1
|
Wang Y, Gong J, Heng N, Hu Y, Wang R, Wang H, He W, Zhu N, Hu Z, Hao H, Zhu H, Zhao S. Melatonin alleviates palmitic acid-induced mitochondrial dysfunction by reducing oxidative stress and enhancing autophagy in bovine endometrial epithelial cells. J Anim Sci Biotechnol 2024; 15:108. [PMID: 39113148 PMCID: PMC11308371 DOI: 10.1186/s40104-024-01064-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Negative energy balance (NEB) typically occurs in dairy cows after delivery. Cows with a high yield are more likely to experience significant NEB. This type of metabolic imbalance could cause ketosis, which is often accompanied by a decline in reproductive performance. However, the molecular mechanisms underlying NEB have yet to be fully elucidated. During excessive NEB, the body fat is extensively broken down, resulting in the abnormal accumulation of non-esterified fatty acids (NEFAs), represented by palmitic acid (PA), within the uterus. Such an abnormal accumulation has the potential to damage bovine endometrial epithelial cells (BEECs), while the molecular mechanisms underlying its involvement in the PA-induced injury of BEECs remains poorly understood. Melatonin (MT) is recognized for its regulatory role in maintaining the homeostasis of mitochondrial reactive oxygen species (mitoROS). However, little is known as to whether MT could ameliorate the damage incurred by BEECs in response to PA and the molecular mechanism involved. RESULTS Analysis showed that 0.2 mmol/L PA stress increased the level of cellular and mitochondrial oxidative stress, as indicated by increased reactive oxygen species (ROS) level. In addition, we observed mitochondrial dysfunction, including abnormal mitochondrial structure and respiratory function, along with a reduction in mitochondrial membrane potential and mitochondrial copy number, and the induction of apoptosis. Notably, we also observed the upregulation of autophagy proteins (PINK, Parkin, LC3B and Ubiquitin), however, the P62 protein was also increased. As we expected, 100 μmol/L of MT pre-treatment attenuated PA-induced mitochondrial ROS and restored mitochondrial respiratory function. Meanwhile, MT pretreatment reversed the upregulation of P62 induced by PA and activated the AMPK-mTOR-Beclin-1 pathway, contributing to an increase of autophagy and decline apoptosis. CONCLUSIONS Our findings indicate that PA can induce mitochondrial dysfunction and enhance autophagy in BEECs. In addition, MT is proved to not only reduce mitochondrial oxidative stress but also facilitate the clearance of damaged mitochondria by upregulating autophagy pathways, thereby safeguarding the mitochondrial pool and promoting cellular viability. Our study provides a better understanding of the molecular mechanisms underlying the effect of an excess of NEB on the fertility outcomes of high yielding dairy cows.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jianfei Gong
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Nuo Heng
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yingfan Hu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Rui Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huan Wang
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Wei He
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Ni Zhu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Zhihui Hu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Haisheng Hao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huabin Zhu
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shanjiang Zhao
- State Key Laboratory of Animal Biotech Breeding, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
2
|
Ansarin A, Mahdavi AM, Javadivala Z, Shanehbandi D, Zarredar H, Ansarin K. The cross-talk between leptin and circadian rhythm signaling proteins in physiological processes: a systematic review. Mol Biol Rep 2023; 50:10427-10443. [PMID: 37874505 DOI: 10.1007/s11033-023-08887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Today, modern lifestyles and disrupted sleep patterns cause circadian clock rhythm impairments that are associated with altered leptin levels, which subsequently affect a wide range of physiological processes and have significant health burdens on societies. Nevertheless, there has been no systematic review of circadian clock genes and proteins, leptin, and related signaling pathways. METHODS Accordingly, we systematically reviewed circadian clock proteins, leptin, and molecular mechanisms between them by searching Pubmed, Scopus, ProQuest, Web of Sciences, and Google Scholar until September 2022. After considering the inclusion and exclusion criteria, 20 animal studies were selected. The risk of bias was assessed in each study. RESULTS The results clarified the reciprocal interconnected relationship between circadian clock genes and leptin. Circadian clock genes regulate leptin expression and signaling via different mechanisms, such as CLOCK-BMAL1 heterodimers, which increase the expression of PPARs. PPARs induce the expression of C/EBPα, a key factor in upregulating leptin expression. CLOCK-BMAL1 also induces the expression of Per1 and Rev-erb genes. PER1 activates mTORC1 and mTORC1 enhances the expression of C/EBPα. In addition, REV-ERBs activate the leptin signaling pathway. Also, leptin controls the expression of circadian clock genes by triggering the AMPK and ERK/MAPK signaling pathways, which regulate the activity of PPARs. Moreover, the roles of these molecular mechanisms are elucidated in different physiological processes and organs. CONCLUSIONS Crosstalk between circadian clock genes and leptin and their affecting elements should be considered in the selection of new therapeutic targets for related disorders, especially obesity and metabolic impairments.
