and CHOP, and sigma-1R with real-time PCR in peripheral blood mononuclear cell (PBMC) RNA samples from participants. All of the rats except for those in the control groups were subjected to 5 consecutive weeks of CUMS to establish the depression model, and the antidepressant effects of N-3 PUFAs were observed by behavior tests. Moreover, the effect of diet and stress on the ERS pathways was also investigated using the western blot. RESULTS Blood CHOP, ATF-4, and XBP-1 levels were notably elevated in depressed patients relative to healthy individuals. Moreover, increased sigma-1R and decreased ATF-6 implied the protective role of sigma-1R through modulating ERS in patients with depression. Animal studies disclosed the novel findings that supplementary N-3 PUFAs in rats alleviated CUMS-induced disturbance of ERS through the ATF-4/XBP-1/CHOP pathway, implying its potential strategy for depression. CONCLUSION CUMS-induced depressive-like behaviors are related to the disturbance of ERS. Furthermore, supplementary N-3 PUFAs might be an effective way to alleviate ERS.
Collapse
Affiliation(s)
- Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Ting Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Yanmei Shen
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lu Wang
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Ying Xue
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Tingyu Zhao
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Kaiqiang Xie
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| | - Tao Yin
- Department of Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
- Institute of Hospital Pharmacy, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
7
|
Carvajal F, Sánchez-Gil A, Cardona D, Rincón-Cervera MA, Lerma-Cabrera JM. The Effect of Very-Long-Chain n-3 Polyunsaturated Fatty Acids in the Central Nervous System and Their Potential Benefits for Treating Alcohol Use Disorder: Reviewing Pre-Clinical and Clinical Data. Nutrients 2023; 15:2993. [PMID: 37447319 DOI: 10.3390/nu15132993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Alcohol use poses a significant global health concern, leading to serious physical and socioeconomic issues worldwide. The current treatment options for problematic alcohol consumption are limited, leading to the exploration of alternative approaches, such as nutraceuticals. One promising target is very-long-chain n-3 polyunsaturated fatty acids (VLC n-3 PUFAs). This review aims to compile the most relevant pre-clinical and clinical evidence on the effect of VLC n-3 PUFAs on alcohol use disorders and related outcomes. The findings suggest that VLC n-3 PUFAs may alleviate the physiological changes induced by alcohol consumption, including neuroinflammation and neurotransmitter dysregulation. Additionally, they can reduce withdrawal symptoms, improve mood, and reduce stress level, all of which are closely associated with problematic alcohol consumption. However, more research is required to fully understand the precise mechanisms by which VLC n-3 PUFAs exert their function. Furthermore, PUFAs should not be considered a standalone solution, but as a complement to other therapeutic approaches. Although preliminary evidence supports the potential therapeutic effect of VLC n-3 PUFAs on problematic alcohol consumption, additional research is needed to validate these findings and determine the optimal use of PUFAs as part of a comprehensive approach to the treatment of alcohol use disorders.
Collapse
Affiliation(s)
- Francisca Carvajal
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Ainhoa Sánchez-Gil
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| | - Diana Cardona
- Health Research Center, University of Almeria, 04120 Almeria, Spain
- Department of Nursing, Physiotherapy and Medicine, University of Almeria, 04120 Almeria, Spain
| | - Miguel Angel Rincón-Cervera
- Food Technology Division, ceiA3, CIAMBITAL, University of Almeria, 04120 Almeria, Spain
- Institute of Nutrition and Food Technology, University of Chile, Santiago 830490, Chile
| | - Jose Manuel Lerma-Cabrera
- Department of Psychology, University of Almeria, 04120 Almeria, Spain
- Health Research Center, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
8
|
Wang X, Song H, Du Y, Zhao Y, Fu Y, Meng Q, Gao Y, Gong M, Song L, Wang S, Yuan F, Shi Y, Shi H. CircSYNDIG1 ameliorates stress-induced abnormal behaviors by suppressing miR-344-5p in mice. Brain Res Bull 2023; 195:66-77. [PMID: 36801359 DOI: 10.1016/j.brainresbull.2023.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Circular RNA (circRNA) plays an important role in diverse stress-related neuropsychiatric disorders like depression, anxiety and cognitive disorders. Here, using a circRNA microarray, we found that circSYNDIG1, an unreported circRNA, was significantly downregulated in the hippocampus of chronic unpredictable mild stress (CUMS) mice and further validated this finding in corticosterone (CORT) and lipopolysaccharide (LPS) mice by qRT-PCR, and it was negatively correlated with depressive- and anxiety-like behaviors of these three stressed mice. Furthermore, the interaction of miR-344-5p and circSYNDIG1 was confirmed by in situ hybridization (FISH) assay in hippocampus and dual luciferase reporter assay in 293 T cells. And miR-344-5p mimics could simulate the dendritic spine density reduction, depressive- and anxiety-like behaviors and memory impairment induced by CUMS. Overexpression of circSYNDIG1 in hippocampus significantly ameliorated these abnormal changes induced by CUMS or miR-344-5p. It indicated that circSYNDIG1 functions as an miR-344-5p sponge to inhibit miR-344-5p impact, resulting in the increase of dendritic spine density and the subsequent amelioration of the abnormal behaviors. Therefore, the downregulation of circSYNDIG1 in hippocampus participates in CUMS-induced depressive and anxiety-like behavior of mice though miR-344-5p. These findings represent the first evidence for the involvement of circSYNDIG1 and its coupling mechanism in depression and anxiety, suggesting that circSYNDIG1 and miR-344-5p might be new targets for the treatment of stress-related disorder.
