1
|
Tran J, Parekh S, Rockcole J, Wilson D, Parmar MS. Repurposing antidiabetic drugs for Alzheimer's disease: A review of preclinical and clinical evidence and overcoming challenges. Life Sci 2024; 355:123001. [PMID: 39173996 DOI: 10.1016/j.lfs.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Repurposing antidiabetic drugs for the treatment of Alzheimer's disease (AD) has emerged as a promising therapeutic strategy. This review examines the potential of repurposing antidiabetic drugs for AD treatment, focusing on preclinical evidence, clinical trials, and observational studies. In addition, the review aims to explore challenges and opportunities in repurposing antidiabetic drugs for AD, emphasizing the importance of well-designed clinical trials that consider patient selection criteria, refined outcome measures, adverse effects, and combination therapies to enhance therapeutic efficacy. Preclinical evidence suggests that glucagon-like peptide-1 (GLP-1) analogs, dipeptidyl peptidase-4 (DPP4) inhibitors, metformin, thiazolidinediones, and sodium-glucose co-transporter-2 (SGLT2) inhibitors exhibit neuroprotective effects in AD preclinical models. In preclinical studies, antidiabetic drugs have demonstrated neuroprotective effects by reducing amyloid beta (Aβ) plaques, tau hyperphosphorylation, neuroinflammation, and cognitive impairment. Antidiabetic drug classes, notably GLP-1 analogs and SGLT2 inhibitors, and a reduced risk of dementia in patients with diabetes mellitus. While the evidence for DPP4 inhibitors is mixed, some studies suggest a potential protective effect. On the other hand, alpha-glucosidase inhibitors (AGIs) and sulfonylureas may potentially increase the risk, especially in those experiencing recurrent hypoglycemic events. Repurposing antidiabetic drugs for AD is a promising therapeutic strategy, but challenges such as disease heterogeneity, limited biomarkers, and benefits versus risk evaluation need to be addressed. Ongoing clinical trials in mild cognitive impairment (MCI) and early AD patients without diabetes will be crucial in determining the clinical efficacy and safety of the antidiabetic drugs, paving the way for potential treatments for AD.
Collapse
Affiliation(s)
- Jacky Tran
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Sneh Parekh
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Julia Rockcole
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Danielle Wilson
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA
| | - Mayur S Parmar
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
| |
Collapse
|
2
|
Luo Y, Zhu J, Hu Z, Luo W, Du X, Hu H, Peng S. Progress in the Pathogenesis of Diabetic Encephalopathy: The Key Role of Neuroinflammation. Diabetes Metab Res Rev 2024; 40:e3841. [PMID: 39295168 DOI: 10.1002/dmrr.3841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/29/2024] [Accepted: 06/27/2024] [Indexed: 09/21/2024]
Abstract
Diabetic encephalopathy (DE) is a severe complication that occurs in the central nervous system (CNS) and leads to cognitive impairment. DE involves various pathophysiological processes, and its pathogenesis is still unclear. This review summarised current research on the pathogenesis of diabetic encephalopathy, which involves neuroinflammation, oxidative stress, iron homoeostasis, blood-brain barrier disruption, altered gut microbiota, insulin resistance, etc. Among these pathological mechanisms, neuroinflammation has been focused on. This paper summarises some of the molecular mechanisms involved in neuroinflammation, including the Mammalian Target of Rapamycin (mTOR), Lipocalin-2 (LCN-2), Pyroptosis, Advanced Glycosylation End Products (AGEs), and some common pro-inflammatory factors. In addition, we discuss recent advances in the study of potential therapeutic targets for the treatment of DE against neuroinflammation. The current research on the pathogenesis of DE is progressing slowly, and more research is needed in the future. Further study of neuroinflammation as a mechanism is conducive to the discovery of more effective treatments for DE in the future.
Collapse
Affiliation(s)
- Yifan Luo
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Jinxi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Ziyan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Clinical Medicine, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Evinova A, Baranovicova E, Hajduchova D, Dibdiakova K, Baranova I, Racay P, Strnadel J, Pecova R, Halasova E, Pokusa M. The impact of ATP-sensitive potassium channel modulation on mitochondria in a Parkinson's disease model using SH-SY5Y cells depends on their differentiation state. J Bioenerg Biomembr 2024; 56:347-360. [PMID: 38689156 PMCID: PMC11217133 DOI: 10.1007/s10863-024-10018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Inward rectifying potassium channels sensitive to ATP levels (KATP) have been the subject of investigation for several decades. Modulators of KATP channels are well-established treatments for metabolic as well as cardiovascular diseases. Experimental studies have also shown the potential of KATP modulation in neurodegenerative disorders. However, to date, data regarding the effects of KATP antagonists/agonists in experiments related to neurodegeneration remain inconsistent. The main source of confusion in evaluating available data seems to be the choice of experimental models. The present study aims to provide a comprehensive understanding of the effects of both opening and blocking KATP channels in two forms of SH-SY5Y cells. Our results offer valuable insights into the significance of metabolic differences between differentiated and non-differentiated SH-SY5Y cells, particularly in the context of glibenclamide and diazoxide effects under normal conditions and during the initiation of pathological events simulating Parkinson's disease in vitro. We emphasize the analysis of mitochondrial functions and changes in mitochondrial network morphology. The heightened protein expression of KATP channels identified in non-differentiated SH-SY5Y cells seems to be a platform for a more significant impact of KATP modulators in this cell type. The efficiency of rotenone treatment in inducing morphological changes in the mitochondrial network depends on the differentiation status of SH-SY5Y cells.
Collapse
Affiliation(s)
- A Evinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - E Baranovicova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - D Hajduchova
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - K Dibdiakova
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - I Baranova
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - P Racay
- Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - J Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - R Pecova
- Department of Pathological Physiology, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - E Halasova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - M Pokusa
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
4
|
Awasthi P, Kumar D, Hasan S. Role of 14-3-3 protein family in the pathobiology of EBV in immortalized B cells and Alzheimer's disease. Front Mol Biosci 2024; 11:1353828. [PMID: 39144488 PMCID: PMC11322100 DOI: 10.3389/fmolb.2024.1353828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Background and Aims Several studies have revealed that Epstein-Barr virus (EBV) infection raised the likelihood of developing Alzheimer's disease (AD) via infecting B lymphocytes. The purpose of the current investigation was to assess the possible association between EBV infection and AD. Methods The microarray datasets GSE49628, GSE126379, GSE122063, and GSE132903 were utilized to extract DEGs by using the GEO2R tool of the GEO platform. The STRING tool was used to determine the interaction between the DEGs, and Cytoscape was used to visualize the results. The DEGs that were found underwent function analysis, including pathway and GO, using the DAVID 2021 and ClueGo/CluePedia. By using MNC, MCC, Degree, and Radiality of cytoHubba, we identified seven common key genes. Gene co-expression analysis was performed through the GeneMANIA web tool. Furthermore, expression analysis of key genes was performed through GTEx software, which have been identified in various human brain regions. The miRNA-gene interaction was performed through the miRNet v 2.0 tool. DsigDB on the Enrichr platform was utilized to extract therapeutic drugs connected to key genes. Results In GEO2R analysis of datasets with |log2FC|≥ 0.5 and p-value <0.05, 8386, 10,434, 7408, and 759 genes were identified. A total of 141 common DEGs were identified by combining the extracted genes of different datasets. A total of 141 nodes and 207 edges were found during the PPI analysis. The DEG GO analysis with substantial alterations disclosed that they are associated to molecular functions and biological processes, such as positive regulation of neuron death, autophagy regulation of mitochondrion, response of cell to insulin stimulus, calcium signaling regulation, organelle transport along microtubules, protein kinase activity, and phosphoserine binding. Kyoto Encyclopedia of Genes and Genomes analysis discovered the correlation between the DEGs in pathways of neurodegeneration: multiple disease, cell cycle, and cGMP-PKG signaling pathway. Finally, YWHAH, YWHAG, YWHAB, YWHAZ, MAP2K1, PPP2CA, and TUBB genes were identified that are strongly linked to EBV and AD. Three miRNAs, i.e., hsa-mir-15a-5p, hsa-let-7a-5p, and hsa-mir-7-5p, were identified to regulate most of hub genes that are associated with EBV and AD. Further top 10 significant therapeutic drugs were predicted. Conclusion We have discovered new biomarkers and therapeutic targets for AD, as well as the possible biological mechanisms whereby infection with EBV may be involved in AD susceptibility for the first time.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Dehradun, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
5
|
Jang HN, Moon SJ, Jung JH, Han KD, Rhee EJ, Lee WY. Impact of Antidiabetic Drugs on Clinical Outcomes of COVID-19: A Nationwide Population-Based Study. Endocrinol Metab (Seoul) 2024; 39:479-488. [PMID: 38282452 PMCID: PMC11220209 DOI: 10.3803/enm.2023.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/07/2023] [Accepted: 01/03/2024] [Indexed: 06/25/2024] Open
Abstract
BACKGRUOUND Inconsistent results have been reported regarding the association between the use of antidiabetic drugs and the clinical outcomes of coronavirus disease 2019 (COVID-19). This study aimed to investigate the effect of antidiabetic drugs on COVID-19 outcomes in patients with diabetes using data from the National Health Insurance Service (NHIS) in South Korea. METHODS We analyzed the NHIS data of patients aged ≥20 years who tested positive for COVID-19 and were taking antidiabetic drugs between December 2019 and June 2020. Multiple logistic regression analysis was performed to analyze the clinical outcomes of COVID-19 based on the use of antidiabetic drugs. RESULTS A total of 556 patients taking antidiabetic drugs tested positive for COVID-19, including 271 male (48.7%), most of whom were in their sixties. Of all patients, 433 (77.9%) were hospitalized, 119 (21.4%) received oxygen treatment, 87 (15.6%) were admitted to the intensive care unit, 31 (5.6%) required mechanical ventilation, and 61 (11.0%) died. Metformin was significantly associated with the lower risks of mechanical ventilation (odds ratio [OR], 0.281; 95% confidence interval [CI], 0.109 to 0.720; P=0.008), and death (OR, 0.395; 95% CI, 0.182 to 0.854; P=0.018). Dipeptidylpeptidase-4 inhibitor (DPP-4i) were significantly associated with the lower risks of oxygen treatment (OR, 0.565; 95% CI, 0.356 to 0.895; P=0.015) and death (OR, 0.454; 95% CI, 0.217 to 0.949; P=0.036). Sulfonylurea was significantly associated with the higher risk of mechanical ventilation (OR, 2.579; 95% CI, 1.004 to 6.626; P=0.049). CONCLUSION In patients with diabetes and COVID-19, metformin exhibited reduced risks of mechanical ventilation and death, DPP- 4i was linked with lower risks of oxygen treatment and death, while sulfonylurea was related to the increased risk of mechanical ventilation.