Collapse
Affiliation(s)
- Atefeh Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
| | - Aida Malek Mahdavi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Javadivala
- Department of Health Education & Promotion, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran.
| |
Collapse
|
3
|
Zhang Y, Jia R, Zhang Y, Sun X, Mei Y, Zou R, Niu L, Dong S. Effect of non-surgical periodontal treatment on cytokines/adipocytokines levels among periodontitis patients with or without obesity: a systematic review and meta-analysis. BMC Oral Health 2023; 23:717. [PMID: 37798684 PMCID: PMC10552206 DOI: 10.1186/s12903-023-03383-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/04/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The objective of this systematic review and meta-analysis was to evaluate the effects of non-surgical periodontal therapy (NSPT) on inflammatory-related cytokines/adipocytokines in periodontitis patients with or without obesity. METHODS We followed the preferred reporting items for systematic reviews and meta-analyses statement and registered the study (CRD42022375331) in the Prospective International Register of Systematic Reviews. We screened randomized-controlled trials and controlled clinical trials from six databases up to December 2022. Quality assessment was performed with RoB-2 and ROBINS-I tools for randomized trials and non-randomized trials, respectively. Meta-analysis was carried out using a random-effect model. RESULTS We included seventeen references in the systematic analysis, and sixteen in the meta-analysis. Baseline results of pro-inflammatory biomarkers, including serum interleukin (IL)-6, serum and gingival crevicular fluid (GCF), tumor necrosis factor (TNF)-a, serum C-reactive protein (CRP)/hs-CRP, and serum and GCF resistin, were higher in obesity subjects than in normal weight subjects. The effect of NSPT with respect to levels of cytokines/adipocytokines, including IL-6, TNF-a, CRP/hs-CRP, resistin, adiponectin, leptin and retinol binding protein 4 (RBP4), were then analyzed in the systematic and meta-analysis. After three months of NSPT, serum (MD = -0.54, CI = -0.62 - -0.46), and GCF (MD = -2.70, CI = -4.77 - -0.63) levels of IL-6, along with the serum RBP4 (MD = -0.39, CI = -0.68-0.10) decreased in periodontitis individuals with obesity. NSPT also improved GCF adiponectin levels after three months (MD = 2.37, CI = 0.29 - 4.45) in periodontitis individuals without obesity. CONCLUSIONS Obese status altered the baseline levels of cytokines/adipocytokines (serum IL-6, serum and GCF TNF-a, serum CRP/hs-CRP, and serum and GCF resistin). Then NSPT can shift the levels of specific pro-inflammatory mediators and anti-inflammatory mediators in biological fluids, both in obesity and non-obesity individuals. NSPT can reduce serum and GCF IL-6 levels together with serum RBP4 level in individuals with obesity after 3 months, besides, there is no sufficient evidence to prove that obese patients have a statistically significant decrease in the levels of other cytokines compared to patients with normal weight. NSPT can also increase GCF adiponectin level in normal weight individuals after 3 months. Our findings imply the potential ideal follow-up intervals and sensitive biomarkers for clinical bioanalysis in personalized decision-making of effect of NSPT due to patients' BMI value.
Collapse
Affiliation(s)
- Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Ru Jia
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Yifei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Xuefei Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
| | - Yukun Mei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China.
| | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China.
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Xi'an, 710004, Shaanxi Province, China.