Collapse
Affiliation(s)
- Xi Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China; Department of Endocrinology, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| | - Han Song
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Yuru Du
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China; Psychiatric Rehabilitation Unit, The First Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Ye Zhao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Yaling Fu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Yuan Gao
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Li Song
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Sheng Wang
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Fang Yuan
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, Hebei 050017, China.
| | - Haishui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang 050017, China; Hebei Key Laboratory of Neurophysiology, Shijiazhuang 050017, China.
| |
Collapse
|
9
|
Huang C, Zhang F, Li P, Song C. Low-Dose IL-2 Attenuated Depression-like Behaviors and Pathological Changes through Restoring the Balances between IL-6 and TGF-β and between Th17 and Treg in a Chronic Stress-Induced Mouse Model of Depression. Int J Mol Sci 2022; 23:ijms232213856. [PMID: 36430328 PMCID: PMC9699071 DOI: 10.3390/ijms232213856] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022] Open
Abstract
Microglia activation, increased IL-6 and decreased TGF-β were found in depressed patients or in animal models of depression. IL-6 enhances T helper 17 cell differentiation, thereby causing an imbalance between Th17 and Treg cells, which induces neuroinflammation and neuronal dysfunction. However, whether imbalances between IL-6 and TGF-β and between Th17 and Treg occur in depression and whether depression can be improved upon restoring these imbalances are unknown. Treg promoter IL-2 (1500UI/0.1 mL/day) was used to treat a mouse model of depression induced by chronic unpredictable mild stress (CUMS). The behavior and concentrations of IL-6, TGF-β, Th17, IL-17A, IL-17Rc, Treg-related factors (helios and STAT5), astrocyte A1 phenotype S100β, microglia M1 phenotype Iba-1, indoleamine-2,3-dioxygenase (IDO) enzyme, corticosterone (CORT) and neurotransmitters were evaluated. When compared to controls, CUMS reduced sucrose preference, the number of entries into and the time spent in the open arms of the elevated plus maze and the exploration in the "open field", while it increased the immobility time in tail suspension, which was ameliorated by IL-2 treatment. RoRα, S100β, IL-17A, IL-17Rc, IL-6, Iba-1, IDO enzyme and CORT concentrations were significantly increased, and Helios, FoxP3+, STAT5 and TGF-β were significantly decreased by CUMS, which were significantly attenuated by IL-2 when compared to the CUMS group. The NE, DA and 5-HT contents and those of their metabolites were decreased by CUMS, which returned to control levels after IL-2 treatment. The study demonstrated that imbalances between IL-6 and TGF-β and between Th17and Treg occurred in the hippocampus of the depression model. IL-2 attenuated depression- and anxiety-like behaviors and normalized the neurotransmitter concentration and the activity of the IDO enzyme, astrocytes and microglia through restoring both balances, but it did not decrease the CORT concentration.
