1
|
Wild MG, Cutler RA, Bachorowski JA. Quantifying social performance: A review with implications for further work. Front Psychol 2023; 14:1124385. [PMID: 37179870 PMCID: PMC10172596 DOI: 10.3389/fpsyg.2023.1124385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/31/2023] [Indexed: 05/15/2023] Open
Abstract
Human social performance has been a focus of theory and investigation for more than a century. Attempts to quantify social performance have focused on self-report and non-social performance measures grounded in intelligence-based theories. An expertise framework, when applied to individual differences in social interaction performance, offers novel insights and methods of quantification that could address limitations of prior approaches. The purposes of this review are 3-fold. First, to define the central concepts related to individual differences in social performance, with a particular focus on the intelligence-based framework that has dominated the field. Second, to make an argument for a revised conceptualization of individual differences in social-emotional performance as a social expertise. In support of this second aim, the putative components of a social-emotional expertise and the potential means for their assessment will be outlined. To end, the implications of an expertise-based conceptual framework for the application of computational modeling approaches in this area will be discussed. Taken together, expertise theory and computational modeling methods have the potential to advance quantitative assessment of social interaction performance.
Collapse
Affiliation(s)
- Marcus G. Wild
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, United States
| | - Rebecca A. Cutler
- Department of Psychology and Neuroscience, University of Texas, Austin, TX, United States
| | - Jo-Anne Bachorowski
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
2
|
Yin Y, Tong J, Huang J, Tian B, Chen S, Tan S, Wang Z, Yang F, Tong Y, Fan F, Kochunov P, Jahanshad N, Li CSR, Hong LE, Tan Y. History of suicide attempts associated with the thinning right superior temporal gyrus among individuals with schizophrenia. Brain Imaging Behav 2022; 16:1893-1901. [PMID: 35545740 PMCID: PMC10025969 DOI: 10.1007/s11682-021-00624-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2021] [Indexed: 11/02/2022]
Abstract
Individuals with schizophrenia have higher rates of suicide attempts than the general population. Specific cortical abnormalities (e.g., the cortical surface area and thickness) may be associated with a history of suicide attempts. We recruited 74 individuals with schizophrenia (37 suicide attempters were individually matched with 37 non-attempters on age, sex, phase of illness, and study center) and 37 healthy volunteers. The cortical surface area and thickness data were extracted from structural MRI and compared between the groups. Suicide attempters showed significantly smaller surface areas in the whole brain (p = .028, Cohen's d = -0.54) than non-attempters. No association was found between the cortical surface area of individual brain regions and a history of suicide attempts. The mean cortical thickness did not differ significantly between the groups; however, suicide attempters demonstrated a thinner cortex in the right superior temporal gyrus (p < .001, q = 0.037, Cohen's d = -0.88). These findings indicate that a history of suicide attempts among individuals with schizophrenia is associated with a reduction in the global cortical surface area and specific cortical thinning of the right superior temporal gyrus. The morphometric alteration of the right superior temporal gyrus may represent a biomarker of suicidal behavior in individuals with schizophrenia.
Collapse
Affiliation(s)
- Yi Yin
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Jinghui Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Junchao Huang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Baopeng Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Song Chen
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Shuping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Zhiren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Fude Yang
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Yongsheng Tong
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
- Beijing Suicide Research and Prevention Center, WHO Collaborating Center for Research and Training in Suicide Prevention, Beijing, China
| | - Fengmei Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China
| | - Peter Kochunov
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - Neda Jahanshad
- Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - L Elliot Hong
- Department of Psychiatry, Maryland Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, USA
| | - Yunlong Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Emotion Processing Dysfunction in Alzheimer's Disease: An Overview of Behavioral Findings, Systems Neural Correlates, and Underlying Neural Biology. Am J Alzheimers Dis Other Demen 2022; 37:15333175221082834. [PMID: 35357236 PMCID: PMC9212074 DOI: 10.1177/15333175221082834] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We described behavioral studies to highlight emotional processing deficits in Alzheimer's disease (AD). The findings suggest prominent deficit in recognizing negative emotions, pronounced effect of positive emotion on enhancing memory, and a critical role of cognitive deficits in manifesting emotional processing dysfunction in AD. We reviewed imaging studies to highlight morphometric and functional markers of hippocampal circuit dysfunction in emotional processing deficits. Despite amygdala reactivity to emotional stimuli, hippocampal dysfunction conduces to deficits in emotional memory. Finally, the reviewed studies implicating major neurotransmitter systems in anxiety and depression in AD supported altered cholinergic and noradrenergic signaling in AD emotional disorders. Overall, the studies showed altered emotions early in the course of illness and suggest the need of multimodal imaging for further investigations. Particularly, longitudinal studies with multiple behavioral paradigms translatable between preclinical and clinical models would provide data to elucidate the time course and underlying neurobiology of emotion processing dysfunction in AD.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H. Chao