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi Province, China.
| |
Collapse
|
4
|
Rezaei MH, Madadizadeh E, Aminaei M, Abbaspoor M, Schierbauer J, Moser O, Khoramipour K, Chamari K. Leptin Signaling Could Mediate Hippocampal Decumulation of Beta-Amyloid and Tau Induced by High-Intensity Interval Training in Rats with Type 2 Diabetes. Cell Mol Neurobiol 2023; 43:3465-3478. [PMID: 37378849 DOI: 10.1007/s10571-023-01357-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/29/2023] [Indexed: 06/29/2023]
Abstract
Leptin (LEP) can cross the blood-brain barrier and facilitate cross-talk between the adipose tissue and central nerve system (CNS). This study aimed to investigate the effect of 8-week high-intensity interval training (HIIT) on the LEP signaling in the hippocampus of rats with type 2 diabetes. 20 rats were randomly divided into four groups: (i) control (Con), (ii) type 2 diabetes (T2D), (iii) exercise (EX), and (iv) type 2 diabetes + exercise (T2D + EX). The rats in the T2D and T2D + EX were fed a high-fat diet for two months, then a single dose of STZ (35 mg/kg) was injected to induce diabetes. The EX and T2D + EX groups performed 4-10 intervals of treadmill running at 80-100% of Vmax. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), activated protein kinase (AMP-K), proxy zoster receptor α (PGC-1α), beta-secretase 1 (BACE1), Beta-Amyloid (Aβ), Phosphoinositide 3-kinases (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR), Glycogen Synthase Kinase 3 Beta (GSK3β), and hyperphosphorylated tau proteins (TAU) were measured. One-way ONOVA and Tukey post-hoc tests were used to analyze the data. Serum and hippocampal levels of LEP as well as hippocampal levels of LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were increased while hippocampal levels of BACE1, GSK3B, TAU, and Aβ were decreased in T2D + EX compared with T2D group. Serum LEP and hippocampal levels of LEP, LEP-R, JAK-2, STAT-3, AMP-K, PGC1α, PI3K, AKT, and mTOR were decreased. Conversely hippocampal levels of BACE1, GSK3B, TAU, and Aβ were increased in T2D group compared with CON group. HIIT could improve LEP signaling in the hippocampus of rats with type 2 diabetes and decrease the accumulation of Tau and Aβ, which may reduce the risk of memory impairments.
Collapse
Affiliation(s)
- Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mohsen Aminaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mehdi Abbaspoor
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Janis Schierbauer
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
| | - Othmar Moser
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuht, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| | - Karim Chamari
- Aspetar Qatar Orthopaedic and Sports Medicine Hospital, Doha, Qatar
| |
Collapse
|
5
|
Ji L, Zhang L, Liang Z, Zhong S, Liu X, Liu Z, Poon WS, Song Y, Chen B, Wang R. Role of omentin-1 in susceptibility to anxiety and depression like behaviors. Mol Cell Endocrinol 2023; 574:111990. [PMID: 37321286 DOI: 10.1016/j.mce.2023.111990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Neuro-inflammation and blood-brain barrier (BBB) dysfunction are associated with depression. Evidence shows that adipokines enter the brain from the circulation, which regulates depressive behaviors. Omentin-1 is a newly identified adipocytokine that has anti-inflammatory effects, but little is known about its role in neuro-inflammation and mood-relevant behavior. Our results showed omentin-1 knockout mice (Omentin-1-/-) increased susceptibility to anxiety and depressive-like behaviors, which are associated with abnormalities of cerebral blood flow (CBF) and impaired BBB permeability. Moreover, omentin-1 depletion significantly increased hippocampal pro-inflammatory cytokines (IL-1β, TNFα, IL-6), caused microglial activation, inhibited hippocampus neurogenesis, and resulted in autophagy impairment by dysregulating ATG genes. Omentin-1 deficiency also sensitized mice to the behavioral changes induced by lipopolysaccharide (LPS), suggesting that omentin-1 could rescue neuro-inflammation by acting as an anti-depressant. Our in vitro microglia cell culture data confirmed that recombinant omentin-1 suppresses microglial activation and pro-inflammatory cytokine expression induced by LPS. Our study suggests that omentin-1 can be used as a promising therapeutic agent for the prevention or treatment of depression by providing a barrier-promoting effect and an endogenous anti-inflammatory balance to downregulate the proinflammatory cytokines.
