1
|
Purkartova Z, Krakorova K, Babuska V, Tuma J, Houdek Z, Roy Choudhury N, Kapl S, Kolinko Y, Sucha M, Porras-Garcia E, Kralickova M, Cendelin J. Quantification of Solid Embryonic Cerebellar Graft Volume in a Degenerative Ataxia Model. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1811-1823. [PMID: 38430389 DOI: 10.1007/s12311-024-01676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Substitution of lost neurons by neurotransplantation would be a possible management of advanced degenerative cerebellar ataxias in which insufficient cerebellar reserve remains. In this study, we examined the volume and structure of solid embryonic cerebellar grafts in adult Lurcher mice, a model of olivocerebellar degeneration, and their healthy littermates. Grafts taken from enhanced green fluorescent protein (EGFP)-positive embryos were injected into the cerebellum of host mice. Two or six months later, the brains were examined histologically. The grafts were identified according to the EGFP fluorescence in frozen sections and their volumes were estimated using the Cavalieri principle. For gross histological evaluation, graft-containing slices were processed using Nissl and hematoxylin-eosin staining. Adjustment of the volume estimation approach suggested that it is reasonable to use all sections without sampling, but that calculation of values for up to 20% of lost section using linear interpolation does not constitute substantial error. Mean graft volume was smaller in Lurchers than in healthy mice when examined 6 months after the transplantation. We observed almost no signs of graft destruction. In some cases, compact grafts disorganized the structure of the host's cerebellar cortex. In Lurchers, the grafts had a limited contact with the host's cerebellum. Also, graft size was of greater variability in Lurchers than in healthy mice. The results are in compliance with our previous findings that Lurcher phenotype-associated factors have a negative effect on graft development. These factors can hypothetically include cerebellar morphology, local tissue milieu, or systemic factors such as immune system abnormalities.
Collapse
Affiliation(s)
- Zdenka Purkartova
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Kristyna Krakorova
- Department of Neurology, Faculty Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Vaclav Babuska
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Zbyněk Houdek
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Nilpawan Roy Choudhury
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Stepan Kapl
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Yaroslav Kolinko
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Laboratory of Quantitative Histology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Martina Sucha
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic
| | - Elena Porras-Garcia
- Department of Physiology, Anatomy and Cellular Biology, Pablo de Olavide University, Seville, Spain
| | - Milena Kralickova
- Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| |
Collapse
|
2
|
Rudolph S, Badura A, Lutzu S, Pathak SS, Thieme A, Verpeut JL, Wagner MJ, Yang YM, Fioravante D. Cognitive-Affective Functions of the Cerebellum. J Neurosci 2023; 43:7554-7564. [PMID: 37940582 PMCID: PMC10634583 DOI: 10.1523/jneurosci.1451-23.2023] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 11/10/2023] Open
Abstract
The cerebellum, traditionally associated with motor coordination and balance, also plays a crucial role in various aspects of higher-order function and dysfunction. Emerging research has shed light on the cerebellum's broader contributions to cognitive, emotional, and reward processes. The cerebellum's influence on autonomic function further highlights its significance in regulating motivational and emotional states. Perturbations in cerebellar development and function have been implicated in various neurodevelopmental disorders, including autism spectrum disorder and attention deficit hyperactivity disorder. An increasing appreciation for neuropsychiatric symptoms that arise from cerebellar dysfunction underscores the importance of elucidating the circuit mechanisms that underlie complex interactions between the cerebellum and other brain regions for a comprehensive understanding of complex behavior. By briefly discussing new advances in mapping cerebellar function in affective, cognitive, autonomic, and social processing and reviewing the role of the cerebellum in neuropathology beyond the motor domain, this Mini-Symposium review aims to provide a broad perspective of cerebellar intersections with the limbic brain in health and disease.
Collapse
Affiliation(s)
- Stephanie Rudolph
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Aleksandra Badura
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, 3015 GD, The Netherlands
| | - Stefano Lutzu
- Department of Neuroscience, Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, New York, New York 10461
| | - Salil Saurav Pathak
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
| | - Andreas Thieme
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, D-45147, Germany
| | - Jessica L Verpeut
- Department of Psychology, Arizona State University, Tempe, Arizona 85287
| | - Mark J Wagner
- National Institute of Neurological Disorders & Stroke, National Institutes of Health, Bethesda, Maryland 20814
| | - Yi-Mei Yang
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455
| | - Diasynou Fioravante
- Center for Neuroscience, University of California-Davis, Davis, California 95618
- Department of Neurobiology, Physiology and Behavior, University of California-Davis, Davis, California 95618
| |
Collapse
|
3
|
Manto M, Cendelin J, Strupp M, Mitoma H. Advances in cerebellar disorders: pre-clinical models, therapeutic targets, and challenges. Expert Opin Ther Targets 2023; 27:965-987. [PMID: 37768297 DOI: 10.1080/14728222.2023.2263911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cerebellar ataxias (CAs) represent neurological disorders with multiple etiologies and a high phenotypic variability. Despite progress in the understanding of pathogenesis, few therapies are available so far. Closing the loop between preclinical studies and therapeutic trials is important, given the impact of CAs upon patients' health and the roles of the cerebellum in multiple domains. Because of a rapid advance in research on CAs, it is necessary to summarize the main findings and discuss future directions. AREAS COVERED We focus our discussion on preclinical models, cerebellar reserve, the therapeutic management of CAs, and suitable surrogate markers. We searched Web of Science and PubMed using keywords relevant to cerebellar diseases, therapy, and preclinical models. EXPERT OPINION There are many symptomatic and/or disease-modifying therapeutic approaches under investigation. For therapy development, preclinical studies, standardization of disease evaluation, safety assessment, and demonstration of clinical improvements are essential. Stage of the disease and the level of the cerebellar reserve determine the goals of the therapy. Deficits in multiple categories and heterogeneity of CAs may require disease-, stage-, and symptom-specific therapies. More research is needed to clarify how therapies targeting the cerebellum influence both basal ganglia and the cerebral cortex, poorly explored domains in CAs.