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA,VA Connecticut Healthcare System, West Haven, CT, USA
| | - Christopher H. van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA,Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA,Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Arioli M, Basso G, Carne I, Poggi P, Canessa N. Increased pSTS activity and decreased pSTS-mPFC connectivity when processing negative social interactions. Behav Brain Res 2020; 399:113027. [PMID: 33249070 DOI: 10.1016/j.bbr.2020.113027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 12/24/2022]
Abstract
We have previously shown that activity and connectivity within and between the action observation and mentalizing brain systems reflect the degree of positive dimensions expressed by social interactions such as cooperativity and affectivity, respectively. Here we aim to extend this evidence by investigating the neural bases of processing negative dimensions of observed interactions, such as competition and affective conflict, possibly representing a benchmark for different pathological conditions. In this fMRI study 34 healthy participants were shown pictures depicting interactions characterized by two crossed dimensions, i.e. positively- vs. negatively- connotated social intentions mainly expressed in terms of motor acts vs. mental states, i.e. cooperative, competitive, affective and conflicting interactions. We confirmed the involvement of the action observation and mentalizing networks in processing intentions mainly expressed through motor acts (cooperative/competitive) vs. mental states (affective/conflicting), respectively. Results highlighted the selective role of the left pSTS/TPJ in decoding social interactions, even when compared with parallel actions by non-interacting individuals. Its right-hemispheric homologue displayed stronger responses to negative than positive social intentions, regardless of their motor/mental status, and decreased connectivity with the medial prefrontal cortex (mPFC) when processing negative interactions. The resulting mPFC downregulation by negative social scenes might reflect an adaptive response to socio-affective threats, via decreased mentalizing when facing negative social stimuli. This evidence on the brain mechanisms underlying the decoding of real complex interactions represents a baseline for assessing both the neural correlates of impaired social cognition, and the effects of rehabilitative treatments, in neuro-psychiatric diseases or borderline conditions such as loneliness.
Collapse
Affiliation(s)
- Maria Arioli
- Scuola Universitaria Superiore IUSS, Pavia, 27100, Italy; Cognitive Neuroscience Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy.
| | | | - Irene Carne
- Medical Physics Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy.
| | - Paolo Poggi
- Radiology Unit, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy.
| | - Nicola Canessa
- Scuola Universitaria Superiore IUSS, Pavia, 27100, Italy; Cognitive Neuroscience Laboratory, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, 27100, Italy.
| |
Collapse
|
5
|
Perceived burdensomeness and neural responses to ostracism in the Cyberball task. J Psychiatr Res 2020; 130:1-8. [PMID: 32763557 PMCID: PMC7554229 DOI: 10.1016/j.jpsychires.2020.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/09/2020] [Accepted: 06/22/2020] [Indexed: 12/23/2022]
Abstract
Previous studies have identified the brain correlates of social pain processing during ostracism. However, the affective response to ostracism may vary according to individual differences in interpersonal needs and subsequent social actions. Despite this relationship, how the neural processes underlying ostracism may be modulated by interpersonal needs to regulate prosocial behaviors remains unknown. Here, in an fMRI study of 64 adults performing the Cyberball task, we quantified ball catching and tossing response time (RT) as a behavioral measure of participants' willingness to seek and reciprocate social interactions. Neural activations to social exclusion were identified and characterized in relation to individual differences in behavioral performance and perceived burdensomeness (PB), a measure of interpersonal needs. The results showed that social exclusion elicited activity in the anterior insula, middle frontal gyrus, postcentral gyrus, and dorsomedial prefrontal cortex, replicating previous studies on ostracism. Importantly, those with higher PB also exhibited greater brain activations to exclusion as well as reduced prosocial behaviors, as reflected by slower ball catching and tossing RT in the Cyberball task. Taken together, these findings suggest that emotional distress in ostracism may increase with PB, resulting in stronger neural responses to social pain and behavioral avoidance of social interactions.
Collapse
|