Collapse
Affiliation(s)
- Lianru Ji
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China
| | - Lang Zhang
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, China; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhi Liang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China
| | - Sufang Zhong
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China
| | - Xiamin Liu
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China; Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Wai Sang Poon
- The University of Hong Kong, Hong Kong, China; Hong Kong University Shenzhen Hospital, Shen Zhen, China
| | - Yonggui Song
- Key Laboratory of Evaluation of Traditional Chinese Medicine Efficacy (Prevention and Treatment of Brain Disease with Mental Disorders), China; Key Laboratory of Depression Animal Model Based on TCM Syndrome, Jiangxi Administration of Traditional Chinese Medicine, China; Key Laboratory of TCM for Prevention and Treatment of Brain Diseases with Cognitive Dysfunction, Jiangxi University of Chinese Medicine, China.
| | - Baodong Chen
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China.
| | - Rikang Wang
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
6
|
Li DL, Liang G, Yin ZJ, Li YZ, Zheng YJ, Qin Y, Zhang YJ, Pan CW. Associations between sleep characteristics, chronotype and body mass index among Chinese college freshmen. Chronobiol Int 2023; 40:803-811. [PMID: 37154043 DOI: 10.1080/07420528.2023.2210667] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/08/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
Research indicates that sleep problem is a behavioral risk factor of obesity. However, few research have applied a multi-dimensional approach to investigate the relationship between sleep health and adiposity. Therefore, the current study aimed to examine the associations of sleep characteristics (duration, quality) and chronotype with overweight/obesity as measured by body mass index. Data were obtained from 2014 college students from the Dali University in the Yunnan province of China in the year 2021. Sleep characteristics and chronotype were measured using self-reported questionnaires. The presence of overweight/obesity was assessed by anthropometric measurements. Multiple logistic regression models and restricted cubic spline hazard models were established to examine associations between sleep characteristics, chronotype and adiposity. After adjusting for demographic characteristics and other obesity-related behavioral risk factors, evening type was positively associated with overweight/obesity, and an L-shaped dose-effect relationship was observed between chronotype scores and the presence of overweight/obesity. However, sleep duration and quality were not associated with the presence of overweight/obesity in the logistic regression models and restrictive cubic splines models. This study indicated that Chinese college students who had the evening chronotype were more likely to be affected by overweight/obesity. Chronotype as an important dimension of sleep health should be incorporated in obesity intervention programs.
Collapse
Affiliation(s)
- Dan-Lin Li
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Gang Liang
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Zhi-Jian Yin
- Department of Ophthalmology, The First Affiliated Hospital of Dali University, Dali, China
| | - Yue-Zu Li
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Ya-Jie Zheng
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Yu Qin
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China
- Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - You-Jie Zhang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Hegazy HA, Abo-ElMatty DM, Farid O, Saleh S, Ghattas MH, Omar NN. Nano-melatonin and-histidine modulate adipokines and neurotransmitters to improve cognition in HFD-fed rats: A formula to study. Biochimie 2023; 207:137-152. [PMID: 36351496 DOI: 10.1016/j.biochi.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 10/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
The established correlation between obesity and cognitive impairment portrays pharmacological products aimed at both disorders as an important therapeutic advance. Modulation of dysregulated adipokines and neurotransmitters is hence a critical aspect of the assessment of in-use drugs. At the cellular level, repairments in brain barrier integrity and cognitive flexibility are the main checkpoints. The aim of this study was to investigate whether melatonin and histidine, alone or in combination, could produce weight loss, meanwhile improve the cognitive processes. In this study, obese rat model was established by feeding high fat diet (HFD) composed of 25% fats (soybean oil) for 8 weeks, accompanied by melatonin (10 mg/kg), histidine (780 mg/kg), and combination of both in conventional form and nanoform. At the end of the study, adiposity hormones, neuronal monoamines and amino acids, brain derived neurotrophic factor (BDNF) and zonula occluden-1 (ZO-1) were assessed. HFD feeding resulted in significant weight gain and poor performance on cognitive test. Coadministration of histidine in the nanoform increased the level of ZO-1; an indicator of improving the brain barrier integrity, along with adjusting the adipokines and neurotransmitters levels, which had a positive impact on learning tasks. Cotreatment with melatonin resulted in an increase in the level of BDNF, marking ameliorated synaptic anomalies and learning disabilities, while reducing weight gain. On the other hand, the combination of melatonin and histidine reinstated the synaptic plasticity as well as brain barrier junctions, as demonstrated by increased levels of BDNF and ZO-1, positively affecting weight loss and the intellectual function.
