1
|
Liu G, Xie C, Li J, Jiang X, Tang H, Li C, Zhang K. Enriched environment treatment promotes neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45β signaling pathway in rats with cerebral ischemia /reperfusion injury. Neurochem Int 2024; 178:105806. [PMID: 39025366 DOI: 10.1016/j.neuint.2024.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
It has been demonstrated that an enriched environment (EE) treatment can alter neuroplasticity in neurodegenerative diseases. However, the role of EE treatment in ischemic stroke remains unclear. Previous findings have revealed that EE treatment can promote cerebral activin-receptor-like-kinase-5 (ALK5) expression after cerebral ischemia/reperfusion (I/R) injury. ALK5 has been identified as a potential mediator of neuroplasticity through its modulation of Smad2/3 and Gadd45β. Therefore, the aim of this study was to investigate whether EE treatment could promote neurofunctional recovery by regulating the ALK5/Smad2/3/Gadd45β pathway. The study utilized the rat model of middle cerebral artery occlusion/reperfusion (MCAO/R). The ALK5/Smad2/3/Gadd45β signaling pathway changes were evaluated using western blotting (WB). Brain injury was assessed by infarct volume and neurobehavioral scores. The effect of EE treatment on neurogenesis was evaluated using Doublecortin (DCX) and Nestin, axonal plasticity with biotinylated dextran amine (BDA) nerve tracing, and dendritic plasticity was assessed using Golgi-Cox staining. EE treatment has been demonstrated to modulate the Smad2/3/Gadd45β pathway by regulating the expression of ALK5. The protective effects of EE treatment on brain infarct volume, neurological function, newborn neurons, dendritic and axonal plasticity following cerebral I/R injury were counteracted by ALK5 silencing. EE treatment can enhance neurofunctional recovery after cerebral I/R injury, which is achieved by regulating the ALK5/Smad2/3/Gadd45β signaling pathway to promote neuroplasticity.
Collapse
Affiliation(s)
- Gang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, Sichuan Province, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Jiani Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xia Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hao Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Changqing Li
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Keming Zhang
- School of Clinical Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China.
| |
Collapse
|
2
|
Yang G, Guo L, Zhang Y, Li S. Network meta-analysis of non-pharmacological interventions for cognitive impairment after an ischemic stroke. Front Neurol 2024; 15:1327065. [PMID: 38895695 PMCID: PMC11185141 DOI: 10.3389/fneur.2024.1327065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Objective This study aims to evaluate the effectiveness of non-pharmacological interventions in improving cognitive function in patients with ischemic stroke through network meta-analysis. Methods We searched databases including the Cochrane Library, PubMed, EmBase, and Web of Science for randomized controlled trials (RCTs) on non-pharmacological treatments to improve cognitive impairment following ischemic stroke. The publication date was up to 15 March 2023. Due to the insufficiency of included studies, supplementary searches for high-quality Chinese literature were performed in databases such as CNKI, WanFang Data, and VIP Chinese Science Journals Database. Two reviewers independently went through the literature, extracted data, and assessed the risk of bias in the included studies using the risk of bias assessment tool recommended by the Cochrane Handbook for Systematic Reviews of Interventions 5.1.0. By utilizing R 4.2.3 RStudio software and the GeMTC package, a Bayesian network meta-analysis was conducted to assess the improvement in Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores under a variety of non-pharmacological interventions. Results A total of 22 RCTs involving 2,111 patients and 14 different non-pharmacological treatments were included. These interventions were transcranial direct current stimulation (tDCS), reminiscence therapy (RT), remote ischemic conditioning (RIC), physical fitness training (PFT), intensive patient care program (IPCP), moderate-intensity continuous training + high-intensity interval training (MICT + HIIT), medium intensity continuous training (MICT), grip training (GT), acupuncture, cognitive behavioral therapy (CBT), cognitive rehabilitation training (CRT), high pressure oxygen (HPO), moxibustion, and repetitive transcranial magnetic stimulation (rTMS). The results of the network meta-analysis indicated that rTMS had the highest likelihood of being the most effective intervention for improving MMSE and MoCA scores. Conclusion The evidence from this study suggests that rTMS holds promise for improving MMSE and MoCA scores in patients with cognitive impairment following ischemic stroke. However, further high-quality research is needed to confirm and validate this finding.
Collapse
Affiliation(s)
| | - Liyun Guo
- Department of Rehabilitation Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | | | | |
Collapse
|
3
|
Han Y, Shen X, Gao Z, Han P, Bi X. Enriched environment treatment promotes neural functional recovery together with microglia polarization and remyelination after cerebral ischemia in rats. Brain Res Bull 2024; 209:110912. [PMID: 38423189 DOI: 10.1016/j.brainresbull.2024.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Microglia activation and oligodendrocyte maturation are critical for remyelination after cerebral ischemia. Studies have shown that enriched environment (EE) can effectively alleviate stroke-induced neurological deficits. However, little is known about the mechanism associated with glial cells underlying the neuroprotection of EE. Therefore, this study focuses on investigating the effect of EE on activated microglia polarization as well as oligodendrogenesis in the progress of remyelination following cerebral ischemia. METHODS The ischemia/reperfusion (I/R) injury model was established by middle cerebral artery occlusion (MCAO) in rats. Animals executed 4 weeks of environmental intervention after performing MCAO or sham surgery and were divided into sham, MCAO, and MCAO+EE groups. Cognitive function, myelin damage, microglia activation and polarization, inflammation, oligodendrogenesis, remyelination, and protein expression of the PI3K/AKT/GSK3β signaling pathway were determined. RESULTS The staining of NeuN indicated that the infarct size of MCAO rats was decreased under EE. EE intervention improved animal performance in the Morris water maze test and novel object recognition test, promoting the recovery of cognitive function after I/R injury. EE treatment alleviated myelin damage in MCAO rats, as evidenced by the lower fluorescence intensity ratio of SMI-32/MBP in MCAO+EE group. EE increased the fluorescence intensity ratio of NG2+/Ki67+/Olig2+, MBP, and MOG, enhancing the proliferation and differentiation of OPCs and oligodendrogenesis after MCAO. In terms of remyelination, more myelinated axons and lower G/ratio were detected in MCAO+EE rats compared with MCAO group. Moreover, EE treatment decreased the number of Iba1+/CD86+ M1 microglia, increased the number of Iba1+/CD206+ M2 microglia, and suppressed the inflammation response after I/R injury, which could be attributed to the augmented expression of PI3K/AKT/GSK3β axis. CONCLUSION EE improved long‑term recovery of cognitive function after cerebral I/R injury, at least in part by promoting M2 microglia transformation through activation of the PI3K/AKT/GSK3β signaling pathway, inhibiting inflammation to provide a favorable microenvironment for oligodendrocyte maturation and remyelination. The effect of the EE on myelin and inflammation could account for the neuroprotection provided by EE.