Collapse
Affiliation(s)
- Chengyi Huang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medicine and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fucheng Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medicine and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Peng Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medicine and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Affiliated Hospital of Guangdong Medical University, Zhanjiang 524088, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Marine Medicine and Development Center, Shenzhen Institute of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence:
| |
Collapse
|
10
|
Siutz C, Nemeth M, Quint R, Wagner KH, Millesi E. PUFA Changes in White Adipose Tissue during Hibernation in Common Hamsters. Physiol Biochem Zool 2022; 95:525-535. [PMID: 36179357 DOI: 10.1086/721444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
AbstractHibernators save energy during winter by expressing torpor bouts characterized by strongly reduced body temperature and metabolic rate. Polyunsaturated fatty acids (PUFAs), specifically n-6 PUFAs, are known to positively affect hibernation performance and thereby energy savings predominantly in fat-storing hibernators. Accordingly, hibernators usually retain PUFAs and mobilize monounsaturated fatty acids (MUFAs) or saturated fatty acids (SFAs) during hibernation. In food-storing common hamsters (Cricetus cricetus), however, we previously found that PUFA proportions in white adipose tissue (WAT) decreased during winter, indicating that individuals did mobilize PUFAs. To further investigate these patterns, we analyzed PUFA changes in WAT during hibernation as well as hibernation performance in free-ranging and captive common hamsters with lower prehibernation PUFA proportions compared to those in the previous study. Under controlled conditions, total PUFAs, n-6 PUFAs, and SFAs increased while n-3 PUFAs and MUFAs decreased during hibernation. Higher prehibernation n-6 PUFA proportions resulted in fewer torpor bouts and less time spent in torpor. In free-ranging hamsters, n-6 PUFAs increased while n-3 PUFAs and SFAs decreased during winter. Prehibernation n-6 PUFA proportions, however, did not affect hibernation performance. In summary, these results indicate that the mobilization or retention of n-6 PUFAs during hibernation could depend on their availability in WAT or in the diet before the onset of the hibernation period.
Collapse
|
11
|
Zhou L, Xiong JY, Chai YQ, Huang L, Tang ZY, Zhang XF, Liu B, Zhang JT. Possible antidepressant mechanisms of omega-3 polyunsaturated fatty acids acting on the central nervous system. Front Psychiatry 2022; 13:933704. [PMID: 36117650 PMCID: PMC9473681 DOI: 10.3389/fpsyt.2022.933704] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFAs) can play important roles in maintaining mental health and resistance to stress, and omega-3 PUFAs supplementation can display beneficial effects on both the prevention and treatment of depressive disorders. Although the underlying mechanisms are still unclear, accumulated evidence indicates that omega-3 PUFAs can exhibit pleiotropic effects on the neural structure and function. Thus, they play fundamental roles in brain activities involved in the mood regulation. Since depressive symptoms have been assumed to be of central origin, this review aims to summarize the recently published studies to identify the potential neurobiological mechanisms underlying the anti-depressant effects of omega-3 PUFAs. These include that of (1) anti-neuroinflammatory; (2) hypothalamus-pituitary-adrenal (HPA) axis; (3) anti-oxidative stress; (4) anti-neurodegeneration; (5) neuroplasticity and synaptic plasticity; and (6) modulation of neurotransmitter systems. Despite many lines of evidence have hinted that these mechanisms may co-exist and work in concert to produce anti-depressive effects, the potentially multiple sites of action of omega-3 PUFAs need to be fully established. We also discussed the limitations of current studies and suggest future directions for preclinical and translational research in this field.
Collapse
Affiliation(s)
- Lie Zhou
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Jia-Yao Xiong
- Yangtze University Health Science Center, Jingzhou, China
| | - Yu-Qian Chai
- Yangtze University Health Science Center, Jingzhou, China
| | - Lu Huang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| | - Zi-Yang Tang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Xin-Feng Zhang
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Bo Liu
- Mental Health Institute of Yangtze University, Jingzhou, China
- Jingzhou Mental Health Center, Jingzhou, China
| | - Jun-Tao Zhang
- Yangtze University Health Science Center, Jingzhou, China
- Mental Health Institute of Yangtze University, Jingzhou, China
| |
Collapse
|
12
|
Noise Induced Depression-Like Behavior, Neuroinflammation and Synaptic Plasticity Impairments: The Protective Effects of Luteolin. Neurochem Res 2022; 47:3318-3330. [PMID: 35978229 DOI: 10.1007/s11064-022-03683-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/23/2022] [Accepted: 07/11/2022] [Indexed: 10/15/2022]
Abstract
Noise is a kind of sound that causes agitation and harms human health. Studies have shown that noise can lead to neuroinflammation, damage to synaptic plasticity and altered levels of neurotransmitters that may result in depression. The present study demonstrated that luteolin exerted antidepressant-like effects by improving neuroinflammation in a mouse model of noise-induced depression. Luteolin significantly alleviated noise-induced depression-like behavior. Notably, luteolin treatment not only remarkably ameliorated noise-induced inflammation in the hippocampus and prefrontal cortex, but also increased synapsin. Furthermore, luteolin treatment significantly increased the contents of serum 5-hydroxytryptamine and norepinephrine in noise-induced mice. In sum, luteolin exerts antidepressant effects indepression-like mice caused by noise, which can serve as a potential agent for the treatment of chronic noise-induced depression.