Collapse
Affiliation(s)
- Heba Ahmed Hegazy
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| | - Dina M Abo-ElMatty
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Omar Farid
- Department of Physiology, National Organization for Drug Control & Research, Giza, Egypt.
| | - Sami Saleh
- Department of Biochemistry, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Maivel H Ghattas
- Department of Medical Biochemistry, Faculty of Medicine, Port Said University, Port Said, Egypt.
| | - Nesreen Nabil Omar
- Department of Biochemistry, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt.
| |
Collapse
|
8
|
Shih YL, Shih YH, Huang TC, Shih CC, Chen JY. Association between sedentary time and plasma leptin levels in middle-aged and older adult population in Taiwan: A community-based, cross-sectional study. Front Cardiovasc Med 2023; 9:1057497. [PMID: 36698957 PMCID: PMC9868819 DOI: 10.3389/fcvm.2022.1057497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023] Open
Abstract
Background Association of sedentary behavior and plasma leptin levels is a popular topic in recent research. Aged populations often suffer from cardiometabolic diseases, and leptin is considered a novel marker for many cardiometabolic diseases. To further explore this topic, our research investigates the relationship between sedentary time and serum leptin levels in middle-aged and older populations. Methods A total of 396 middle-aged and older adult Taiwanese participants were included in this study. We recorded their self-reported sitting time as sedentary time. Participants were categorized into low leptin, medium leptin group, and high leptin groups according to the tertile of serum leptin level in the study. We also analyzed the anthropometric and cardiometabolic parameters between the three groups. Spearman's correlation coefficient was used to analyze the correlation between leptin level, sedentary time, and other cardiometabolic risk factors. The relationsip between leptin and sedentary time was also shown in a scatter plot. Multivariate linear regression was performed to determine the association between serum leptin levels and sedentary time after adjusting for age, sex, alcohol consumption, smoking, triglycerides, body mass index (BMI), fasting plasma glucose, systolic blood pressure, uric acid, creatinine, and alanine transaminase (ALT). Results In our study, data from a total of 396 participants were analyzed. The average age of participants was 64.75 (±8.75) years, and ~41.4% were male. A longer period of sedentary time was observed in the high leptin group. A positive correlation was found between serum leptin level and sedentary time in Spearman's correlation, in all BMI groups. Serum leptin levels were positively associated with sedentary time (B = 0.603, p = 0.016) in the multivariate linear regression after adjusting for age, sex, alcohol consumption, smoking, triglycerides, BMI, fasting plasma glucose, systolic blood pressure, uric acid, creatinine, and ALT. Conclusion Prolonged sedentary time can be an independent risk factor for high serum leptin levels, and high leptin levels can be a novel marker in future healthcare to screen the individual with prolonged sedentary time. Furthermore, based on our study, future research can further explore the relationship between leptin levels and health promotion, especially decreasing sedentary time in the middle-aged and elder population, which is vulnerable to cardiometabolic diseases.