Collapse
Affiliation(s)
- Yu Han
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China; Department of rehabilitation technology, Lianyungang maternal and Child Health Hospital, Lianyungang 222062, China
| | - Xinya Shen
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Zhenkun Gao
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Pingping Han
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China
| | - Xia Bi
- Department of rehabilitation medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai 201318, China.
| |
Collapse
|
4
|
Neves LT, Paz LV, Wieck A, Mestriner RG, de Miranda Monteiro VAC, Xavier LL. Environmental Enrichment in Stroke Research: an Update. Transl Stroke Res 2024; 15:339-351. [PMID: 36717476 DOI: 10.1007/s12975-023-01132-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023]
Abstract
Environmental enrichment (EE) refers to different forms of stimulation, where the environment is designed to improve the levels of sensory, cognitive, and motor stimuli, inducing stroke recovery in animal models. Stroke is a leading cause of mortality and neurological disability among older adults, hence the importance of developing strategies to improve recovery for such patients. This review provides an update on recent findings, compiling information regarding the parameters affected by EE exposure in both preclinical and clinical studies. During stroke recovery, EE exposure has been shown to improve both the cognitive and locomotor aspects, inducing important neuroplastic alterations, increased angiogenesis and neurogenesis, and modified gene expression, among other effects. There is a need for further research in this field, particularly in those aspects where the evidence is inconclusive. Moreover, it is necessary refine and adapt the EE paradigms for application in human patients.
Collapse
Affiliation(s)
- Laura Tartari Neves
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Lisiê Valéria Paz
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Andréa Wieck
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
- Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Av. Ipiranga, 6690 - Jardim Botânico, Porto Alegre, RS, 90610-000, Brazil
| | - Régis Gemerasca Mestriner
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Valentina Aguiar Cardozo de Miranda Monteiro
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil
| | - Léder Leal Xavier
- Programa de Pós-Graduação Em Biologia Celular E Molecular, Laboratório deBiologiaCelular ETecidual, Pontifical Catholic University of Rio Grande Do Sul, PUCRS. Escola de Ciências da Saúde E da Vida, Av. Ipiranga 6681, Prédio 12C, Sala 104, Porto Alegre, Rio Grande Do Sul, CEP, 90619-900, Brazil.
| |
Collapse
|
5
|
Zhang M, Hu X, Wang T, Liu X. Effectiveness of ginkgo diterpene lactone meglumine on cognitive function in patients with acute ischemic stroke. Open Med (Wars) 2024; 19:20240908. [PMID: 38584838 PMCID: PMC10996983 DOI: 10.1515/med-2024-0908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 04/09/2024] Open
Abstract
Objective To explore the efficacy of ginkgo diterpene lactone (GDLM) on cognitive function in patients with acute ischemic stroke (AIS). Methods A total of 126 patients with AIS in Shaanxi Provincial People's Hospital from July 2019 to December 2020 were collected and randomly divided into the control group and treatment group (n = 63). All patients received conventional treatment, on which 25 mg/day GDLM was administered in the treatment group. Coagulation and inflammation indexes, National Institutes of Health Stroke Scale (NIHSS) and activities of daily living scale (ADL) scores were measured before and 14 days after treatment. NIHSS and ADL scores were performed again after 3 months. Cognitive function was assessed by Montréal Cognitive Assessment (MoCA) score, Mini-Mental State Examination (MMSE) score, and potential P300. Results After 14 days of treatment, all biochemical indices were lower than before treatment (P < 0.05). The NIHSS and ADL scores of the treatment group were significantly better than those of the control group after treatment (P < 0.05). The MoCA and MMSE scores of the treatment group improved more significantly compared with the control group (P < 0.05). After treatment, the P300 indexes of both groups were significantly better than before treatment (P < 0.05). Conclusion Conventional treatment of AIS combined with GDLM can effectively improve the cognitive function of patients, which is worthy of clinical recommendation.