Collapse
Affiliation(s)
- Han Na Jang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Joon Moon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jin Hyung Jung
- Department of Biostatistics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Do Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Korea
| | - Eun-Jung Rhee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Won-Young Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
- Department of Internal Medicine, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
6
|
Tian R, Liu X, Xiao Y, Jing L, Tao H, Yang L, Meng X. Huang-Lian-Jie-Du decoction drug-containing serum inhibits IL-1β secretion from D-glucose and PA induced BV2 cells via autophagy/NLRP3 signaling. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117686. [PMID: 38160864 DOI: 10.1016/j.jep.2023.117686] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/16/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du decoction (HLJDD), a famous traditional Chinese medicine prescription with heat-clearing and detoxifying effects, has been widely used to treat diabetes, dementia, stroke, and other diseases. However, the detailed mechanisms of HLJDD against type 2 diabetes associated cognitive dysfunction (DACD) through inhibiting interleukin-1β (IL-1β) mediated neuroinflammation remain to be further elucidated. AIM OF THE STUDY The aim of this study was to investigate the effect and potential mechanism of HLJDD on IL-1β secretion in a DACD model of BV2 cells induced by D-glucose and palmitic acid (PA). MATERIALS AND METHOD sUltra-performance liquid chromatography-quadrupole/electrostatic field orbital well high-resolution mass spectrometry technology was used to analyze the compounds in HLJDD drug-containing serum. The cytotoxicity was detected by cell counting kit-8. Enzyme-linked immunosorbent assay was used to measure the secretion of IL-1β in BV2 cells. Reactive oxygen species, glutathione, superoxide dismutase, and malondialdehyde kits were used to detect the intracellular oxidative stress levels. The autophagy level was determined by autophagy staining kit and transmission electron microscope. The expression levels of autophagy-related 7 (Atg7), P62, LC3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3(NLRP3), Caspase1, and IL-1β were detected by real-time PCR, immunofluorescence, and western blotting. The Atg7siRNA was transfected into BV2 cells to produce autophagy inhibitory effect. Then the effect of HLJDD drug-containing serum on IL-1β secretion in D-glucose and PA induced BV2 cells and the potential mechanism of autophagy-NLRP3 inflammasome activation were further observed. RESULTS Eighty-eight compounds were preliminarily identified in HLJDD drug-containing serum, among which geniposide, baicalin, palmatine, berberine, wogonoside, wogonin, and geniposidic acid were identified as the main prototype components of HLJDD into the blood. In this study, the DACD model of BV2 cells induced by high concentrations of glucose and PA was successfully constructed. HLJDD drug-containing serum significantly reduced the secretion of IL-1β and the activity of NLRP3 inflammasome with improving the oxidative stress level. Interestingly, the enhanced autophagy level was also found. After transfection of Atg7siRNA into BV2 cells, the effect of HLJDD drug-containing serum on autophagy promotion was reversed, but the inhibitory effects on IL-1β secretion, NLRP3 inflammasome activation, and oxidative stress were reduced. CONCLUSIONS These results indicated that the inhibition of HLJDD drug-containing serum on the IL-1β secretion in D-glucose and PA induced BV2 cells was related to autophagy promotion, the decreased NLRP3 inflammasome activation, and the improved oxidative stress. Moreover, the improvement of HLJDD drug-containing serum on IL-1β secretion, NLRP3 inflammasome activation, and oxidative stress were all closely associated with Atg7 mediated autophagy promotion. Geniposide, baicalin, palmatine, berberine, wogonoside, wogonin, and geniposidic acid may be the potential active ingredients of HLJDD drug-containing serum.
Collapse
Affiliation(s)
- Ruimin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology, North Sichuan Medical College, Nanchong, 637000, China
| | - Xianfeng Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijia Jing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
7
|
Yu F, Pituch KA, Maxfield M, Baena E, Geda YE, Pruzin JJ, Coon DW, Shaibi GQ. The associations between type 2 diabetes and plasma biomarkers of Alzheimer's disease in the Health and Aging Brain Study: Health Disparities (HABS-HD). PLoS One 2024; 19:e0295749. [PMID: 38558059 PMCID: PMC10984470 DOI: 10.1371/journal.pone.0295749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/28/2023] [Indexed: 04/04/2024] Open
Abstract
Alzheimer's disease (AD) affects Latinos disproportionately. One of the reasons underlying this disparity may be type 2 diabetes (T2D) that is a risk factor for AD. The purpose of this study was to examine the associations of T2D and AD blood biomarkers and the differences in these associations between Mexican Americans and non-Hispanic Whites. This study was a secondary analysis of baseline data from the observational Health and Aging Brain Study: Health Disparities (HABS-HD) that investigated factors underlying health disparities in AD in Mexican Americans in comparison to non-Hispanic Whites. HABS-HD participants were excluded if they had missing data or were large outliers (z-scores >|4|) on a given AD biomarker. Fasting blood glucose and glycosylated hemoglobin (HbA1c) levels were measured from clinical labs. T2D was diagnosed by licensed clinicians. Plasma amyloid-beta 42 and 40 (Aβ42/42) ratio, total tau (t-tau), and neurofilament light (NfL) were measured via ultra-sensitive Simoa assays. The sample sizes were 1,552 for Aβ42/40 ratio, 1,570 for t-tau, and 1,553 for NfL. Mexican Americans were younger (66.6±8.7 vs. 69.5±8.6) and had more female (64.9% female vs. 55.1%) and fewer years of schooling (9.5±4.6 vs. 15.6±2.5) than non-Hispanic Whites. Mexican Americans differed significantly from non-Hispanic Whites in blood glucose (113.5±36.6 vs. 99.2±17.0) and HbA1c (6.33±1.4 vs. 5.51±0.6) levels, T2D diagnosis (35.3% vs. 11.1%), as well as blood Aβ42/40 ratio (.051±.012 vs. .047±.011), t-tau (2.56±.95 vs. 2.33±.90), and NfL levels (16.3±9.5 vs. 20.3±10.3). Blood glucose, blood HbA1c, and T2D diagnosis were not related to Aβ42/40 ratio and t-tau but explained 3.7% of the variation in NfL (p < .001). Blood glucose and T2D diagnosis were not, while HbA1c was positively (b = 2.31, p < .001, β = 0.26), associated with NfL among Mexican Americans. In contrast, blood glucose, HbA1c, and T2D diagnosis were negatively (b = -0.09, p < .01, β = -0.26), not (b = 0.34, p = .71, β = 0.04), and positively (b = 3.32, p < .01, β = 0.33) associated with NfL, respectively in non-Hispanic Whites. To conclude, blood glucose and HbA1c levels and T2D diagnosis are associated with plasma NfL levels, but not plasma Aβ and t-tau levels. These associations differ in an ethnicity-specific manner and need to be further studied as a potential mechanism underlying AD disparities.