Collapse
|
13
|
Yang R, Wang L, Jin K, Cao S, Wu C, Guo J, Chen J, Tang H, Tang M. Omega-3 Polyunsaturated Fatty Acids Supplementation Alleviate Anxiety Rather Than Depressive Symptoms Among First-Diagnosed, Drug-Naïve Major Depressive Disorder Patients: A Randomized Clinical Trial. Front Nutr 2022; 9:876152. [PMID: 35903448 PMCID: PMC9315396 DOI: 10.3389/fnut.2022.876152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (n-3 PUFAs) augmentation of antidepressants has shown great potential in the prevention and treatment of major depressive disorders (MDD). Objective To investigate the effect of n-3 PUFAs plus venlafaxine in patients with first-diagnosed, drug-naïve depression. Method A total of 72 outpatients with first-diagnosed depression were recruited. The daily dose of 2.4 g/day n-3 PUFAs or placebo plus venlafaxine was used for over 12 weeks. The outcomes were assessed by the Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA), Beck depression inventory (BDI), and Self-rating anxiety scale (SAS). Results Both groups exhibited improvement on clinical characteristics at week 4 and week 12 compared with baseline. The rate of responders for anxiety in n-3 PUFAs group (44.44%) was significantly higher than that in placebo group (21.21%) at week 4 (χ2 = 4.182, p = 0.041), while week 12 did not show a difference (χ2 = 0.900, p = 0.343). The rate of responders for depression at both week 4 (χ2 = 0.261, p = 0.609) and week 12 (χ2 = 1.443, p = 0.230) showed no significant difference between two groups. Further analysis found that Childhood Trauma Questionnaire (CTQ) had positive correlation with HAMA (r = 0.301, p = 0.012), SAS (r = 0.246, p = 0.015), HAMD (r = 0.252, p = 0.038) and BDI (r = 0.233, p = 0.022) with Pearson correlation analysis. Social Support Rating Scale (SSRS) had negative correlation with SAS (r = -0.244, p = 0.015) and BDI (r = -0.365, p = 0.000). Conclusion This trial found that n-3 PUFAs supplementation in favor of venlafaxine alleviated the anxiety symptoms rather than depressive symptoms at the early stage of treatment (4 weeks) for first-diagnosed, drug-naïve depressed patients. However, the advantage disappeared in long-term treatment. Furthermore, childhood abuse and social support are closely related to the clinical and biological characteristics of depression. Both childhood trauma and lack of social support might be predictors of poor prognosis in depression. Clinical Trial Registration [clinicaltrials.gov], identifier [NCT03295708].