Collapse
Affiliation(s)
- Meini Zhang
- General Practice, Xi’an Medical University, Xi’an, 710000, China
| | - Xiao Hu
- Department of Pediatrics, Yan’an University Affiliated Hospital, Yan’an, 716000, China
| | - Tao Wang
- Department of Internal Neurology, Shaanxi Provincial People’s Hospital, Xi’an, 710068, China
| | - Xianghong Liu
- Department of Neurological Rehabilitation, Xi’an Gaoxin Hospital, Rongshang 10th District, 74 Zhuque Street South Section, Yanta District, Xi’an City, Shaanxi Province, 710000, China
| |
Collapse
|
6
|
Yu H, Shu X, Zhou Y, Zhou S, Wang X. Intermittent theta burst stimulation combined with cognitive training improves cognitive dysfunction and physical dysfunction in patients with post-stroke cognitive impairment. Behav Brain Res 2024; 461:114809. [PMID: 38081516 DOI: 10.1016/j.bbr.2023.114809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/27/2023] [Accepted: 12/08/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE Post-stroke cognitive impairment (PSCI) is a common complication of stroke. Intermittent theta burst stimulation (iTBS) can inducing motor learning. We observed the effects of combination of iTBS with cognitive training on physical/cognitive dysfunctions in PSCI patients. METHODS PSCI patients treated with basic treatment & cognitive training (Control group)/iTBS & cognitive training (iTBS group) were enrolled, with Mini-mental State Examination (MMSE)/Montreal Cognitive Assessment (MoCA)/Frontal Assessment Battery (FAB)/barthel index (BI)/Upper Limb Fugl-Meyer Assessment (U-FMA)/Action Research Arm Test (ARAT) scores compared. Gait spatiotemporal parameters/dynamic parameters were analyzed by 3D gait analysis. Correlations between MMSE/MoCA scores and gait parameters in PSCI patients after iTBS & cognitive training were analyzed by Spearman analysis. RESULTS Increased MMSE/MoCA/FAB/BI/U-FMA/ARAT scores, step speed, step frequency, stride length, step width, step length on the affected side, percentage of swing phase on the affected side, hip joint flexion angle on the affected side, knee joint flexion angle on the affected side, and ankle plantar flexion angle on the affected side and reduced gait period on the affected side and percentage of stance phase on the affected side were found in patients of both groups after treatment, with the effects in the iTBS group more profound. CONCLUSION iTBS & cognitive training obviously improved the cognitive function scores/upper limb function scores/gait parameters in PSCI patients versus cognitive training treatment. After combination therapy, the MMSE/MoCA scores of PSCI patients were significantly correlated with gait parameters. This provided more data support for iTBS & cognitive training application in the rehabilitation treatment of PSCI patients.
Collapse
Affiliation(s)
- Hong Yu
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xinxin Shu
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China.
| | - Yuda Zhou
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China.
| | - Siwei Zhou
- Department of Geriatric Rehabilitation, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| | - Xiaojun Wang
- Rahabilitation Assessment and Treatment Center, Zhejiang Rehabilitation Medical Center, Hangzhou, China
| |
Collapse
|
7
|
Chang X, You J, Yang P, He Y, Liu Y, Shi M, Guo D, Peng Y, Chen J, Wang A, Xu T, He J, Zhang Y, Zhu Z. High-Serum Brain-Derived Neurotrophic Factor Levels Are Associated With Decreased Risk of Poststroke Cognitive Impairment. Stroke 2024; 55:643-650. [PMID: 38235585 DOI: 10.1161/strokeaha.123.044698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND BDNF (brain-derived neurotrophic factor) is widely implicated in the pathophysiological process of stroke, but the effect of BDNF on poststroke cognitive impairment (PSCI) remains unclear. We aimed to investigate the association between baseline serum BDNF and the risk of PSCI at 3 months in a multicenter study based on a preplanned ancillary study of the CATIS trial (China Antihypertensive Trial in Acute Ischemic Stroke). METHODS We examined serum BDNF levels at baseline and used the Mini-Mental State Examination and Montreal Cognitive Assessment to evaluate cognitive function at 3-month follow-up after ischemic stroke. PSCI was defined as Mini-Mental State Examination score <27 or Montreal Cognitive Assessment score <25. Logistic regression analyses were performed to evaluate the association between serum BDNF and the risk of 3-month PSCI. RESULTS In this ancillary study, a total of 660 patients with ischemic stroke with hypertension were included, and 593 patients (mean age, 59.90±10.44 years; 410 males and 183 females) were finally included in this analysis. According to mini-mental state examination score, after adjustment for age, sex, education, baseline National Institutes of Health Stroke Scale score, APOE ɛ4 carriers, and other potential confounders, the odds ratio of PSCI for the highest tertile of BDNF was 0.60 ([95% CI, 0.39-0.94]; P=0.024) compared with the lowest tertile. Multiple-adjusted spline regression model showed a linear association of serum BDNF levels with PSCI at 3 months (P value for linearity=0.010). Adding serum BDNF to conventional prognostic factors slightly improved the risk reclassification of PSCI (net reclassification improvement: 27.46%, P=0.001; integrated discrimination index: 1.02%, P=0.015). Similar significant findings were observed when PSCI was defined by the Montreal Cognitive Assessment score. CONCLUSIONS Elevated serum BDNF levels were associated with a decreased risk of PSCI at 3 months, suggesting that serum BDNF might be a potential predictive biomarker for PSCI among patients with ischemic stroke with hypertension.
Collapse
Affiliation(s)
- Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Jiaxing You
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Pinni Yang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., J.C., J.H., Z.Z.)
| | - Daoxia Guo
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Yanbo Peng
- Department of Neurology, Affiliated Hospital of North China University of Science and Technology, Hebei (Y.P.)
| | - Jing Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., J.C., J.H., Z.Z.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (J.C., J.H.)
| | - Aili Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Tan Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., J.C., J.H., Z.Z.)
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA (J.C., J.H.)
| | - Yonghong Zhang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, China (X.C., J.Y., P.Y., Y.H., Y.L., M.S., D.G., A.W., T.X., Y.Z., Z.Z.)
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA (M.S., J.C., J.H., Z.Z.)
| |
Collapse
|
8
|
Guzek Z, Dziubek W, Stefańska M, Kowalska J. Evaluation of the functional outcome and mobility of patients after stroke depending on their cognitive state. Sci Rep 2024; 14:1515. [PMID: 38233519 PMCID: PMC10794689 DOI: 10.1038/s41598-024-52236-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/16/2024] [Indexed: 01/19/2024] Open
Abstract
The study aimed to analyze the functional outcome and mobility in stroke patients depending on their cognitive state. 180 patients after first stroke were divided into four groups: 48 patients without symptoms of cognitive impairment (G1); 38 with mild cognitive impairment without dementia (G2); 47 with mild dementia (G3); 47 with moderate dementia (G4). The Mini Mental State Examination (MMSE), Barthel Index (BI), Sitting Assessment Scale (SAS), Berg Balance Scale, Trunk Control Test and Test Up & Go were used. The tests were carried out at the time of admission to the ward (T1) and at the time of discharge (T2). A statistically significant improvement was demonstrated in all parameters in almost all groups. No significant difference was observed only in groups G1 and G4 in SAS head. Statistically significant differences in BI results in T2 between groups G1 and G4 were noted. The lowest change in BI was observed in the G4. Regression analysis showed that MMSE and BI at T1 and MMSE score at T2 explained the functional status at T2. Cognitive dysfunction at the time of admission to the ward and discharge may determining the patient's functional status at the time of discharge from the ward.