Collapse
Affiliation(s)
- Fang Yu
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Keenan A. Pituch
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Molly Maxfield
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Elsa Baena
- Clinical Neuropsychology Department, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Yonas E. Geda
- Department of Neurology and the Franke Neursciene Education Center, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Jeremy J. Pruzin
- Department of Neurology, Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - David W. Coon
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | - Gabriel Q. Shaibi
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, Arizona, United States of America
| | | |
Collapse
|
8
|
Wu CY, Iskander C, Wang C, Xiong LY, Shah BR, Edwards JD, Kapral MK, Herrmann N, Lanctôt KL, Masellis M, Swartz RH, Cogo-Moreira H, MacIntosh BJ, Rabin JS, Black SE, Saskin R, Swardfager W. Association of sulfonylureas with the risk of dementia: A population-based cohort study. J Am Geriatr Soc 2023; 71:3059-3070. [PMID: 37218376 DOI: 10.1111/jgs.18397] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/09/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND Sulfonylureas are oral glucose-lowering medications positioned as a second-line therapy for type 2 diabetes. Evidence relating them to cognitive decline has been mixed. The objective was to determine whether sulfonylurea use was associated with a differential risk of dementia compared with dipeptidyl peptidase-4 (DPP4) inhibitor use. METHODS Using administrative data from residents in Ontario, Canada, adults aged ≥66 years who were new users of a sulfonylurea or a DPP4 inhibitor from June 14, 2011, to March 31, 2021 entered this population-based retrospective cohort study. Dementia was ascertained using a validated algorithm for Alzheimer's disease and related dementias. Propensity-score weighted Cox proportional hazards models were used to obtain adjusted hazard ratios (aHR) and confidence intervals (CI) for time to incident dementia. The observation window started at 1 year after cohort entry to mitigate protopathic bias due to delayed diagnosis. The primary analysis used an intention-to-treat exposure definition. A separate propensity-score weighted analysis was conducted to explore within-class differences in dementia risk among sulfonylurea new users selected from the primary cohort. RESULTS Among 107,806 DPP4 inhibitor new users and 37,030 sulfonylurea new users, sulfonylureas compared with DPP4 inhibitors were associated with a higher risk of dementia (18.4/1000 person-years; aHR [95% CI] = 1.09 [1.04-1.15]) over a mean follow-up of 4.82 years from cohort entry. Glyburide compared to gliclazide exhibited a higher dementia risk (aHR [95% CI] = 1.17 [1.03-1.32]). CONCLUSION New use of a sulfonylurea especially glyburide was associated with a higher dementia risk compared with new use of a DPP4 inhibitor in older adults with diabetes.
Collapse
Affiliation(s)
- Che-Yuan Wu
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - Lisa Y Xiong
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Baiju R Shah
- ICES, Toronto, Ontario, Canada
- Divisions of Endocrinology and Obstetric Medicine, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Jodi D Edwards
- University of Ottawa Heart Institute, University of Ottawa, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- ICES, Ottawa, Ontario, Canada
| | - Moira K Kapral
- ICES, Toronto, Ontario, Canada
- Institute for Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
- Division of General Internal Medicine, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Krista L Lanctôt
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- KITE University Health Network Toronto Rehabilitation Institute, Toronto, Ontario, Canada
- Toronto Dementia Research Alliance, Toronto, Ontario, Canada
| | - Mario Masellis
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Richard H Swartz
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- ICES, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Hugo Cogo-Moreira
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Faculty of Education, ICT, and Learning, Østfold University College, Halden, Norway
| | - Bradley J MacIntosh
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Computational Radiology & Artificial Intelligence (CRAI), Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Jennifer S Rabin
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sandra E Black
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Toronto Dementia Research Alliance, Toronto, Ontario, Canada
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | | | - Walter Swardfager
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
- Sandra Black Centre for Brain Resilience and Recovery, Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Ontario, Canada
- KITE University Health Network Toronto Rehabilitation Institute, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Shekarchian M, Peeri M, Azarbayjani MA. Physical activity in a swimming pool attenuates memory impairment by reducing glutamate and inflammatory cytokines and increasing BDNF in the brain of mice with type 2 diabetes. Brain Res Bull 2023; 201:110725. [PMID: 37543294 DOI: 10.1016/j.brainresbull.2023.110725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 07/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Type 2 diabetes is a risk factor for the development of cognitive impairment. Increasing evidence suggests that regular exercise is beneficial for the treatment of clinical symptoms in diabetic patients. The current study aimed to evaluate whether increasing physical activity through swimming training can reduce memory impairment in an animal model of type 2 diabetes. Diabetes and non-diabetes mice underwent swimming training for four weeks, and then working, spatial, and recognition memory were evaluated using three behavioral tests. Body weight, glucose, and insulin resistance were monitored. We also measured inflammatory cytokines (interleukin (IL)- 6, IL-1β, and tumor-necrosis-factor (TNF)-α), an anti-inflammatory cytokine (IL-10), and brain-derived-neurotrophic-factor (BDNF), and glutamate levels in the hippocampus or prefrontal cortex of mice. The findings showed that diabetes increased body weight, glucose, and insulin resistance, impaired working, spatial and recognition memory, increased levels of IL-6, IL-1β, TNF-α, and glutamate levels, and decreased BDNF in the hippocampus of diabetic mice. While higher physical activity was associated with reduced body weight, glucose, and insulin resistance, attenuated memory impairment, IL-6, IL-1β, TNF-α, and glutamate, and increased BDNF levels in the hippocampus and prefrontal cortex of diabetic mice. This study shows that swimming training can normalize body weight and glucose-insulin axis and reduce inflammation and glutamate in the hippocampus and enhance the neurotrophic system in both the hippocampus and prefrontal cortex of diabetic mice. This study also suggests that higher physical activity through swimming training can improve cognitive impairment in a mouse model of type 2 diabetes.
Collapse
Affiliation(s)
- Mandana Shekarchian
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
10
|
Mantik KEK, Kim S, Gu B, Moon S, Kwak HB, Park DH, Kang JH. Repositioning of Anti-Diabetic Drugs against Dementia: Insight from Molecular Perspectives to Clinical Trials. Int J Mol Sci 2023; 24:11450. [PMID: 37511207 PMCID: PMC10380685 DOI: 10.3390/ijms241411450] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance as a hallmark of type 2 DM (T2DM) plays a role in dementia by promoting pathological lesions or enhancing the vulnerability of the brain. Numerous studies related to insulin/insulin-like growth factor 1 (IGF-1) signaling are linked with various types of dementia. Brain insulin resistance in dementia is linked to disturbances in Aβ production and clearance, Tau hyperphosphorylation, microglial activation causing increased neuroinflammation, and the breakdown of tight junctions in the blood-brain barrier (BBB). These mechanisms have been studied primarily in Alzheimer's disease (AD), but research on other forms of dementia like vascular dementia (VaD), Lewy body dementia (LBD), and frontotemporal dementia (FTD) has also explored overlapping mechanisms. Researchers are currently trying to repurpose anti-diabetic drugs to treat dementia, which are dominated by insulin sensitizers and insulin substrates. Although it seems promising and feasible, none of the trials have succeeded in ameliorating cognitive decline in late-onset dementia. We highlight the possibility of repositioning anti-diabetic drugs as a strategy for dementia therapy by reflecting on current and previous clinical trials. We also describe the molecular perspectives of various types of dementia through the insulin/IGF-1 signaling pathway.
Collapse
Affiliation(s)
- Keren Esther Kristina Mantik
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sujin Kim
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Bonsang Gu
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sohee Moon
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Hyo-Bum Kwak
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Ho Park
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
- Department of Kinesiology, College of Arts and Sports, Inha University, Incheon 22212, Republic of Korea
| | - Ju-Hee Kang
- Department of Pharmacology, Research Center for Controlling Intercellular Communication, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
11
|
Barzegari A, Mahdirejei HA, Hanani M, Esmaeili MH, Salari AA. Adolescent swimming exercise following maternal valproic acid treatment improves cognition and reduces stress-related symptoms in offspring mice: Role of sex and brain cytokines. Physiol Behav 2023; 269:114264. [PMID: 37295664 DOI: 10.1016/j.physbeh.2023.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
Valproic acid (VPA) treatment during pregnancy is a risk factor for developing autism spectrum disorder, cognitive deficits, and stress-related disorders in children. No effective therapeutic strategies are currently approved to treat or manage core symptoms of autism. Active lifestyles and physical activity are closely associated with health and quality of life during childhood and adulthood. This study aimed to evaluate whether swimming exercise during adolescence can prevent the development of cognitive dysfunction and stress-related disorders in prenatally VPA-exposed mice offspring. Pregnant mice received VPA, afterwards, offspring were subjected to swimming exercise. We assessed neurobehavioral performances and inflammatory cytokines (interleukin-(IL)6, tumor-necrosis-factor-(TNF)α, interferon-(IFN)γ, and IL-17A) in the hippocampus and prefrontal cortex of offspring. Prenatal VPA treatment increased anxiety-and anhedonia-like behavior and decreased social behavior in male and female offspring. Prenatal VPA exposure also increased behavioral despair and reduced working and recognition memory in male offspring. Although prenatal VPA increased hippocampal IL-6 and IFN-γ, and prefrontal IFN-γ and IL-17 in males, it only increased hippocampal TNF-α and IFN-γ in female offspring. Adolescent exercise made VPA-treated male and female offspring resistant to anxiety-and anhedonia-like behavior in adulthood, whereas it only made VPA-exposed male offspring resistant to behavioral despair, social and cognitive deficits in adulthood. Exercise reduced hippocampal IL-6, TNF-α, IFN-γ, and IL-17, and prefrontal IFN-γ and IL-17 in VPA-treated male offspring, whereas it reduced hippocampal TNF-α and IFN-γ in VPA-treated female offspring. This study suggests that adolescent exercise may prevents the development of stress-related symptoms, cognitive deficits, and neuroinflammation in prenatally VPA-exposed offspring mice.