Collapse
Affiliation(s)
- Yu-Lin Shih
- Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yun-Hsiang Shih
- School of Medicine, Medical University of Lublin, Lublin, Poland
| | - Tzu-Cheng Huang
- Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chin-Chuan Shih
- General Administrative Department, United Safety Medical Group, New Taipei City, Taiwan
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan,College of Medicine, Chang Gung University, Taoyuan, Taiwan,*Correspondence: Jau-Yuan Chen ✉
| |
Collapse
|
9
|
Fernández-Mateos P, Cano-Barquilla P, Jiménez-Ortega V, Virto L, Pérez-Miguelsanz J, Esquifino AI. Effect of Melatonin on Redox Enzymes Daily Gene Expression in Perirenal and Subcutaneous Adipose Tissue of a Diet Induced Obesity Model. Int J Mol Sci 2023; 24:ijms24020960. [PMID: 36674472 PMCID: PMC9863119 DOI: 10.3390/ijms24020960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Increased adiposity is related to oxidative stress, inflammation and metabolic disorders. Our group has shown that melatonin totally or partially prevents the alterations that obesity causes in some neuroendocrine and inflammatory parameters indicative of oxidative stress. This study analyzes the effects of HFD on the relative gene expression of several redox balance enzymes on adult male Wistar rats subcutaneous (SAT) and perirenal adipose tissue (PRAT) and the possible preventive role of melatonin. Three experimental groups were established: control, high fat diet (HFD) and HFD plus 25 μg/mL melatonin in tap water. After 11 weeks, animals were sacrificed at 09:00 a.m. and 01:00 a.m. and PRAT and SAT were collected for selected redox enzymes qRT-PCR. Differential expression of redox enzyme genes, except for SODMn, GPx and catalase, was observed in the control group as a function of fat depot. HFD causes the disappearance of the temporal changes in the expression of the genes studied in the two fat depots analyzed. PRAT seems to be more sensitive than SAT to increased oxidative stress induced by obesity. Melatonin combined with a HFD intake, partially prevents the effects of the HFD on the gene expression of the redox enzymes. According to our results, melatonin selectively prevents changes in the relative gene expression of redox enzymes in PRAT and SAT of animals fed an HFD.
Collapse
Affiliation(s)
- Pilar Fernández-Mateos
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Cellular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Correspondence: (P.F.-M.); (A.I.E.); Tel.: +34-913947256 (P.F.-M.); +34-913947189 (A.I.E.)
| | - Pilar Cano-Barquilla
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Vanesa Jiménez-Ortega
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Leire Virto
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, Complutense University, 28037 Madrid, Spain
| | - Juliana Pérez-Miguelsanz
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
| | - Ana I. Esquifino
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28003 Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, 28040 Madrid, Spain
- Correspondence: (P.F.-M.); (A.I.E.); Tel.: +34-913947256 (P.F.-M.); +34-913947189 (A.I.E.)
| |
Collapse
|
10
|
Taner N, Haskologlu IC, Erdag E, Mercan M, Chuckwunyere U, Ulker D, Sehirli AO, Abacioglu N. Chronobiological Efficacy of Combined Therapy of Pelargonium Sidoides and Melatonin in Acute and Persistent Cases of COVID-19: A Hypothetical Approach. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1412:427-442. [PMID: 37378781 DOI: 10.1007/978-3-031-28012-2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Since the outbreak of the first SARS-CoV-2 epidemic in China, pharmacists have rapidly engaged and developed strategies for pharmaceutical care and supply. According to the guidelines of the International Pharmaceutical Federation (FIP), clinical pharmacists/hospital pharmacists, as members of care teams, play one of the most important roles in the pharmaceutical care of patients with COVID-19. During this pandemic, many immuno-enhancing adjuvant agents have become critical in addition to antivirals and vaccines in order to overcome the disease more easily. The liquid extract obtained from the Pelargonium sidoides plant is used for many indications such as colds, coughs, upper respiratory tract infections, sore throat, and acute bronchitis. The extract obtained from the roots of the plant has been observed to have antiviral and immunomodulatory activity. In addition to its anti-inflammatory and antioxidant effects, melatonin plays a role in suppressing the cytokine storm that can develop during COVID-19 infection. Knowing that the severity and duration of COVID-19 symptoms vary within 24 hours and/or in different time periods indicates that COVID-19 requires a chronotherapeutic approach. Our goal in the management of acute and long COVID is to synchronize the medication regimen with the patient's biological rhythm. This chapter provides a comprehensive review of the existing and emerging literature on the chronobiological use of Pelargonium sidoides and melatonin during acute and prolonged COVID-19 episodes.