Collapse
Affiliation(s)
- Zbigniew Guzek
- Department of Neurological Rehabilitation, University Hospital in Zielona Góra, 65-046, Zielona Gora, Poland
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Paderewskiego 35 Street, 51-612, Wrocław, Poland
| | - Wioletta Dziubek
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Paderewskiego 35 Street, 51-612, Wrocław, Poland
| | - Małgorzata Stefańska
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Paderewskiego 35 Street, 51-612, Wrocław, Poland
| | - Joanna Kowalska
- Faculty of Physiotherapy, Wroclaw University of Health and Sport Sciences, Paderewskiego 35 Street, 51-612, Wrocław, Poland.
| |
Collapse
|
9
|
Dandi Ε, Theotokis P, Petri MC, Sideropoulou V, Spandou E, Tata DA. Environmental enrichment initiated in adolescence restores the reduced expression of synaptophysin and GFAP in the hippocampus of chronically stressed rats in a sex-specific manner. Dev Psychobiol 2023; 65:e22422. [PMID: 37796476 DOI: 10.1002/dev.22422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 10/06/2023]
Abstract
This study aims at investigating whether environmental enrichment (EE) initiated in adolescence can alter chronic unpredictable stress (CUS)-associated changes in astroglial and synaptic plasticity markers in male and female rats. To this end, we studied possible alterations in hippocampal glial fibrillary acidic protein (GFAP) and synaptophysin (SYN) in CUS rats previously housed in EE. Wistar rats on postnatal day (PND) 23 were housed for 10 weeks in standard housing (SH) or enriched conditions. On PND 66, animals were exposed to CUS for 4 weeks. SYN and GFAP expressions were evaluated in CA1 and CA3 subfields and dentate gyrus (DG). CUS reduced the expression of SYN in all hippocampal areas, whereas lower GFAP expression was evident only in CA1 and CA3. The reduced expression of SYN in DG and CA3 was evident to male SH/CUS rats, whereas the reduced GFAP expression in CA1 and CA3 was limited to SH/CUS females. EE housing increased the hippocampal expression of both markers and protected against CUS-associated decreases. Our findings indicate that the decreases in the expression of SYN and GFAP following CUS are region and sex-specific and underline the neuroprotective role of EE against these CUS-associated changes.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paschalis Theotokis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Christina Petri
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vaia Sideropoulou
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
10
|
Yan J, Liu Y, Zheng F, Lv D, Jin D. Environmental enrichment enhanced neurogenesis and behavioral recovery after stroke in aged rats. Aging (Albany NY) 2023; 15:9453-9463. [PMID: 37688770 PMCID: PMC10564416 DOI: 10.18632/aging.205010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/20/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND AND PURPOSE Age is identified as a significant prognostic factor for poorer outcome after stroke. However, environmental enrichment (EE) has been reported to promote functional recovery after ischemic stroke. The purpose of this study was to investigate whether environmental enrichment was beneficial to ischemic stroke in aged rats. METHODS Aged rats were randomly assigned as control rats, rats subjected to cerebral ischemia, and rats with cerebral ischemia treated with EE for 30 days. Focal cortical ischemia was induced by intracranial injection of endothelin-1 (ET-1). EE housing began one day after focal ischemia and was maintained for the whole experimental period. We used immunofluorescence staining to analyze the neurogenesis in the subventricular zone (SVZ) and TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay to evaluate apoptosis. The expression of neuronal nuclei, glial fibrillary acidic protein (GFAP) and Iba-1 around the infarcted area were also measured by double immunohistochemistry. RESULTS EE enhanced the proliferation of newborn neurons in the SVZ, as well as increased the long-term survival of newborn neurons. EE also exerted effects on inflammation after stroke. Furthermore, EE suppressed apoptosis and improved the motor functions after stroke in the aged rats. CONCLUSIONS EE improved post-stroke recovery on the basis of enhancing neurogenesis in aged rats.
Collapse
Affiliation(s)
- Ji Yan
- Department of Laboratory Medicine, The Fourth People’s Hospital of Shenyang of China Medical University, Shenyang, Liaoning, China
| | - Yan Liu
- Department of Neurology, The Fourth People’s Hospital of Shenyang of China Medical University, Shenyang, Liaoning, China
| | - Fangda Zheng
- Department of Laboratory Medicine, The Fourth People’s Hospital of Shenyang of China Medical University, Shenyang, Liaoning, China
| | - Dan Lv
- Department of Laboratory Medicine, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| | - Di Jin
- Department of Acupuncture (Neurology), The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning, China
| |
Collapse
|
11
|
Dandi Ε, Spandou E, Dalla C, Tata DA. Τhe neuroprotective role of environmental enrichment against behavioral, morphological, neuroendocrine and molecular changes following chronic unpredictable mild stress: A systematic review. Eur J Neurosci 2023; 58:3003-3025. [PMID: 37461295 DOI: 10.1111/ejn.16089] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/12/2023] [Accepted: 06/25/2023] [Indexed: 08/16/2023]
Abstract
Environmental factors interact with biological and genetic factors influencing the development and well-being of an organism. The interest in better understanding the role of environment on behavior and physiology led to the development of animal models of environmental manipulations. Environmental enrichment (EE), an environmental condition that allows cognitive and sensory stimulation as well as social interaction, improves cognitive function, reduces anxiety and depressive-like behavior and promotes neuroplasticity. In addition, it exerts protection against neurodegenerative disorders, cognitive aging and deficits aggravated by stressful experiences. Given the beneficial effects of EE on the brain and behavior, preclinical studies have focused on its protective role as an alternative, non-invasive manipulation, to help an organism to cope better with stress. A valid, reliable and effective animal model of chronic stress that enhances anxiety and depression-like behavior is the chronic unpredictable mild stress (CUMS). The variety of stressors and the unpredictability in the time and sequence of exposure to prevent habituation, render CUMS an ethologically relevant model. CUMS has been associated with dysregulation of the hypothalamic-pituitary-adrenal axis, elevation in the basal levels of stress hormones, reduction in brain volume, dendritic atrophy and alterations in markers of synaptic plasticity. Although numerous studies have underlined the compensatory role of EE against the negative effects of various chronic stress regimens (e.g. restraint and social isolation), research concerning the interaction between EE and CUMS is sparse. The purpose of the current systematic review is to present up-to-date research findings regarding the protective role of EE against the negative effects of CUMS.