Collapse
Affiliation(s)
- Rong Yang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Kun Jin
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Song Cao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chujun Wu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jimin Guo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Hui Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, China National Technology Institute on Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Mimi Tang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Viñas-Noguera M, Csatlósová K, Šimončičová E, Bögi E, Ujházy E, Dubovický M, Belovičová K. Sex- and age- dependent effect of pre-gestational chronic stress and mirtazapine treatment on neurobehavioral development of Wistar rat offspring. PLoS One 2022; 17:e0255546. [PMID: 35113878 PMCID: PMC8812964 DOI: 10.1371/journal.pone.0255546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/07/2022] [Indexed: 11/18/2022] Open
Abstract
Hormonal fluctuations, such as the perinatal period, may increase susceptibility of women to depression, which in turn exert a negative impact on child's neurodevelopment, becoming a risk factor in development of neuropsychiatric disorders. Moreover, the use of antidepressants during this critical period presents a serious health concern for both the mother and the child, due to the consequences of treatment in terms of the reliability and safety for the proper neurodevelopment of the organism being not well known. Atypical antidepressants, such as mirtazapine, that targets both serotonergic and noradrenergic systems in the central nervous system (CNS), represent a novel focus of research due to its unique pharmacological profile. The aim of this work was to study the effects of maternal depression and/or perinatal antidepressant mirtazapine treatment on the neurobehavioral development of the offspring. Pre-gestationally chronically stressed or non-stressed Wistar rat dams were treated with either mirtazapine (10 mg/kg/day) or vehicle during pregnancy and lactation followed by analysis of offspring's behavior at juvenile and adolescent age. We found mirtazapine induced significant alterations of nursing behavior. In offspring, pregestational stress (PS) had an anxiogenic effect on adolescent males (p≤0.05) and increased their active behavior in forced swim test (p≤0.01). Interaction between pregestational stress and mirtazapine treatment variously induced anxiolytic changes of juvenile (p≤0.05) and adolescent (p≤0.05) females and impairment of spatial memory (p≤0.01) in adolescent females as well. Hippocampal density of synaptophysin, pre-synaptic protein marker, was decreased mainly by mirtazapine treatment. In conclusion, our results show mirtazapine induced significant alterations in maternal behavior and several sex- and age-dependent changes in neurobehavioral development of offspring caused by both prenatal mirtazapine treatment and/or chronic pregestational stress.
Collapse
Affiliation(s)
- Mireia Viñas-Noguera
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Kristína Csatlósová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
- Jessenius Faculty of Medicine, Comenius University, Martin, Slovakia
| | - Eva Šimončičová
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Ezster Bögi
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eduard Ujházy
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Michal Dubovický
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Kristína Belovičová
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
15
|
Xiong TW, Liu B, Wu Q, Xu YY, Liu P, Wang Y, Liu J, Shi JS. Beneficial effects of Dendrobium nobile Lindl. Alkaloids (DNLA) on anxiety and depression induced by chronic unpredictable stress in rats. Brain Res 2021; 1771:147647. [PMID: 34481787 DOI: 10.1016/j.brainres.2021.147647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/25/2022]
Abstract
Dendrobium nobile Lindl. alkaloid (DNLA) is effective against animal models of Alzheimer's disease. This study further examined its effect on anxiety and depression produced by chronic unpredictable stress (CUS). Rats were subjected to CUS for 42 days, followed by DNLA treatment (20 mg/kg/day, po) for 28 days. The behavioral tests, histopathology, neurotransmitters and RNA-Seq were examined. DNLA attenuated body weight loss and CUS-induced anxiety/depressive-like behaviors, as evidenced by the elevated-plus-maze test, open-field test and sucrose preference. DNLA alleviated neuronal damage and loss and increased Nissl bodies in the hippocampus CA2 region and cortex. DNLA decreased CUS-elevated 5-hydroxytryptamine, dopamine and monoamine oxidase and catechol-O-methyltransferase activities in the brain. DNLA attenuated HPA activation by decreasing adrenocorticotropic hormones and the expression of corticotropin-releasing hormone receptor-1, and increased the expression of glucocorticoid receptor in the brain. RNA-Seq revealed distinct gene expression patterns among groups. Gene ontology revealed the cell projection assembly, postsynapse and centrosome as top biological processes, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the cAMP, cGMP-PKG, glutamatergic synapse and circadian as major pathways for DNLA effects. Using DESeq2, CUS modulated 1700 differentially expressed genes (DEGs), which were prevented or attenuated by DNLA. CUS-induced DEGs were highly correlated with the Gene Expression Omnibus (GEO) database for anxiety and depression and were ameliorated by DNLA. Taken together, DNLA attenuated anxiety/depression-like behavior and neuronal damage induced by CUS in rats. The mechanisms could be related to regulation of the monoamine neurotransmitters and the HPA axis, and modulation of gene expression in the hippocampus.