Collapse
Affiliation(s)
- Ali Barzegari
- Department of Exercise Physiology, Payame Noor University (PNU), Tehran, Iran
| | | | - Masoumeh Hanani
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Kish International Campus, University of Tehran, Kish, Iran
| | | | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Huang J, Huang N, Cui D, Shi J, Qiu Y. Clinical antidiabetic medication used in Alzheimer's disease: From basic discovery to therapeutics development. Front Aging Neurosci 2023; 15:1122300. [PMID: 36845652 PMCID: PMC9950577 DOI: 10.3389/fnagi.2023.1122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease. Type 2 diabetes mellitus (T2DM) appears to increase and contributing to the risk of AD. Therefore, there is increasing concern about clinical antidiabetic medication used in AD. Most of them show some potential in basic research, but not in clinical research. So we reviewed the opportunities and challenges faced by some antidiabetic medication used in AD from basic to clinical research. Based on existing research progress, this is still the hope of some patients with special types of AD caused by rising blood glucose or/and insulin resistance.
Collapse
Affiliation(s)
- Juan Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,School of Public Health, Zunyi Medical University, Zunyi, Guizhou, China
| | - Nanqu Huang
- The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou, China
| | - Di Cui
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China,Jingshan Shi,
| | - Yu Qiu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Yu Qiu,
| |
Collapse
|
13
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Alruwaili M, AlRuwaili R, Albogami SM, Alorabi M, Saad HM, Simal-Gandara J. Targeting of neuroinflammation by glibenclamide in Covid-19: old weapon from arsenal. Inflammopharmacology 2023; 31:1-7. [PMID: 36418600 PMCID: PMC9685016 DOI: 10.1007/s10787-022-01087-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022]
Abstract
In coronavirus disease 2019 (Covid-19) era, neuroinflammation may develop due to neuronal tropism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and/or associated immune activation, cytokine storm, and psychological stress. SARS-CoV-2 infection and linked cytokine storm may cause blood-brain barrier (BBB) injury through which activated immune cells and SARS-CoV-2 can pass into the brain causing activation of glial cells with subsequent neuroinflammation. Different therapeutic regimens were suggested to alleviate Covid-19-induced neuroinflammation. Since glibenclamide has anti-inflammatory and neuroprotective effects, it could be effective in mitigation of SARS-CoV-2 infection-induced neuroinflammation. Glibenclamide is a second-generation drug from the sulfonylurea family, which acts by inhibiting the adenosine triphosphate (ATP)-sensitive K channel in the regulatory subunit of type 1 sulfonylurea receptor (SUR-1) in pancreatic β cells. Glibenclamide reduces neuroinflammation and associated BBB injury by inhibiting the nod-like receptor pyrin 3 (NLRP3) inflammasome, oxidative stress, and microglial activation. Therefore, glibenclamide through inhibition of NLRP3 inflammasome, microglial activation, and oxidative stress may attenuate SARS-CoV-2-mediated neuroinflammation.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511 AlBeheira Egypt
| | - Hayder M. Al-kuraishy
- Professor in department of clinical pharmacology and medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Professor in department of clinical pharmacology and medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Raed AlRuwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Sarah M. Albogami
- Department of Biotechnology, College of Science, Taif University, P.O.Box 11099, Taif, 21944 Saudi Arabia
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O.Box 11099, Taif, 21944 Saudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744 Egypt
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| |
Collapse
|
14
|
Li J, Wang Z, Nan X, Yin M, Fang H. Hotspots and frontier trends of diabetic associated cognitive decline research based on rat and mouse models from 2012 to 2021: A bibliometric study. Front Neurol 2022; 13:1073224. [PMID: 36582609 PMCID: PMC9793002 DOI: 10.3389/fneur.2022.1073224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The establishment of rodent models, such as rat and mouse models, plays a critical role in the study of diabetic associated cognitive decline. With the continuous growth of relevant literature information, it is difficult for researchers to accurately and timely capture the topics in this field. Therefore, this study aims to explore the current status and frontier trends of diabetic associated cognitive decline research based on rat and mouse models through a bibliometric analysis. Methods We collected 701 original articles on this subject from the Science Citation Index Expanded of the Web of Science Core Collection from 2012 to 2021. Then we utilized CiteSpace and VOSviewer for plotting knowledge maps and evaluating hotpots and trends. Results During this decade, except for a slight decline in 2020, the number of annual outputs on diabetes associated cognitive decline research using rat and mouse models increased every year. China (country), China Pharmaceutical University (institution), Gao, Hongchang (the author from the School of Pharmacy of Wenzhou Medical University, China), and Metabolic Brain Disease (journal) published the most papers in this research field. The analysis results of co-cited references and co-occurrence keywords indicated that "mechanisms and prevention and treatment methods", especially "oxidative stress", "potential association with Alzheimer's disease" and "spatial memory" are research focuses in this subject area. The bursts detection of references and keywords implied that "cognitive impairment of type 1 diabetes" and "autophagy and diabetes associated cognitive decline" will be potential directions for future research in this subject area. Conclusion This study systematically assessed general information, current status and emerging trends of diabetic associated cognitive decline research using rat and mouse models in the past decade based on a bibliometric analysis. The number of publications was annually increasing although a slight decline was observed in 2020. Contributions from different countries/regions, institutions, authors, co-cited authors, journals and co-cited journals were evaluated, which may also be used to guide future research. Through the analysis of references and keywords, we predicted the future research hotspots and trends in this field.
Collapse
Affiliation(s)
- Jie Li
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China
| | - Zhen Wang
- Department of Orthopedics, Handan First Hospital, Handan, China
| | - Xinyu Nan
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China
| | - Mingjie Yin
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China
| | - Hui Fang
- Graduate School of Hebei Medical University, Shijiazhuang, China,Department of Endocrinology, Tangshan Workers' Hospital, Tangshan, China,*Correspondence: Hui Fang
| |
Collapse
|
15
|
Abstract
In the view of progressively aging human population and increased occurrence of dysmetabolic disorders, such as diabetes mellitus, cognitive impairment becomes a major threat to the national health. To date, the molecular mechanisms of cognitive dysfunction are partially described for diabetes and diseases of different nature, such as Alzheimer disease or Parkinson disease. The emergence of data pointing towards pleotropic effects of hypoglycaemic medicines indicates involvement of their targets in pathogenesis of cognitive impairment. We are aiming here to review available data on the most widely used hypoglycaemic drug, glibenclamide and find possible relationship of its targets to the pathogenesis of cognitive impairment.
Collapse
Affiliation(s)
- Alexander Zubov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Zamira Muruzheva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Maria Tikhomirova
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Marina Karpenko
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
16
|
Melatonin treatment improves cognitive deficits by altering inflammatory and neurotrophic factors in the hippocampus of obese mice. Physiol Behav 2022; 254:113919. [PMID: 35858673 DOI: 10.1016/j.physbeh.2022.113919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 01/10/2023]
Abstract
Overweight and obesity are associated with an increased risk of developing dementia and cognitive deficits. Neuroinflammation is one of the most important mechanisms behind cognitive impairment in obese patients. In recent years, the neuroendocrine hormone melatonin has been suggested to have therapeutic effects for memory decline in several neuropsychiatric and neurological conditions. However, the effects of melatonin on cognitive function under obesity conditions still need to be clarified. The purpose of this study was to determine whether melatonin treatment can improve cognitive impairment in obese mice. To this end, male C57BL6 mice were treated with a high-fat diet (HFD) for 20 weeks to induce obesity. The animal received melatonin for 8 weeks. Cognitive functions were evaluated using the Y maze, object recognition test, and the Morris water maze. We measured inflammatory cytokines including tumor necrosis factor (TNF)-α, interferon (IFN)-γ, interleukin (IL)-17A, and brain-derived neurotrophic factor (BDNF) in the hippocampus of obese mice. Our results show that HFD-induced obesity significantly impaired working, spatial and recognition memory by increasing IFN-γ and IL-17A and decreasing BDNF levels in the hippocampus of mice. On the other hand, melatonin treatment effectively improved all cognitive impairments and reduced TNF-α, IFN-γ, and IL-17A and elevated BDNF levels in the hippocampus of obese mice. Taken together, this study suggests that melatonin treatment could have a beneficial role in the treatment of cognitive impairment in obesity.