Collapse
Affiliation(s)
- Εvgenia Dandi
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Spandou
- Laboratory of Experimental Physiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina Dalla
- Department of Pharmacology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina A Tata
- Laboratory of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
12
|
Cai J, Xu M, Cai H, Jiang Y, Zheng X, Sun H, Sun Y, Sun Y. Task Cortical Connectivity Reveals Different Network Reorganizations between Mild Stroke Patients with Cortical and Subcortical Lesions. Brain Sci 2023; 13:1143. [PMID: 37626499 PMCID: PMC10452233 DOI: 10.3390/brainsci13081143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Accumulating efforts have been made to investigate cognitive impairment in stroke patients, but little has been focused on mild stroke. Research on the impact of mild stroke and different lesion locations on cognitive impairment is still limited. To investigate the underlying mechanisms of cognitive dysfunction in mild stroke at different lesion locations, electroencephalograms (EEGs) were recorded in three groups (40 patients with cortical stroke (CS), 40 patients with subcortical stroke (SS), and 40 healthy controls (HC)) during a visual oddball task. Power envelope connectivity (PEC) was constructed based on EEG source signals, followed by graph theory analysis to quantitatively assess functional brain network properties. A classification framework was further applied to explore the feasibility of PEC in the identification of mild stroke. The results showed worse behavioral performance in the patient groups, and PECs with significant differences among three groups showed complex distribution patterns in frequency bands and the cortex. In the delta band, the global efficiency was significantly higher in HC than in CS (p = 0.011), while local efficiency was significantly increased in SS than in CS (p = 0.038). In the beta band, the small-worldness was significantly increased in HC compared to CS (p = 0.004). Moreover, the satisfactory classification results (76.25% in HC vs. CS, and 80.00% in HC vs. SS) validate the potential of PECs as a biomarker in the detection of mild stroke. Our findings offer some new quantitative insights into the complex mechanisms of cognitive impairment in mild stroke at different lesion locations, which may facilitate post-stroke cognitive rehabilitation.
Collapse
Affiliation(s)
- Jiaye Cai
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (J.C.); (H.C.); (Y.J.); (X.Z.); (Y.S.)
| | - Mengru Xu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Huaying Cai
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (J.C.); (H.C.); (Y.J.); (X.Z.); (Y.S.)
| | - Yun Jiang
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (J.C.); (H.C.); (Y.J.); (X.Z.); (Y.S.)
| | - Xu Zheng
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (J.C.); (H.C.); (Y.J.); (X.Z.); (Y.S.)
| | - Hongru Sun
- Department of Electrocardiogram, Dongyang Traditional Chinese Medicine Hospital, Dongyang 322100, China;
| | - Yu Sun
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (J.C.); (H.C.); (Y.J.); (X.Z.); (Y.S.)
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
- MOE Frontiers Science Center for Brain Science and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China
- State Key Laboratory for Brain-Computer Intelligence, Zhejiang University, Hangzhou 310016, China
| | - Yi Sun
- Department of Neurology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310020, China; (J.C.); (H.C.); (Y.J.); (X.Z.); (Y.S.)
| |
Collapse
|
13
|
Zhang Y, Wei R, Ni M, Wu Q, Li Y, Ge Y, Kong X, Li X, Chen G. An enriched environment improves maternal sleep deprivation-induced cognitive deficits and synaptic plasticity via hippocampal histone acetylation. Brain Behav 2023; 13:e3018. [PMID: 37073496 PMCID: PMC10275536 DOI: 10.1002/brb3.3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/20/2023] Open
Abstract
INTRODUCTION Growing evidence clearly demonstrates that maternal rodents exposure to sleep deprivation (SD) during late pregnancy impairs learning and memory in their offspring. Epigenetic mechanisms, particularly histone acetylation, are known to be involved in synaptic plasticity, learning, and memory. We hypothesize that the cognitive decline induced by SD during late pregnancy is associated with histone acetylation dysfunction, and this effect could be reversed by an enriched environment (EE). METHODS In the present study, pregnant CD-1 mice were exposed to SD during the third trimester of pregnancy. After weaning, all offspring were randomly assigned to two subgroups in either a standard environment or an EE. When offspring were 3 months old, the Morris water maze was used to evaluate hippocampal-dependent learning and memory ability. Molecular biological techniques, including western blot and real-time fluorescence quantitative polymerase chain reaction, were used to examine the histone acetylation pathway and synaptic plasticity markers in the hippocampus of offspring. RESULTS The results showed that the following were all reversed by EE treatment: maternal SD (MSD)-induced cognitive deficits including spatial learning and memory; histone acetylation dysfunction including increased histone deacetylase 2 (HDAC2) and decreased histone acetyltransferase (CBP), and the acetylation levels of H3K9 and H4K12; synaptic plasticity dysfunction including decreased brain-derived neurotrophic factor; and postsynaptic density protein-95. CONCLUSIONS Our findings suggested that MSD could damage learning ability and memory in offspring via the histone acetylation pathway. This effect could be reversed by EE treatment.