Collapse
Affiliation(s)
- Ting-Wang Xiong
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China; Zunyi Medical and Pharmaceutical College, Zunyi, China.
| | - Bo Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Qin Wu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Yun-Yan Xu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Ping Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China; Department of Clinical Pharmacy, Zunyi Medical University, Zunyi, China.
| | - Yan Wang
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| | - Jing-Shan Shi
- Key Lab for Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
16
|
Sighinolfi G, Clark S, Blanc L, Cota D, Rhourri-Frih B. Mass spectrometry imaging of mice brain lipid profile changes over time under high fat diet. Sci Rep 2021; 11:19664. [PMID: 34608169 PMCID: PMC8490458 DOI: 10.1038/s41598-021-97201-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Overweight and obesity have been shown to significantly affect brain structures and size. Obesity has been associated with cerebral atrophy, alteration of brain functions, including cognitive impairement, and psychiatric diseases such as depression. Given the importance of lipids in the structure of the brain, here, by using 47 mice fed a high fat diet (HFD) with 60% calories from fat (40% saturated fatty acids) and 20% calories from carbohydrates and age-matched control animals on a normal chow diet, we examined the effects of HFD and diet-induced obesity on the brain lipidome. Using a targeted liquid chromatography mass spectrometry analysis and a non-targeted mass spectrometry MALDI imaging approach, we show that the relative concentration of most lipids, in particular brain phospholipids, is modified by diet-induced obesity (+ 40%of body weight). Use of a non-targeted MALDI-MS imaging approach further allowed define cerebral regions of interest (ROI) involved in eating behavior and changes in their lipid profile. Principal component analysis (PCA) of the obese/chow lipidome revealed persistence of some of the changes in the brain lipidome of obese animals even after their switch to chow feeding and associated weight loss. Altogether, these data reveal that HFD feeding rapidly modifies the murine brain lipidome. Some of these HFD-induced changes persist even after weight loss, implying that some brain sequelae caused by diet-induced obesity are irreversible.
Collapse
Affiliation(s)
| | - Samantha Clark
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | | - Daniela Cota
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, INSERM, 33000, Bordeaux, France
- Physiopathologie de la Plasticité Neuronale, U1215, Neurocentre Magendie, University of Bordeaux, 33000, Bordeaux, France
| | | |
Collapse
|
17
|
Ameliorative effects of oyster (Crassostrea hongkongensis) protein hydrolysate on age-induced cognitive impairment via restoring glia cell dysfunction and neuronal injured in zebrafish. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
18
|
Li P, Zhang F, Li Y, Zhang C, Yang Z, Zhang Y, Song C. Isoginkgetin treatment attenuated lipopolysaccharide-induced monoamine neurotransmitter deficiency and depression-like behaviors through downregulating p38/NF-κB signaling pathway and suppressing microglia-induced apoptosis. J Psychopharmacol 2021; 35:1285-1299. [PMID: 34281416 PMCID: PMC8521360 DOI: 10.1177/02698811211032473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Microglia activation-induced neuroinflammation may contribute to the etiology of depression. Podocarpus nagi containing high concentration of isoginkgetin could effectively treat mental diseases in ancient times. However, the therapeutic role, peculiarly in the brain-immune modulation in depression is still unclear. This study aimed to determine effects of isoginkgetin on lipopolysaccharide (LPS)-induced depression-like changes. Furthermore, its modulation on the p38/nuclear factor-kappa B (NF-κB) pathway in LPS-activated microglia was evaluated. METHODS Adult Kunming mice were intraperitoneally injected vehicle or isoginkgetin (4 mg/kg) daily for 14 days before saline or LPS (0.83 mg/kg) administration. Depression-like behavior, neurotransmitter levels, and markers of neuroinflammation were determined. Isoginkgetin effect on LPS-induced microglial activation was then assessed in BV2 cells. Finally, conditioned medium (CM) derived from isoginkgetin-treated BV2 cells was co-cultured with SH-SY5Y cells for 24 h. Cell viability and apoptosis were evaluated. RESULTS LPS significantly induced helplessness and anxiety, which were associated with decreased 5-HT, noradrenaline, and dopamine concentrations. Meanwhile, LPS increased microglia M1 hallmark Iba1 expression and serum interleukin (IL)-1β concentration. These changes were attenuated by isoginkgetin treatment. In vitro, isoginkgetin markedly suppressed the production of IL-1β, IL-6, tumor necrosis factor-alpha, cyclooxygenase-2, inducible nitric oxide, and reactive oxygen species, which are released from LPS-stimulated BV2 cells. More interestingly, CM from isoginkgetin-treated BV2 cells significantly alleviated SH-SY5Y cell apoptosis and restored cell viability compared to LPS-treated group through the inhibition of p38/NF-κB signaling pathway. CONCLUSION These data demonstrate that isoginkgetin is an effective therapeutic agent for depression-like behaviors and neuropathological changes via potent anti-inflammatory property.