Collapse
|
17
|
Zubov AS, Ivleva IS, Pestereva NS, Tiutiunnik TV, Traktirov DS, Karpenko MN. Glibenclamide alters serotonin and dopamine levels in the rat striatum and hippocampus, reducing cognitive impairment. Psychopharmacology (Berl) 2022; 239:2787-2798. [PMID: 35545702 DOI: 10.1007/s00213-022-06159-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 05/01/2022] [Indexed: 11/27/2022]
Abstract
RATIONALE Glibenclamide (GD) is a widely used medical drug; therefore, identifying the mechanisms underlying its pleiotropic effects in the central nervous system is urgent. OBJECTIVES The aim of this work was to determine the ability of GD to modulate serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA) transmission and to assess the dose-dependent effect of GD on cognitive function in rats during natural ageing. METHODS In Experiment 1, rats received 10, 25, or 50 μg/kg GD intraperitoneally for 10 days. In Experiment 2, rats received 50 μg/kg GD intraperitoneally for 30 days. Spatial and working memory was assessed in the MWM and Y-maze tests, respectively. In both experiments, the levels of DA and 5-HT, their metabolites, and turnover rate were analysed by HPLC-ED in the rat hippocampus and striatum. RESULTS Changes in DA and 5-HT levels occurred only with a dose of 50 μg/kg GD. Therefore, in the second experiment, we administered a dose of 50 μg/kg GD. At this dose, GD prevented the development of impairments in spatial and working memory. The hippocampal concentrations of DA and DOPAC decreased, and the striatal concentrations of DA, DOPAC, 5-HT, and 5-HIAA increased. CONCLUSION One of the possible mechanisms of the precognitive effect of GD is its ability to modulate monoamine transmission. Thus, in translating our results to humans, GD can be recommended as a prophylactic agent for natural ageing to reduce the risk of developing cognitive impairments.
Collapse
Affiliation(s)
- Alexander S Zubov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Irina S Ivleva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Nina S Pestereva
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Tatiana V Tiutiunnik
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| | - Dmitrtii S Traktirov
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia.
| | - Marina N Karpenko
- I.P. Pavlov Department of Physiology, Federal State Budget Scientific Institution "Institute of Experimental Medicine", St. Petersburg, Russia
| |
Collapse
|
18
|
Tian R, Liu X, Jing L, Yang L, Xie N, Hou Y, Tao H, Tao Y, Wu J, Meng X. Huang-Lian-Jie-Du decoction attenuates cognitive dysfunction of rats with type 2 diabetes by regulating autophagy and NLRP3 inflammasome activation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115196. [PMID: 35337922 DOI: 10.1016/j.jep.2022.115196] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huang-Lian-Jie-Du decoction (HLJDD) is a traditional Chinese formula that is efficacious in treating diabetes mellitus, Alzheimer's disease, and diabetic encephalopathy; the underlying mechanisms of HLJDD in diabetes-associated cognitive dysfunction remain unclear. AIM OF THE STUDY This study investigated the neuroprotective effects of HLJDD on cognitive function, and the possible underlying mechanisms in type 2 diabetes mellitus (T2DM) in a rat model of cognitive impairment. MATERIALS AND METHODS Twelve active ingredients in HLJDD were detected using high-performance liquid chromatography analysis. An animal model of cognitive dysfunction in T2DM was induced via a high-sugar and high-fat diet combined with a low dose of streptozotocin. Sprague-Dawley rats were randomly divided into six groups: control, T2DM, metformin (0.34 g/kg/day), and HLJDD groups (3, 1.5, and 0.75 g/kg/day). All treatments were intragastrically administrated for nine continuous weeks after the development of T2DM. Body weight, food and water intake, fasting blood glucose, insulin sensitivity, and blood lipid levels were measured. Spatial learning and memory of the rats were assessed using the Morris water maze test. Hematoxylin and eosin and Nissl staining were performed to evaluate neuronal morphology and vitality. Glutathione, malondialdehyde, and superoxide dismutase levels were measured to determine the level of oxidative stress in the hippocampus. Transmission electron microscopy was performed to observe the synaptic morphology and structure of hippocampal neurons. IL-1β levels in the hippocampus and cerebrospinal fluid were determined. The protein expression of NLRP3, cleaved caspase-1, mature IL-1β, ATG7, P62, LC3, and brain-derived neurotrophic factor (BDNF) was determined using western blotting and immunofluorescence analysis. RESULTS HLJDD attenuated cognitive dysfunction in rats with T2DM as shown by the decreased escape latency, increased times crossing the platform and time spent in the target quadrant in the Morris water maze test (P < 0.05), improvement in hippocampal histopathological changes, and an elevated level of cell vitality. HLJDD treatment also reduced blood glucose and lipid levels, ameliorated oxidative stress, and downregulated IL-1β expression in the hippocampus and cerebrospinal fluid (P < 0.05). Moreover, HLJDD enhanced BDNF, ATG7, and LC3 protein expression and significantly inhibited the expression of P62, NLRP3, cleaved caspase-1, and mature IL-1β in the hippocampal CA1 region (P < 0.05). Immunofluorescence results further confirmed that the fluorescence intensity of NLRP3 and P62 in the hippocampus decreased after HLJDD intervention (P < 0.05). CONCLUSIONS HLJDD ameliorated cognitive dysfunction in T2DM rats. The neuroprotective effect is exerted via the modulation of glucose and lipid metabolism, upregulation of autophagy, and inhibition of NLRP3 inflammasome signaling pathway.
Collapse
Affiliation(s)
- Ruimin Tian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacology, North Sichuan Medical College, Nanchong, 637000, China
| | - Xianfeng Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lijia Jing
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Lu Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Na Xie
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ya Hou
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Honglin Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yiwen Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiasi Wu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Xianli Meng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
19
|
Rajesh Y, Kanneganti TD. Innate Immune Cell Death in Neuroinflammation and Alzheimer's Disease. Cells 2022; 11:1885. [PMID: 35741014 PMCID: PMC9221514 DOI: 10.3390/cells11121885] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder molecularly characterized by the formation of amyloid β (Aβ) plaques and type 2 microtubule-associated protein (Tau) abnormalities. Multiple studies have shown that many of the brain's immunological cells, specifically microglia and astrocytes, are involved in AD pathogenesis. Cells of the innate immune system play an essential role in eliminating pathogens but also regulate brain homeostasis and AD. When activated, innate immune cells can cause programmed cell death through multiple pathways, including pyroptosis, apoptosis, necroptosis, and PANoptosis. The cell death often results in the release of proinflammatory cytokines that propagate the innate immune response and can eliminate Aβ plaques and aggregated Tau proteins. However, chronic neuroinflammation, which can result from cell death, has been linked to neurodegenerative diseases and can worsen AD. Therefore, the innate immune response must be tightly balanced to appropriately clear these AD-related structural abnormalities without inducing chronic neuroinflammation. In this review, we discuss neuroinflammation, innate immune responses, inflammatory cell death pathways, and cytokine secretion as they relate to AD. Therapeutic strategies targeting these innate immune cell death mechanisms will be critical to consider for future preventive or palliative treatments for AD.
Collapse
|
20
|
Cheng D, Yang S, Zhao X, Wang G. The Role of Glucagon-Like Peptide-1 Receptor Agonists (GLP-1 RA) in Diabetes-Related Neurodegenerative Diseases. Drug Des Devel Ther 2022; 16:665-684. [PMID: 35340338 PMCID: PMC8943601 DOI: 10.2147/dddt.s348055] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/18/2022] [Indexed: 12/17/2022] Open
Abstract
Recent clinical guidelines have emphasized the importance of screening for cognitive impairment in older adults with diabetes, however, there is still a lack of understanding about the drug therapy. Glucagon-like peptide 1 receptor agonists (GLP-1 RAs) are widely used in the treatment of type 2 diabetes and potential applications may include the treatment of obesity as well as the adjunctive treatment of type 1 diabetes mellitus in combination with insulin. Growing evidence suggests that GLP-1 RA has the potential to treat neurodegenerative diseases, particularly in diabetes-related Alzheimer’s disease (AD) and Parkinson’s disease (PD). Here, we review the molecular mechanisms of the neuroprotective effects of GLP-1 RA in diabetes-related degenerative diseases, including AD and PD, and their potential effects.