Collapse
Affiliation(s)
- Yue‐Ming Zhang
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ru‐Meng Wei
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Ming‐Zhu Ni
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Qi‐Tao Wu
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yun Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Yi‐Jun Ge
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xiao‐Yi Kong
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Xue‐Yan Li
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| | - Gui‐Hai Chen
- Department of Neurology (Sleep Disorders)the Affiliated Chaohu Hospital of Anhui Medical UniversityHefeiAnhuiP. R. China
| |
Collapse
|
14
|
Zhao JL, Chen PM, Ng SSM, Mao YR, Huang DF. Translation and concurrent validity, sensitivity and specificity of Chinese version of Short Orientation Memory Concentration Test in people with a first cerebral infarction. Front Hum Neurosci 2023; 17:977078. [PMID: 37323928 PMCID: PMC10268244 DOI: 10.3389/fnhum.2023.977078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Purpose This study aimed to translate the English version of the Short Orientation-Memory-Concentration (SOMC) test into a Chinese version, denoted the C-SOMC test, and to investigate the concurrent validity, sensitivity, and specificity of the C-SOMC test against a longer and widely used screening instrument in people with a first cerebral infarction. Methods An expert group translated the SOMC test into Chinese using a forward-backward procedure. Eighty-six participants (67 men and 19 women, mean age = 59.31 ± 11.57 years) with a first cerebral infarction were enrolled in this study. The validity of the C-SOMC test was determined using the Chinese version of Mini Mental State Examination (C-MMSE) as the comparator. Concurrent validity was determined using Spearman's rank correlation coefficients. Univariate linear regression was used to analyze items' abilities to predict the total score on the C-SOMC test and the C-MMSE score. The area under the receiver operating characteristic curve (AUC) was used to demonstrate the sensitivity and specificity of the C-SOMC test at various cut-off values distinguishing cognitive impairment from normal cognition. Results The total score for the C-SOMC test and the score for item 1 on this test exhibited moderate-to-good correlations with the C-MMSE score, with respective ρ-values of 0.636 and 0.565 (P < 0.001). The scores for each of items 2, 4, 5, 6, and 7 yielded fair correlations with C-MMSE score, with ρ-value from 0.272 to 0.495 (P < 0.05). The total score on the C-SOMC test and the item score were good predictors (adjusted R2 = 0.049 to 0.615) of the C-MMSE score, and six items were good predictors (adjusted R2 = 0.134 to 0.795) of the total score. The AUC was 0.92 for the C-SOMC test. A cut-off of 17/18 on the C-SOMC test gave optimal performance: correct classification of 75% of participants, with 75% sensitivity and 87.9% specificity. Conclusion The C-SOMC test demonstrated good concurrent validity, sensitivity and specificity in a sample of people with a first cerebral infarction, demonstrating that it could be used to screen for cognitive impairment in stroke patients.
Collapse
Affiliation(s)
- Jiang-Li Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei-Ming Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Shamay S. M. Ng
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Yu-Rong Mao
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Dong-Feng Huang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Rehabilitation Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
15
|
Li Z, Chen L, Xu C, Chen Z, Wang Y. Non-invasive sensory neuromodulation in epilepsy: Updates and future perspectives. Neurobiol Dis 2023; 179:106049. [PMID: 36813206 DOI: 10.1016/j.nbd.2023.106049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Epilepsy, one of the most common neurological disorders, often is not well controlled by current pharmacological and surgical treatments. Sensory neuromodulation, including multi-sensory stimulation, auditory stimulation, olfactory stimulation, is a kind of novel noninvasive mind-body intervention and receives continued attention as complementary safe treatment of epilepsy. In this review, we summarize the recent advances of sensory neuromodulation, including enriched environment therapy, music therapy, olfactory therapy, other mind-body interventions, for the treatment of epilepsy based on the evidence from both clinical and preclinical studies. We also discuss their possible anti-epileptic mechanisms on neural circuit level and propose perspectives on possible research directions for future studies.
Collapse
Affiliation(s)
- Zhongxia Li
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liying Chen
- Department of Pharmacy, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; Zhejiang Rehabilitation Medical Center Department, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
16
|
Shixing X, Xueyan H, Yuan R, Wei T, Wei W. Enriched environment can reverse chronic sleep deprivation-induced damage to cellular plasticity in the dentate gyrus of the hippocampus. Transl Neurosci 2023; 14:20220280. [PMID: 36969794 PMCID: PMC10031502 DOI: 10.1515/tnsci-2022-0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/15/2023] [Accepted: 02/24/2023] [Indexed: 03/24/2023] Open
Abstract
Objective We studied whether enriched environment (EE), a classic epigenetics paradigm, can prevent cellular plasticity damage caused by chronic sleep deprivation (SD). Methods We performed SD in mice by a modified multi-platform method (MMPM). Mice in the SD group were deprived of sleep for 18 h a day. In addition, half of the mice in the chronic SD group were exposed to EE stimuli for 6 h per day. Immunostaining analyzed neurogenesis and neural progenitor cell-differentiated phenotypes in the hippocampal dentate gyrus (DG) region. Result At 13 weeks, compared with the control group, SD severely impaired the proliferation and differentiation of neural stem cells, and EE completely reversed the process. SD can induce gliosis in the mouse hippocampus, and EE can delay the process. Conclusion: Our results suggest that chronic SD may damage the neurogenesis in the DG of the hippocampus. However, enrichment stimulation can reverse the processing by promoting neuronal repair related to neuronal plasticity.