Collapse
Affiliation(s)
- Mario Manto
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Ludwig Maximilians University, Munich, Germany
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo medical University, Tokyo, Japan
| |
Collapse
|
4
|
Sucha M, Benediktova S, Tichanek F, Jedlicka J, Kapl S, Jelinkova D, Purkartova Z, Tuma J, Kuncova J, Cendelin J. Experimental Treatment with Edaravone in a Mouse Model of Spinocerebellar Ataxia 1. Int J Mol Sci 2023; 24:10689. [PMID: 37445867 DOI: 10.3390/ijms241310689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Edaravone is a mitochondrially targeted drug with a suggested capability to modify the course of diverse neurological diseases. Nevertheless, edaravone has not been tested yet in the context of spinocerebellar ataxia 1 (SCA1), an incurable neurodegenerative disease characterized mainly by cerebellar disorder, with a strong contribution of inflammation and mitochondrial dysfunction. This study aimed to address this gap, exploring the potential of edaravone to slow down SCA1 progression in a mouse knock-in SCA1 model. SCA1154Q/2Q and healthy SCA12Q/2Q mice were administered either edaravone or saline daily for more than 13 weeks. The functional impairments were assessed via a wide spectrum of behavioral assays reflecting motor and cognitive deficits and behavioral abnormalities. Moreover, we used high-resolution respirometry to explore mitochondrial function, and immunohistochemical and biochemical tools to assess the magnitude of neurodegeneration, inflammation, and neuroplasticity. Data were analyzed using (hierarchical) Bayesian regression models, combined with the methods of multivariate statistics. Our analysis pointed out various previously documented neurological and behavioral deficits of SCA1 mice. However, we did not detect any plausible therapeutic effect of edaravone on either behavioral dysfunctions or other disease hallmarks in SCA1 mice. Thus, our results did not provide support for the therapeutic potential of edaravone in SCA1.
Collapse
Affiliation(s)
- Martina Sucha
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Simona Benediktova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jan Jedlicka
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Mitochondrial Laboratory, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Stepan Kapl
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Laboratory of Experimental Neurophysiology, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Dana Jelinkova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Zdenka Purkartova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jan Tuma
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jitka Kuncova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Mitochondrial Laboratory, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jan Cendelin
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
5
|
Tichanek F. Psychiatric-Like Impairments in Mouse Models of Spinocerebellar Ataxias. CEREBELLUM (LONDON, ENGLAND) 2023; 22:14-25. [PMID: 35000108 DOI: 10.1007/s12311-022-01367-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Many patients with spinocerebellar ataxia (SCA) suffer from diverse neuropsychiatric issues, including memory impairments, apathy, depression, or anxiety. These neuropsychiatric aspects contribute per se to the reduced quality of life and worse prognosis. However, the extent to which SCA-related neuropathology directly contributes to these issues remains largely unclear. Behavioral profiling of various SCA mouse models can bring new insight into this question. This paper aims to synthesize recent findings from behavioral studies of SCA patients and mouse models. The role of SCA neuropathology for shaping psychiatric-like impairments may be exemplified in mouse models of SCA1. These mice evince robust cognitive impairments which are shaped by both the cerebellar as well as out-of-cerebellar pathology. Although emotional-related alternations are also present, they seem to be less robust and more affected by the specific distribution and character of the neuropathology. For example, cerebellar-specific pathology seems to provoke behavioral disinhibition, leading to seemingly decreased anxiety, whereas complex SCA1 neuropathology induces anxiety-like phenotype. In SCA1 mice with complex neuropathology, some of the psychiatric-like impairments are present even before marked cerebellar degeneration and ataxia and correlate with hippocampal atrophy. Similarly, complete or partial deletion of the implicated gene (Atxn1) leads to cognitive dysfunction and anxiety-like behavior, respectively, without apparent ataxia and cerebellar degeneration. Altogether, these findings collectively suggest that the neuropsychiatric issues have a biological basis partially independent of the cerebellum. As some neuropsychiatric issues may stem from weakening the function of the implicated gene, therapeutic reduction of its expression by molecular approaches may not necessarily mitigate the neuropsychiatric issues.