Collapse
Affiliation(s)
- Dihe Cheng
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Shuo Yang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Xue Zhao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, 130021, People's Republic of China
| |
Collapse
|
21
|
Ekong MB, Odinukaeze FN, Nwonu AC, Mbadugha CC, Nwakanma AA. BRAIN ACTIVITIES OF STREPTOZOTOCIN-INDUCED DIABETIC WISTAR RATS TREATED WITH GLICLAZIDE: BEHAVIOURAL, BIOCHEMICAL AND HISTOMORPHOLOGY STUDIES. IBRO Neurosci Rep 2022; 12:271-279. [PMID: 35746981 PMCID: PMC9210456 DOI: 10.1016/j.ibneur.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Gliclazide (GLD), a sulphonylurea is efficacious in the treatment of diabetes type-2. However, there is limited information on its activity in the brain, especially in diabetics. This research investigated the brain activities of GLD following streptozotocin-induced diabetes in Wistar rats. Twenty five adult male Wistar rats (200–250 g) were grouped (n = 5) as: Control (distilled water, 5 mL/kg) and GLD (150 mg/kg) groups; and the diabetic groups, untreated streptozotocin (STZ, 35 mg/kg), and STZ (35 mg/kg) treated with GLD (150 mg/kg) for two and four weeks, and already on high fat diet. The animals’ body weights and blood glucose levels were checked weekly. After the experimental duration, spontaneous alternation and novel object recognition tests were carried out and the animals sacrificed. Perfusion with phosphate buffered saline preceded brain excision for biochemical analyses, with halves fixed in 10% neutral buffered formalin for histology. Compared with the control, results showed (p < 0.05) declined spontaneous alternation and exploratory activities with no preference for familiar or novel objects, body weights loss, raised blood glucose, increased malondialdehyde with decreased superoxide dismutase concentrations, and no apparent adverse effect on hippocampal and prefrontal cortical Nissl substance in the untreated diabetic group. The adverse observations were attenuated in the GLD treated diabetic groups; although the spontaneous alternation in the four weeks GLD treated diabetic group improved (p < 0.05), exploration of objects increased (p < 0.05) without preference. The present results showed that treatment with GLD for two and four weeks mitigated STZ activities, even though there was less improvement in neurocognitive activities.
Collapse
Affiliation(s)
- Moses B. Ekong
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
- Corresponding author.
| | - Francis N. Odinukaeze
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | - Amaobi C. Nwonu
- Department of Anatomy, Faculty of Basic Medical Sciences, University of Uyo, Uyo, Nigeria
| | | | - Agnes A. Nwakanma
- Department of Anatomy, Faculty of Basic Medical Sciences, Chukwuemeka Odumegwu Ojukwu University, Uli, Nigeria
| |
Collapse
|
22
|
Wang K, Jiang Z, Yu X, Shao Y, Liu H, Wu S, Kong L, Wang Z. Comparative efficacy and safety of traditional Chinese patent medicine for cognitive dysfunction in diabetic cognitive dysfunction: A protocol for systematic review and Bayesian network meta-analysis. Medicine (Baltimore) 2022; 101:e28946. [PMID: 35451386 PMCID: PMC8913128 DOI: 10.1097/md.0000000000028946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND More and more studies have shown that cognitive dysfunction is one of the main complications of diabetes. The disorder of glucose and lipid metabolism seriously damages brain function and accelerates the conversion to dementia. At present, there are no drugs that can directly treat diabetic cognitive dysfunction. All drugs for the treatment of this disease achieve the purpose of treatment through strict control of blood sugar levels. This method has great limitations. Traditional Chinese patent medicines (TCPMs) work through multiple targets and multiple pathways, which can not only effectively correct the state of glucose and lipid metabolism disorders, but also significantly improve cognitive ability, but there is a lack of systematic evaluation of their effectiveness and safety. We use the method of network meta-analysis to systematically and comprehensively compare the effectiveness and safety of different Chinese patent medicines. METHODS We will comprehensively search the following databases, including Web of Science, PubMed, The Cochrane Library, EMBASE, China National Knowledge Infrastructure, Chinese Scientific Journals Database, Wanfang database and China BioMedical Literature. We will include all randomized controlled trials that meet the inclusion criteria, starting from the establishment of the database until September 2021. Two researchers will independently screen the literature based on inclusion criteria. While extracting data, we also assess the risk of bias in the included studies. All the data and evidence obtained will be evaluated by the method of Bayesian network meta-analysis. RESULTS This study will evaluate the effectiveness and safety of various TCPMs for diabetic cognitive dysfunction. CONCLUSION The results of this study will provide valuable references for the clinical application of TCPMs, and assist clinicians in formulating more reasonable diagnosis and treatment strategies. ETHICS AND DISSEMINATION This study does not require ethical approval. INTERNATIONAL PLATFORM OF REGISTERED SYSTEMATIC REVIEW AND METAANALYSIS PROTOCOLS REGISTRATION NUMBER INPLASY202190008.
Collapse
Affiliation(s)
- Kai Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, China
| | - Zhenyuan Jiang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Xiaowen Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Yuze Shao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Hailiang Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Susu Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Linghui Kong
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, China
| | - Zhonglin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, China
| |
Collapse
|
23
|
García-García A, Rojas S, Rivas-García L, Navarro-Hortal MD, Romero-Márquez JM, Fernández-Bolaños JG, Choquesillo-Lazarte D, Salinas-Castillo A, López Ó, Quiles JL, Rodríguez-Diéguez A. A gliclazide complex based on palladium towards Alzheimer's disease: promising protective activity against Aβ-induced toxicity in C. elegans. Chem Commun (Camb) 2022; 58:1514-1517. [PMID: 34994366 DOI: 10.1039/d1cc04404d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A new palladium coordination compound based on gliclazide with the chemical formula [Pd(glz)2] (where glz = gliclazide) has been synthesized and characterised. The structural characterization reveals that this material consists of mononuclear units formed by a Pd2+ ion coordinated to two molecules of the glz ligand, in which palladium ions exhibit a distorted plane-square coordination sphere. This novel material behaves like a good and selective inhibitor of butyrylcholinesterase, one of the most relevant therapeutic targets against Alzheimer's disease. Analysis of the enzyme kinetics showed a mixed mode of inhibition, the title compound being capable of interacting with both the free enzyme and the enzyme-substrate complex. Finally, the palladium compound shows promising protective activity against Aβ-induced toxicity in the Caenorhabditis elegans model, which has never been reported.
Collapse
Affiliation(s)
- Amalia García-García
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, Granada 18071, Spain.
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, Granada 18071, Spain.
| | | | - María D Navarro-Hortal
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, Department of Physiology, University of Granada, Avda. del Conocimiento s.n, Armilla 18100, Spain
| | - Jose M Romero-Márquez
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, Department of Physiology, University of Granada, Avda. del Conocimiento s.n, Armilla 18100, Spain
| | - José G Fernández-Bolaños
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Apart. 1203, Seville E-41071, Spain.
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT, CSIC-UGR, Av. Las Palmeras n°4, Granada 18100, Spain
| | - Alfonso Salinas-Castillo
- Department of Analytic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Óscar López
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, Apart. 1203, Seville E-41071, Spain.
| | - José L Quiles
- Institute of Nutrition and Food Technology "José Mataix", Biomedical Research Centre, Department of Physiology, University of Granada, Avda. del Conocimiento s.n, Armilla 18100, Spain.,Research Group on Foods, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, Isabel Torres, 21, Santander 39011, Spain.
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, Av. Fuentenueva S/N, Granada 18071, Spain.