Collapse
Affiliation(s)
- Peng Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China,Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Fucheng Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yajuan Li
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Zhiyou Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong, China,Marine Medicine Research and Development Center, Shenzhen Institutes of Guangdong Ocean University, Shenzhen, China,Cai Song, Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China.
| |
Collapse
|
19
|
Wang W, Wei C, Quan M, Li T, Jia J. Sulforaphane Reverses the Amyloid-β Oligomers Induced Depressive-Like Behavior. J Alzheimers Dis 2021; 78:127-137. [PMID: 32925042 DOI: 10.3233/jad-200397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Depression is one of the most common behavioral and psychological symptoms in people with Alzheimer's disease (AD). To date, however, the molecular mechanisms underlying the clinical association between depression and AD remained elusive. OBJECTIVE Here, we study the relationship between memory impairment and depressive-like behavior in AD animal model, and investigate the potential mechanisms. METHODS Male SD rats were administered amyloid-β oligomers (AβOs) by intracerebroventricular injection, and then the depressive-like behavior, neuroinflammation, oxidative stress, and the serotonergic system were measured in the brain. Sulforaphane (SF), a compound with dual capacities of anti-inflammation and anti-oxidative stress, was injected intraperitoneally to evaluate the therapeutic effect. RESULTS The results showed that AβOs induced both memory impairment and depressive-like behavior in rats, through the mechanisms of inducing neuroinflammation and oxidative stress, and impairing the serotonergic axis. SF could reduce both inflammatory factors and oxidative stress parameters to protect the serotonergic system and alleviate memory impairment and depressive-like behavior in rats. CONCLUSION These results provided insights into the biological mechanisms underlying the clinical link between depressive disorder and AD, and offered new drug options for the treatment of depressive symptoms in dementia.
Collapse
Affiliation(s)
- Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Tingting Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.,Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China.,Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China.,Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China
| |
Collapse
|
20
|
Yao Z, Zhang Z, Zhang J, Cai X, Zhong Z, Huang Y, Qu S. Electroacupuncture alleviated the depression-like behavior by regulating FGF2 and astrocytes in the hippocampus of rats with chronic unpredictable mild stress. Brain Res Bull 2021; 169:43-50. [PMID: 33434624 DOI: 10.1016/j.brainresbull.2021.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 11/24/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022]
Abstract
Studies have shown that basic fibroblast growth factor (FGF2) is a neurotrophic factor associated with depression. Electroacupuncture (EA) has been shown to be an effective treatment for depression. In the current study, we observed the effects of EA on hippocampal FGF2 and astrocytes, and further investigated the mechanism underlying antidepressant effect of EA. The chronic unpredictable mild stress (CUMS) method were selected to induce depressive-like behaviors of rats. Paroxetine is a commonly used antidepressant and was used as a positive control drug in this experiment. The male adult Sprague Dawley (SD) rats were randomized to four experimental groups (normal control group, CUMS group, EA group and paroxetine group, n = 10/group). EA intervention was administered once daily for 14 days at acupuncture points Baihui (GV20) and Yintang (GV29). Rats in the paroxetine group received daily paroxetine administered intragastrical. Behavioral test, immunohistochemistry (IHC), western blot (WB) and quantitative real-time PCR (qPCR) were conducted to evaluate the intervene effect and the changes of FGF2 and astrocyte marker (glial fibrillary acidic protein, GFAP). The results showed that EA and paroxetine could improve depression-like behavior in CUMS rats, and up-regulated the expression level of FGF2 in the hippocampus, increased GFAP protein expression and the mean optical density of GFAP-immunoreactive astrocyte (GFAP-ir astrocyte). Our findings have identified that EA could ameliorate depressive-like behaviors possibly by regulating the expression of FGF2 in the hippocampus, and the mechanism might be related to the effect of FGF2 on astrocytes.