Collapse
Affiliation(s)
- Xue Shixing
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Hou Xueyan
- Department of Medical Imaging, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Ren Yuan
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Tang Wei
- Department of Neurology, Affiliated Xinhua Hospital of Dalian University, Dalian, Liaoning Province, China
| | - Wang Wei
- Department of Rehabilitation Medicine, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning Province, China
| |
Collapse
|
17
|
Zhang S, Zhang Y, Liu H, Wu F, Wang Z, Li L, Huang H, Qiu S, Li Y. Enriched environment remodels the central immune environment and improves the prognosis of acute ischemic stroke in elderly mice with chronic ischemia. Front Immunol 2023; 14:1114596. [PMID: 36969204 PMCID: PMC10033834 DOI: 10.3389/fimmu.2023.1114596] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
With the aging of many populations, cognitive and motor dysfunction caused by ischemic stroke (IS) secondary to long-term chronic cerebral ischemia presents a global problem. Enriched environment (EE), a classic paradigm of environment response and genetic interaction, has shown tremendous influence on the brain. This research aimed to investigate the potential effect of EE on cognitive and motor function in mice with chronic cerebral ischemia and secondary IS. In the chronic cerebral hypoperfusion (CCH) phase, EE treatment improved behavior performance by alleviating neuronal loss and white matter myelin damage, promoting the expression of brain-derived neurotrophic factor (BDNF) and phosphor-cAMP response element binding protein (p-CREB). Furthermore, infiltration of microglia/macrophages and astrocytes was inhibited, and the levels of IL-1β and TNFα were decreased. In the IS phase, EE altered the neuronal outcome on day 21 but not on day one after IS. In addition, EE inhibited IS-induced infiltration of microglia/macrophages and astrocytes, mediated the polarization of microglia/macrophages, and reduced pro-inflammatory factors. Importantly, EE improved IS-induced cognitive and motor deficits on day 21. Collectively, our work demonstrates that EE protects mice from cognitive and motor dysfunction and inhibits neuroinflammation caused by CCH and IS.
Collapse
Affiliation(s)
- Shehong Zhang
- Department of Rehabilitation Medicine, Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
| | - Yonggang Zhang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - He Liu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Fengfeng Wu
- Department of Rehabilitation Medicine, Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Zhihong Wang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
| | - Liqin Li
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Huilian Huang
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
| | - Sheng Qiu
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- *Correspondence: Sheng Qiu, ; Yuntao Li,
| | - Yuntao Li
- Huzhou Key Laboratory of Basic Research and Clinical Translation for Neuromodulation, Huzhou, China
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, China
- *Correspondence: Sheng Qiu, ; Yuntao Li,
| |
Collapse
|
18
|
Pu M, You Y, Wang X. Predictive value of serum matrix metalloproteinase 9 combined with tissue inhibitor of metalloproteinase 1 for post-stroke cognitive impairment. J Clin Neurosci 2022; 105:103-108. [PMID: 36148726 DOI: 10.1016/j.jocn.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/14/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Post-stroke cognitive impairment (PSCI) seriously affects the quality of life of patients. Identifying early predictors of PSCI to realize timely intervention of PSCI can provide effective information for patient rehabilitation and follow-up treatment, and has important clinical significance for delaying its progression to dementia. METHODS Montreal Cognitive Assessment (MoCA) and National Institutes of Health Stroke Scale (NIHSS) were used to assess patients' cognitive and neurological function separately. ELISA was used to analyze serum tissue inhibitor of metalloproteinase 1 (TIMP 1) and matrix metalloproteinase 9 (MMP 9) levels of patients on admission. RESULTS 180 patients with first-ever acute ischemic stroke (AIS) were included in the study. After three months of follow-up, 78 patients were diagnosed with PSCI, and 102 patients did not have PSCI. MMP 9 and TIMP 1 were elevated in PSCI patients on admission relative to non-PSCI groups, and they were positively correlated with patients' NIHSS scores on admission (p < 0.001). Serum levels of MMP 9 and TIMP 1 in PSCI patients were negatively correlated with MoCA scores at the end of the 3-month follow-up (p < 0.001). Serum MMP 9 (p < 0.001), TIMP 1 (p = 0.02) and combined detection (p < 0.001) of AIS patients at admission appear to have predictive value for the diagnosis of PSCI three months later. CONCLUSION Serum MMP 9 and TIMP 1 levels in stroke patients were statistically predictive of PSCI.
Collapse
Affiliation(s)
- Mengjia Pu
- Department of Neurology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299 Qingyang Road, Wuxi 214023, Jiangsu, China
| | - Yiping You
- Department of Neurology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299 Qingyang Road, Wuxi 214023, Jiangsu, China
| | - Xuehui Wang
- Department of Neurology, the Affiliated Wuxi People's Hospital of Nanjing Medical University, No.299 Qingyang Road, Wuxi 214023, Jiangsu, China.
| |
Collapse
|
19
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|
20
|
Gao Y, Wang B, Miao Y, Han Y. Serum Neuroglobin as a Potential Prognostic Biomarker for Cognitive Impairment After Intracerebral Hemorrhage. Front Neurol 2022; 13:885323. [PMID: 35463129 PMCID: PMC9021832 DOI: 10.3389/fneur.2022.885323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveStroke is closely related to dementia, but there are few prospective studies on cognitive decline after stroke in patients with cerebral hemorrhage. Neuroglobin is an oxygen-binding protein mainly expressed in brain neurons. The aim of our current study was to determine whether neuroglobin could serve as a biomarker for cognitive prognosis in patients with intracerebral hemorrhage (ICH).MethodsThree hundred and sixteen patients with ICH were consecutively enrolled in a prospective study. Baseline data such as age and gender of ICH patients on admission were recorded. Serum neuroglobin concentrations were determined by enzyme-linked immunosorbent assay (ELISA). All ICH patients 3 months after onset were divided into post-stroke cognitive impairment group (PSCI) and non-PSCI group according to MoCA assessment results.ResultsThe PSCI and Non-PSCI groups had serum neuroglobin concentrations of (4.7 ± 0.9) and (7.5 ± 1.1) ng/ml, respectively, with a statistically significant difference between the two groups (p < 0.05). Age, gender, LDL, FBG, SBP, DBP, NHISS, and Hematoma volume were found to be adversely connected with MoCA (p < 0.05), while education, HDL, and serum neuroglobin were found to be positively correlated with MoCA (p < 0.05). After controlling for baseline data, regression analysis revealed that serum neuroglobin was remained an efficient biomarker for predicting cognitive performance in individuals with ICH (p < 0.05). The diagnostic accuracy of blood neuroglobin concentration for PSCI in ICH patients was 72.6%, the sensitivity was 67.4%, and the specificity was 75.5%, according to receiver operating characteristic (ROC) curve analysis.ConclusionsSerum neuroglobin may serve as a potential biomarker to predict cognitive decline after ICH.