| |
Collapse
|
24
|
Gilak-Dalasm M, Peeri M, Azarbayjani MA. Swimming exercise decreases depression-like behaviour and inflammatory cytokines in a mouse model of type 2 diabetes. Exp Physiol 2021; 106:1981-1991. [PMID: 34347905 DOI: 10.1113/ep089501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022]
Abstract
NEW FINDINGS What is the central question of this study? Can swimming exercise decrease depression-like behaviour and inflammation in type 2 diabetic mice? What is the main finding and its importance? Swimming exercise decreased depression-like behaviour by reducing inflammation in type 2 diabetic mice. Swimming exercise might be useful for the treatment of depression-related disorders in patients with type 2 diabetes. ABSTRACT Clinical and experimental studies have shown that type 2 diabetes is associated with depression-related disorders. Inflammation has been identified as a common mechanism in both type 2 diabetes and depression. Several studies have suggested that swimming exercise might be able to reduce depression-related symptoms. The present study aimed to explore whether swimming exercise can decrease depression-like behaviour in type 2 diabetic mice. To induce type 2 diabetes, male C57BL6 mice were treated with a high-fat diet and streptozocin. Type 2 diabetic animals were subjected to swimming exercise for 4 weeks. Then, depression-like behaviours were evaluated by sucrose preference, novelty-suppressed feeding, social interaction and tail suspension tests. We also measured levels of glucose, insulin and pro-inflammatory cytokines such as interleukin-1β and tumour necrosis factor-α in the serum of animals. The results indicated that type 2 diabetes significantly increased anhedonia- and depression-like behaviours in mice. We also found significant increases in glucose, insulin and inflammatory cytokines in diabetic mice. Moreover, swimming exercise reduced anhedonia- and depression-like behaviour in type 2 diabetic mice. Swimming exercise also decreased glucose and inflammatory cytokines in the serum of mice with type 2 diabetes. Collectively, this study demonstrates that swimming exercise decreased depression-like behaviour by reducing inflammation in type 2 diabetic mice. Further clinical studies are needed to validate these findings in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Mohadeseh Gilak-Dalasm
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
25
|
Matinfar P, Peeri M, Azarbayjani MA. Swimming exercise attenuates anxiety-like behavior by reducing brain oxidative stress in type 2 diabetic mice. Physiol Behav 2021; 237:113449. [PMID: 33945802 DOI: 10.1016/j.physbeh.2021.113449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/20/2021] [Accepted: 04/29/2021] [Indexed: 11/28/2022]
Abstract
Anxiety-related behaviors are among the most prevalent psychiatric disorders in patients with type 2 diabetes (T2D). The protective effect of exercise on neuropsychiatric disorders has been documented. However, there are no studies that examined whether swimming exercise can decrease anxiety-like symptoms in type 2 diabetes. We investigated the effects of swimming exercise on body weight, anxiety-like behavior, glucose and insulin levels, and brain oxidative stress in male C57BL/6 mice. T2D-induced mice were subjected to swimming exercise, then anxiety-like behaviors were measured by the open field, light-dark box, and elevated plus-maze tests. Glucose and insulin levels were measure in serum, and antioxidant/oxidative markers including glutathione (GSH), malondialdehyde (MDA), and glutathione disulfide (GSSG) were measured in the brain. Our findings showed that T2D increased body weight, anxiety-like symptoms, glucose and insulin resistance, and oxidative stress by increasing MDA and GSSG levels in the brain of mice. Interestingly, swimming exercise reversed these parameters in diabetic mice. Our findings clearly indicate that there is a protective impact of swimming exercise on anxiety-like behavior by reducing insulin resistance and brain oxidative stress in mice with type 2 diabetes. Further studies are needed to validate these findings in humans.
Collapse
Affiliation(s)
- Parinaz Matinfar
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Maghsoud Peeri
- Department of Exercise Physiology, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| | | |
Collapse
|
26
|
Amani M, Houwing DJ, Homberg JR, Salari AA. Perinatal fluoxetine dose-dependently affects prenatal stress-induced neurobehavioural abnormalities, HPA-axis functioning and underlying brain alterations in rat dams and their offspring. Reprod Toxicol 2021; 104:27-43. [PMID: 34186199 DOI: 10.1016/j.reprotox.2021.06.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/08/2023]
Abstract
Both untreated and SSRI antidepressant treated maternal depression during the perinatal period can pose both short-and long-term health risks to the offspring. Therefore, it is essential to have an effective SSRI treatment consisting of the lowest effective dose beneficial to the mother, without causing adverse effects on offspring development. The effects of prenatal stress on neurobehavioral outcomes were studied in the pregnant and lactating rat dam, and her offspring. Furthermore, stressed dams were treated with different doses of fluoxetine (FLX; 5, 10and 25 mg/kg) during pregnancy and the postpartum period. We found that prenatal stress-induced anxiety-and depressive-like behaviour and increased HPA-axis function in pregnant and postpartum dams, and in offspring. Maternal stress impaired object recognition but did not affect spatial memory in offspring. Prenatal stress decreased whole-brain serotonin and brain-derived-neurotrophic-factor, and increased interleukin-17 and malondialdehyde, but did not affect oxytocin and interleukin-6 in the brains of offspring. Maternal treatment with 5 mg/kg FLX during the perinatal period did not rescue any stress-induced anxiety/depressive-like behaviour in the pregnant and postpartum dam and had only a few rescuing effects in offspring. Maternal FLX treatment with 10 mg/kg did rescue most stress-induced anxiety-and depressive-like behaviour or HPA-axis-function in dams and offspring. The highest dose tested, 25 mg/kg FLX, had the rescuing properties in dams while having the same, or an even greater, detrimental effect as prenatal stress on offspring behaviour and molecular alterations in the brain. Our results show prenatal stress rescuing properties for FLX treatment in the pregnant and postpartum dam, with dose-dependent effects on the offspring.
Collapse
Affiliation(s)
- Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Danielle J Houwing
- Department of Cognitive Neuroscience, Center for Medical Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Center for Medical Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran.
| |
Collapse
|
27
|
Rosado AF, Rosa PB, Platt N, Pierone BC, Neis VB, Severo Rodrigues AL, Kaster MP, Kaufmann FN. Glibenclamide treatment prevents depressive-like behavior and memory impairment induced by chronic unpredictable stress in female mice. Behav Pharmacol 2021; 32:170-181. [PMID: 33079735 DOI: 10.1097/fbp.0000000000000599] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glibenclamide is a second-generation sulfonylurea used in the treatment of Type 2 Diabetes Mellitus. The primary target of glibenclamide is ATP-sensitive potassium channels inhibition; however, other possible targets include the control of inflammation and blood-brain barrier permeability, which makes this compound potentially interesting for the management of brain-related disorders. Here, we showed that systemic treatment with glibenclamide (5 mg/kg, p.o., for 21 days) could prevent the behavioral despair and the cognitive dysfunction induced by chronic unpredictable stress (CUS) in mice. In nonhypoglycemic doses, glibenclamide attenuated the stress-induced weight loss, decreased adrenal weight, and prevented the increase in glucocorticoid receptors in the prefrontal cortex, suggesting an impact in hypothalamic-pituitary-adrenal (HPA) axis function. Additionally, we did not observe changes in Iba-1, NLRP3 and caspase-1 levels in the prefrontal cortex or hippocampus after CUS or glibenclamide treatment. Thus, this study suggests that chronic treatment with glibenclamide prevents the emotional and cognitive effects of chronic stress in female mice. On the other hand, the control of neuroinflammation and NLRP3 inflammasome pathway is not the major mechanism mediating these effects. The behavioral effects might be mediated, in part, by the normalization of glucocorticoid receptors and HPA axis.
Collapse
Affiliation(s)
- Axel Fogaça Rosado
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Priscila Batista Rosa
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Nicolle Platt
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Bruna Caroline Pierone
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Vivian Binder Neis
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | | | - Manuella Pinto Kaster
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fernanda Neutzling Kaufmann
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Center, Université Laval, Quebec City, Canada
| |
Collapse
|
28
|
Zeraati M, Najdi N, Mosaferi B, Salari AA. Environmental enrichment alters neurobehavioral development following maternal immune activation in mice offspring with epilepsy. Behav Brain Res 2020; 399:112998. [PMID: 33197458 DOI: 10.1016/j.bbr.2020.112998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Epilepsy is a chronic brain disease affecting millions of people worldwide. Anxiety-related disorders and cognitive deficits are common in patients with epilepsy. Previous studies have shown that maternal infection/immune activation renders children more vulnerable to neurological disorders later in life. Environmental enrichment has been suggested to improve seizures, anxiety, and cognitive impairment in animal models. The present study aimed to explore the effects of environmental enrichment on seizure scores, anxiety-like behavior, and cognitive deficits following maternal immune activation in offspring with epilepsy. Pregnant mice were treated with lipopolysaccharides-(LPS) or vehicle, and offspring were housed in normal or enriched environments during early adolescence to adulthood. To induce epilepsy, adult male and female offspring were treated with Pentylenetetrazol-(PTZ), and then anxiety-like behavior and cognitive functions were assessed. Tumor-necrosis-factor (TNF)-α and interleukin (IL) 10 were measured in the hippocampus of offspring. Maternal immune activation sex-dependently increased seizure scores in PTZ-treated offspring. Significant increases in anxiety-like behavior, cognitive impairment, and hippocampal TNF-α and IL-10 were also found following maternal immune activation in PTZ-treated offspring. However, there was no sex difference in these behavioral abnormalities in offspring. Environmental enrichment reversed the effects of maternal immune activation on behavioral and inflammatory parameters in PTZ-treated offspring. Overall, the present findings highlight the adverse effects of prenatal maternal immune activation on seizure susceptibility and psychiatric comorbidities in offspring. This study suggests that environmental enrichment may be used as a potential treatment approach for behavioral abnormalities following maternal immune activation in PTZ-treated offspring.
Collapse
Affiliation(s)
- Maryam Zeraati
- Physiology and Pharmacology Department, Faculty of Medicine, Alborz University of Medical Sciences, Karaj, Alborz, Iran
| | - Nazila Najdi
- Department of Obstetrics and Gynecology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Belal Mosaferi
- Department of Basic Sciences, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran.
| |
Collapse
|
29
|
Thapak P, Bishnoi M, Sharma SS. Pharmacological Inhibition of Transient Receptor Potential Melastatin 2 (TRPM2) Channels Attenuates Diabetes-induced Cognitive Deficits in Rats: A Mechanistic Study. Curr Neurovasc Res 2020; 17:249-258. [DOI: 10.2174/1567202617666200415142211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 02/08/2023]
Abstract
Background:
Diabetes is a chronic metabolic disorder affecting the central nervous system.