Collapse
Affiliation(s)
- Zengyu Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zhinan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Zheng Zhong
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| | - Shanshan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, 510515, China.
| |
Collapse
|
21
|
N-3 PUFA Have Antidepressant-like Effects Via Improvement of the HPA-Axis and Neurotransmission in Rats Exposed to Combined Stress. Mol Neurobiol 2020; 57:3860-3874. [PMID: 32613466 DOI: 10.1007/s12035-020-01980-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Early life and adulthood stress increase vulnerability for mental illness, and eventually trigger depression. N-3 polyunsaturated fatty acids (PUFA) have antidepressant effects, but their effect on rats exposed to combined stress has been not investigated. This study aimed to investigate whether n-3 PUFA supplementation had antidepressant-like effects in rat models of depression induced by a combination of chronic mild stress (CMS) and maternal separation (MS) through the modulation of the hypothalamic-pituitary-adrenal (HPA) axis and neurotransmission. Rats were fed the n-3 PUFA diet during the pre-weaning or post-weaning period or for lifetime, and allocated to different groups based on the type of induced stress: non-stress (NS), CMS + MS, or CMS alone. N-3 PUFA improved the depressive behaviors of the CMS alone and CMS + MS groups and modulated the HPA-axis by reducing the circulating adrenocorticotropic hormone, corticosterone, and corticotropin-releasing factor expression, and increasing glucocorticoid receptor expression. N-3 PUFA also modulated brain phospholipid fatty acid concentration, thus reducing inflammatory cytokines; improved the serotonergic pathway, thus increasing the expression of the brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), serotonin-1A receptor, and serum levels of serotonin; but did not affect glutamatergic neurotransmission. Furthermore, n-3 PUFA decreased the hippocampal expression of microRNA-218 and -132, increased that of microRNA-155, and its lifetime supplementation was more beneficial than pre- or post-weaning supplementation. This study suggests that n-3 PUFA has an antidepressant effect in rats exposed to combined stress, through the improvement of the HPA-axis abnormalities, the BDNF-serotonergic pathway, and the modulation of microRNAs.
Collapse
|
22
|
Peng Z, Zhang C, Yan L, Zhang Y, Yang Z, Wang J, Song C. EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. Int J Mol Sci 2020; 21:ijms21051769. [PMID: 32150824 PMCID: PMC7084382 DOI: 10.3390/ijms21051769] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Clinical evidence indicated that eicosapentaenoic acid (EPA) was more effective than docosahexaenoic acid (DHA) in depression treatment. However, possible mechanisms remain unclear. Here, a chronic unpredictable mild stress (CUMS)-induced model of depression was used to compare EPA and DHA anti-depressant effects. After EPA or DHA feeding, depression-like behavior, brain n-3/n-6 PUFAs profile, serum corticosterone and cholesterol concentration, hippocampal neurotransmitters, microglial and astrocyte related function, as well as neuronal apoptosis and survival signaling pathways were studied. EPA was more effective than DHA to ameliorate CUMS-induced body weight loss, and depression-like behaviors, such as increasing sucrose preference, shortening immobility time and increasing locomotor activity. CUMS-induced corticosterone elevation was reversed by bother fatty acids, while increased cholesterol was only reduced by EPA supplement. Lower hippocampal noradrenaline and 5-hydroxytryptamine concentrations in CUMS rats were also reversed by both EPA and DHA supplement. However, even though CUMS-induced microglial activation and associated increased IL-1β were inhibited by both EPA and DHA supplement, increased IL-6 and TNF-α levels were only reduced by EPA. Compared to DHA, EPA could improve CUMS-induced suppressive astrocyte biomarkers and associated BDNF-TrkB signaling. Moreover, EPA was more effective than DHA to attenuate CUMS-induced higher hippocampal NGF, GDNF, NF-κB, p38, p75, and bax expressions, but reversed bcl-2 reduction. This study for the first time revealed the mechanisms by which EPA was more powerful than DHA in anti-inflammation, normalizing astrocyte and neurotrophin function and regulating NF-κB, p38 and apoptosis signaling. These findings reveal the different mechanisms of EPA and DHA in clinical depression treatment.
Collapse
Affiliation(s)
- Zhilan Peng
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Cai Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ling Yan
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
| | - Yongping Zhang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhiyou Yang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiajia Wang
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China (C.Z.); (L.Y.); (Y.Z.); (Z.Y.)
- Shenzhen Institutes of Guangdong Ocean University, Shenzhen 518120, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Correspondence:
| |
Collapse
|