Collapse
Affiliation(s)
- Yu Gao
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bo Wang
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Ye Miao
- Department of Neurosurgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yu Han
- Department of Emergency, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- *Correspondence: Yu Han
| |
Collapse
|
21
|
Durán-Carabali LE, Odorcyk FK, Sanches EF, de Mattos MM, Anschau F, Netto CA. Effect of environmental enrichment on behavioral and morphological outcomes following neonatal hypoxia-ischemia in rodent models: A systematic review and meta-analysis. Mol Neurobiol 2022; 59:1970-1991. [PMID: 35040041 DOI: 10.1007/s12035-022-02730-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/02/2022] [Indexed: 02/06/2023]
Abstract
Neonatal hypoxia-ischemia (HI) is a major cause of mortality and morbidity in newborns and, despite recent advances in neonatal intensive care, there is no definitive treatment for this pathology. Once preclinical studies have shown that environmental enrichment (EE) seems to be a promising therapy for children with HI, the present study conducts a systematic review and meta-analysis of articles with EE in HI rodent models focusing on neurodevelopmental reflexes, motor and cognitive function as well as brain damage. The protocol was registered a priori at PROSPERO. The search was conducted in PubMed, Embase and PsycINFO databases, resulting in the inclusion of 22 articles. Interestingly, EE showed a beneficial impact on neurodevelopmental reflexes (SMD= -0.73, CI= [-0.98; -0.47], p< 0.001, I2= 0.0%), motor function (SMD= -0.55, CI= [-0.81; -0.28], p< 0.001, I2= 62.6%), cognitive function (SMD= -0.93, CI= [-1.14; -0.72], p< 0.001, I2= 27.8%) and brain damage (SMD= -0.80, CI= [-1.03; -0.58], p< 0.001, I2= 10.7%). The main factors that potentiate EE positive effects were enhanced study quality, earlier age at injury as well as earlier start and longer duration of EE exposure. Overall, EE was able to counteract the behavioral and histological damage induced by the lesion, being a promising therapeutic strategy for HI.
Collapse
Affiliation(s)
- L E Durán-Carabali
- Graduate Program in Biological Sciences: Physiology, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - F K Odorcyk
- Graduate Program in Biological Sciences: Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - E F Sanches
- Division of Child Development and Growth, Department of Pediatrics, Gynecology and Obstetrics, School of Medicine, University of Geneva, Geneva, Switzerland
| | - M M de Mattos
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil
| | - F Anschau
- Medicine school, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil.,Graduation Program on Evaluation and Production of Technologies for the Brazilian National Health System, Porto Alegre, Brazil
| | - C A Netto
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, anexo, Porto Alegre, RS, CEP 90035-003, Brazil. .,Department of Physiology, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
22
|
Jiang S, Wang YQ, Tang Y, Lu X, Guo D. Environmental Enrichment Protects Against Sepsis-Associated Encephalopathy-Induced Learning and Memory Deficits by Enhancing the Synthesis and Release of Vasopressin in the Supraoptic Nucleus. J Inflamm Res 2022; 15:363-379. [PMID: 35079222 PMCID: PMC8776728 DOI: 10.2147/jir.s345108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/07/2022] [Indexed: 12/28/2022] Open
Abstract
Background As a severe complication of sepsis, sepsis-associated encephalopathy (SAE) usually manifests as impaired learning and memory ability in survivors. Previous studies have reported that environmental enrichment (EE) can increase the learning and memory ability in different brain injury models. However, there has been no research on the possible positive effect of EE on SAE. Aim The present study aimed to test the effect of EE on SAE-induced impairment of learning and memory and its related mechanisms. Methods A Morris water maze test (MWM) was used to evaluate the learning and memory ability of SAE rats that received EE housing or not. The expression of vasopressin (VP) was assessed using immunofluorescence microscopy and enzyme-linked immunosorbent assays (ELISAs). The synthesis of VP in the supraoptic nucleus (SON) was determined using quantitative real-time reverse transcription-PCR analysis. Moreover, inflammatory markers and brain-derived neurotrophic factor (BDNF) were detected using ELISA. Results The results showed that SAE induced a decreased learning and memory ability, while EE reversed this impairment. EE also enhanced the synthesis and secretion of VP in the SON. Blocking the action of VP in the hippocampus interrupted the EE-induced amelioration of learning and memory impairment. Moreover, EE induced changes to the levels of BDNF and cytokines in the hippocampus and these effects were mediated by VP binding to the VP receptor 1a. Conclusion Our findings demonstrated that the enhanced synthesis and secretion of VP in the SON are a key determinant responsible for EE-induced alleviation of learning and memory deficits caused by SAE.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
- Correspondence: Shan Jiang, Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, No. 2 Ying Hua Yuan East Street, Beijing, 100029, People’s Republic of China, Tel +86 10 84205288, Fax +86 10 64217749, Email
| | - Yong-Qiang Wang
- Department of Ophthalmology, the Sunshine Union Hospital, Weifang, Shandong, 261071, People’s Republic of China
| | - Yifei Tang
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Xi Lu
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| | - Dan Guo
- Department of Rehabilitation Medicine, the China-Japan Friendship Hospital, Beijing, 100029, People’s Republic of China
| |
Collapse
|