A growing body of evidence has depicted that high glucose level leads to the activation of the
transient receptor potential melastatin 2 (TRPM2) channels. However, there are no studies targeting
TRPM2 channels in diabetes-induced cognitive decline using a pharmacological approach.
Objective:
The present study intended to investigate the effects of 2-aminoethoxydiphenyl borate
(2-APB), a TRPM2 inhibitor, in diabetes-induced cognitive impairment.
Methods:
Streptozotocin (STZ, 50 mg/kg, i.p.) was used to induce diabetes in rats. Animals were
randomly divided into the treatment group, model group and age-matched control and pre se
group. 2-APB treatment was given for three weeks to the animals. After 10 days of behavioural
treatment, parameters were performed. Animals were sacrificed at 10th week of diabetic induction
and the hippocampus and cortex were isolated. After that, protein and mRNA expression study
was performed in the hippocampus. Acetylcholinesterase (AchE) activity was done in the cortex.
Results: :
Our study showed the 10th week diabetic animals developed cognitive impairment, which
was evident from the behavioural parameters. Diabetic animals depicted an increase in the TRPM2
mRNA and protein expression in the hippocampus as well as increased AchE activity in the cortex.
However, memory associated proteins were down-regulated, namely Ca2+/calmodulin-dependent
protein kinase II (CaMKII-Thr286), glycogen synthase kinase 3 beta (GSK-3β-Ser9), cAMP
response element-binding protein (CREB-Ser133), and postsynaptic density protein 95 (PSD-95).
Gene expression of parvalbumin, calsequestrin and brain-derived neurotrophic factor (BDNF)
were down-regulated while mRNA level of calcineurin A/ protein phosphatase 3 catalytic subunit
alpha (PPP3CA) was upregulated in the hippocampus of diabetic animals. A three-week treatment
with 2-APB significantly ameliorated the alteration in behavioural cognitive parameters in diabetic
rats. Moreover, 2-APB also down-regulated the expression of TRPM2 mRNA and protein in the
hippocampus as well as AchE activity in the cortex of diabetic animals as compared to diabetic
animals. Moreover, the 2-APB treatment also upregulated the CaMKII (Thr-286), GSK-3β (Ser9),
CREB (Ser133), and PSD-95 expression and mRNA levels of parvalbumin, calsequestrin, and
BDNF while mRNA level of calcineurin A was down-regulated in the hippocampus of diabetic
animals.
Conclusion: :
This study confirms the ameliorative effect of TRPM2 channel inhibitor in the diabetes-
induced cognitive deficits. Inhibition of TRPM2 channels reduced the calcium associated
downstream signaling and showed a neuroprotective effect of TRPM2 channels in diabetesinduced
cognitive impairment.
Collapse
Affiliation(s)
- Pavan Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| | - Mahendra Bishnoi
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Punjab, India
| | - Shyam S. Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, India
| |
Collapse
|
30
|
Lee H, Kim E. Repositioning medication for cardiovascular and cerebrovascular disease to delay the onset and prevent progression of Alzheimer's disease. Arch Pharm Res 2020; 43:932-960. [PMID: 32909178 DOI: 10.1007/s12272-020-01268-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/31/2020] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a complex, progressive, neurodegenerative disorder. As with other common chronic diseases, multiple risk factors contribute to the onset and progression of AD. Many researchers have evaluated the epidemiologic and pathophysiological association between AD, cardiovascular diseases (CVDs), and cerebrovascular diseases (CBVDs), including commonly reported risk factors such as diabetes, hypertension, and dyslipidemia. Relevant therapies of CVDs/CBVDs for the attenuation of AD have also been empirically investigated. Considering the challenges of new drug development, in terms of cost and time, multifactorial approaches such as therapeutic repositioning of CVD/CBVD medication should be explored to delay the onset and progression of AD. Thus, in this review, we discuss our current understanding of the association between cardiovascular risk factors and AD, as revealed by clinical and non-clinical studies, as well as the therapeutic implications of CVD/CBVD medication that may attenuate AD. Furthermore, we discuss future directions by evaluating ongoing trials in the field.
Collapse
Affiliation(s)
- Heeyoung Lee
- Department of Clinical Medicinal Sciences, Konyang University, 121 Daehakro, Nonsan, 32992, Republic of Korea
| | - EunYoung Kim
- Evidence-Based Research Laboratory, Division of Clinical Pharmacotherapy, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Republic of Korea.
| |
Collapse
|
31
|
Swimming exercise improves cognitive and behavioral disorders in male NMRI mice with sporadic Alzheimer-like disease. Physiol Behav 2020; 223:113003. [DOI: 10.1016/j.physbeh.2020.113003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/16/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
32
|
Silymarin sex-dependently improves cognitive functions and alters TNF-α, BDNF, and glutamate in the hippocampus of mice with mild traumatic brain injury. Life Sci 2020; 257:118049. [DOI: 10.1016/j.lfs.2020.118049] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
|
33
|
Ju YJ, Kim N, Gee MS, Jeon SH, Lee D, Do J, Ryu JS, Lee JK. Glibenclamide modulates microglial function and attenuates Aβ deposition in 5XFAD mice. Eur J Pharmacol 2020; 884:173416. [PMID: 32721448 DOI: 10.1016/j.ejphar.2020.173416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/13/2022]
Abstract
Severe neuroinflammation is known as a main pathology of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In these diseases, excessive microglial activation is one of the main causes of inflammation in the central nervous system. Therefore, inhibition of activated microglia may be suggested as a treatment for neuroinflammatory diseases. Glibenclamide, known as a therapeutics for type 2 diabetes in clinical trials has been shown to be effective in the inhibiting inflammatory conditions of various diseases. However, studies on the effects of glibenclamide for improving AD pathologies are little known. In this study, we tested glibenclamide on microglial cell line BV2 and 5XFAD mice. We found that glibenclamide significantly inhibited nitric oxide (NO) at 10 μM and 40 μM in BV2 cells induced by lipopolysaccharide (LPS) stimulation. In addition, we confirmed that 40 μM of glibenclamide reduced pro-inflammatory cytokines and proteins in the LPS-stimulated microglial cells. The anti-inflammatory effect of glibenclamide was further tested in APP/PS1 transgenic mouse. Although further analysis would be needed to confirm whether glibenclamide affects behavioral performance, our data suggests that glibenclamide may be a therapeutic option for AD treatment.
Collapse
Affiliation(s)
- Yeon-Joo Ju
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Min Sung Gee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung Ho Jeon
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Danbi Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jimin Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jong-Sik Ryu
- Exercise Metabolism Laboratory, Department of Physical Education, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
34
|
Enayati M, Mosaferi B, Homberg JR, Diniz DM, Salari AA. Prenatal maternal stress alters depression-related symptoms in a strain - and sex-dependent manner in rodent offspring. Life Sci 2020; 251:117597. [PMID: 32243926 DOI: 10.1016/j.lfs.2020.117597] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
Stress during pregnancy adversely affects foetal development and leads to later behavioural outcomes in offspring. Preclinical studies have reported conflicting effects of prenatal stress on depression-related symptoms in rodent offspring. This study aimed to study the combined effect of strain and sex on prenatal stress outcomes in a single study. To this end, male and female offspring from outbred Wistar and inbred Lewis rats, and outbred NMRI and inbred C57BL6 mice were compared. As outcomes we focussed on depression-related behaviour and related molecular and neurochemical parameters. Prenatally stressed and non-stressed offspring were subjected to the sucrose preference, novelty-suppressed feeding, tail suspension, and forced swim tests. We measured basal and stress-induced corticosterone levels in the serum, and brain-derived-neurotrophic-factor (BDNF), interleukin-1β, tumor necrosis factor-α, glutamate and serotonin in the brain to determine changes in hypothalamic-pituitary-adrenal-(HPA)-axis function, neuroplasticity, neuroinflammation, and neurotransmission. Our findings revealed that prenatal stress increases depression-like behaviour, HPA-axis (re) activity, pro-inflammatory cytokines and glutamate levels, and decreases BDNF and serotonin levels in a strain and sex-dependent manner in rodent offspring. Overall, male and female Lewis rats, female Wistar rats, male NMRI mice and female C57BL6 mice were found to be most responsive to prenatal stress. Based on these results, we conclude that genetic background and sex contribute to the great diversity in the effects of prenatal maternal stress in rodents.
Collapse
Affiliation(s)
- Mohsen Enayati
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Alborz, Karaj, Iran; Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Belal Mosaferi
- Department of Basic Sciences, School of Nursing and Midwifery, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Danielle Mendes Diniz
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Ali-Akbar Salari
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Alborz, Karaj, Iran.
| |
Collapse
|