Collapse
Affiliation(s)
- Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 1655/76, 323 00, Plzen, Czech Republic.
| |
Collapse
|
6
|
Cendelin J, Cvetanovic M, Gandelman M, Hirai H, Orr HT, Pulst SM, Strupp M, Tichanek F, Tuma J, Manto M. Consensus Paper: Strengths and Weaknesses of Animal Models of Spinocerebellar Ataxias and Their Clinical Implications. CEREBELLUM (LONDON, ENGLAND) 2022; 21:452-481. [PMID: 34378174 PMCID: PMC9098367 DOI: 10.1007/s12311-021-01311-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 01/02/2023]
Abstract
Spinocerebellar ataxias (SCAs) represent a large group of hereditary degenerative diseases of the nervous system, in particular the cerebellum, and other systems that manifest with a variety of progressive motor, cognitive, and behavioral deficits with the leading symptom of cerebellar ataxia. SCAs often lead to severe impairments of the patient's functioning, quality of life, and life expectancy. For SCAs, there are no proven effective pharmacotherapies that improve the symptoms or substantially delay disease progress, i.e., disease-modifying therapies. To study SCA pathogenesis and potential therapies, animal models have been widely used and are an essential part of pre-clinical research. They mainly include mice, but also other vertebrates and invertebrates. Each animal model has its strengths and weaknesses arising from model animal species, type of genetic manipulation, and similarity to human diseases. The types of murine and non-murine models of SCAs, their contribution to the investigation of SCA pathogenesis, pathological phenotype, and therapeutic approaches including their advantages and disadvantages are reviewed in this paper. There is a consensus among the panel of experts that (1) animal models represent valuable tools to improve our understanding of SCAs and discover and assess novel therapies for this group of neurological disorders characterized by diverse mechanisms and differential degenerative progressions, (2) thorough phenotypic assessment of individual animal models is required for studies addressing therapeutic approaches, (3) comparative studies are needed to bring pre-clinical research closer to clinical trials, and (4) mouse models complement cellular and invertebrate models which remain limited in terms of clinical translation for complex neurological disorders such as SCAs.
Collapse
Affiliation(s)
- Jan Cendelin
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic.
| | - Marija Cvetanovic
- Department of Neuroscience, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Mandi Gandelman
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Hirokazu Hirai
- Department of Neurophysiology and Neural Repair, Gunma University Graduate School of Medicine, 3-39-22, Gunma, 371-8511, Japan
- Viral Vector Core, Gunma University Initiative for Advanced Research (GIAR), Gunma, 371-8511, Japan
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Stefan M Pulst
- Department of Neurology, University of Utah, 175 North Medical Drive East, Salt Lake City, UT, 84132, USA
| | - Michael Strupp
- Department of Neurology and German Center for Vertigo and Balance Disorders, Hospital of the Ludwig-Maximilians University, Munich, Campus Grosshadern, Marchioninistr. 15, 81377, Munich, Germany
| | - Filip Tichanek
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
| | - Jan Tuma
- Department of Pathophysiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 75, 323 00, Plzen, Czech Republic
- The Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, MC 7843, San Antonio, TX, 78229, USA
| | - Mario Manto
- Unité des Ataxies Cérébelleuses, Service de Neurologie, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, UMons, Mons, Belgium
| |
Collapse
|
7
|
Salomova M, Tichanek F, Jelinkova D, Cendelin J. Forced activity and environmental enrichment mildly improve manifestation of rapid cerebellar degeneration in mice. Behav Brain Res 2020; 401:113060. [PMID: 33316321 DOI: 10.1016/j.bbr.2020.113060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 12/17/2022]
Abstract
Exercise therapy represents an important tool for the treatment of many neurological diseases, including cerebellar degenerations. In mouse models, exercise may decelerate the progression of gradual cerebellar degeneration via potent activation of neuroprotective pathways. However, whether exercise could also improve the condition in mice with already heavily damaged cerebella remains an open question. Here we aimed to explore this possibility, employing a mouse model with dramatic early-onset cerebellar degeneration, the Lurcher mice. The potential of forced physical activity and environmental enrichment (with the possibility of voluntary running) for improvement of behaviour and neuroplasticity was evaluated by a series of behavioural tests, measuring BDNF levels and using stereological histology techniques. Using advanced statistical analysis, we showed that while forced physical activity improved motor learning by ∼26 % in Lurcher mice and boosted BDNF levels in the diseased cerebellum by 57 %, an enriched environment partially alleviated some behavioural deficits related to behavioural disinhibition. Specifically, Lurcher mice exposed to the enriched environment evinced reduced open arm exploration in elevated plus maze test by 18 % and increased immobility almost 9-fold in the forced swim test. However, we must conclude that the overall beneficial effects were very mild and much less clear, compared to previously demonstrated effects in slowly-progressing cerebellar degenerations.
Collapse
Affiliation(s)
- Martina Salomova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic.
| | - Filip Tichanek
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic.
| | - Dana Jelinkova
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic.
| | - Jan Cendelin
- Department of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic; Laboratory of Neurodegenerative Disorders, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00, Pilsen, Czech Republic.
| |
Collapse
|