Collapse
Affiliation(s)
- Neda Taner
- Istanbul Medipol University, School of Pharmacy, Department of Clinical Pharmacy, Istanbul, Turkey
| | - Ismail Celil Haskologlu
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Emine Erdag
- Near East University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Nicosia, Mersin 10, Turkey
| | - Merve Mercan
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Ugochukwu Chuckwunyere
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Damla Ulker
- Near East University, Faculty of Pharmacy, Department of Basic Pharmaceutical Sciences, Nicosia, Mersin 10, Turkey
| | - Ahmet Ozer Sehirli
- Near East University, Faculty of Dentistry, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| | - Nurettin Abacioglu
- Near East University, Faculty of Pharmacy, Department of Pharmacology, Nicosia, Mersin 10, Turkey
| |
Collapse
|
11
|
Albreiki MS, Shamlan GH, BaHammam AS, Alruwaili NW, Middleton B, Hampton SM. Acute impact of light at night and exogenous melatonin on subjective appetite and plasma leptin. Front Nutr 2022; 9:1079453. [PMID: 36562040 PMCID: PMC9763572 DOI: 10.3389/fnut.2022.1079453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
This study investigates the possible effect of exogenous melatonin on appetite control by investigating plasma leptin and subjective appetite parameters. Nine healthy male participants [26 ± 1.3 years, body mass index (BMI) 24.8 ± 0.8 kg/m2] (mean ± SD) were recruited. The study was designed as a randomized three-way cross-over design; light (>500 lux) (LS), dark (<5 lux) + exogenous melatonin (DSC), and light (>500 lux) + exogenous melatonin (LSC), with an interval of at least 7 days between each session. Each session started at 18:00 h and ended at 06:00 h the following day. Participants were awake and in a semi-recumbent position during each clinical session. The meal times were individualized according to melatonin onset from 48 h sequential urine collection, whereas melatonin intake was given 90 min before the evening meal. Subjective appetite parameters were collected at 30 min intervals during each session. Plasma leptin was collected at specific time points to analyze pre-prandial and postprandial leptin. Subjective hunger and desire to eat were reported higher in LS than DSC and LSC (P = 0.03, and P = 0.001). Plasma leptin showed a significant increase in LSC and DSC (p = 0.007). This study suggested a positive impact of exogenous melatonin on subjective appetite and plasma leptin.
Collapse
Affiliation(s)
- Mohammed S. Albreiki
- Center for Biotechnology, Khalifa University, Abu Dhabi, United Arab Emirates,Centre for Chronobiology, Faculty of Health and Medical Sciences, School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom,*Correspondence: Mohammed S. Albreiki,
| | - Ghalia H. Shamlan
- Department of Human Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia,Ghalia H. Shamlan,
| | - Ahmed S. BaHammam
- National Plan for Science and Technology, College of Medicine, King Saud University, Riyadh, Saudi Arabia,The University Sleep Disorders Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W. Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Benita Middleton
- Centre for Chronobiology, Faculty of Health and Medical Sciences, School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom
| | - Shelagh M. Hampton
- Centre for Chronobiology, Faculty of Health and Medical Sciences, School of Bioscience and Medicine, University of Surrey, Guildford, United Kingdom,Shelagh M. Hampton,
| |
Collapse
|
12
|
Ouyang J, Peng Y, Gong Y. New Perspectives on Sleep Regulation by Tea: Harmonizing Pathological Sleep and Energy Balance under Stress. Foods 2022; 11:3930. [PMID: 36496738 PMCID: PMC9738644 DOI: 10.3390/foods11233930] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 12/09/2022] Open
Abstract
Sleep, a conservative evolutionary behavior of organisms to adapt to changes in the external environment, is divided into natural sleep, in a healthy state, and sickness sleep, which occurs in stressful environments or during illness. Sickness sleep plays an important role in maintaining energy homeostasis under an injury and promoting physical recovery. Tea, a popular phytochemical-rich beverage, has multiple health benefits, including lowering stress and regulating energy metabolism and natural sleep. However, the role of tea in regulating sickness sleep has received little attention. The mechanism underlying tea regulation of sickness sleep and its association with the maintenance of energy homeostasis in injured organisms remains to be elucidated. This review examines the current research on the effect of tea on sleep regulation, focusing on the function of tea in modulating energy homeostasis through sickness sleep, energy metabolism, and damage repair in model organisms. The potential mechanisms underlying tea in regulating sickness sleep are further suggested. Based on the biohomology of sleep regulation, this review provides novel insights into the role of tea in sleep regulation and a new perspective on the potential role of tea in restoring homeostasis from diseases.
Collapse
Affiliation(s)
- Jin Ouyang
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| | - Yuxuan Peng
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
- College of Physical Education, Hunan City University, Yiyang 413002, China
| | - Yushun Gong
- Key Laboratory of Tea Science of Ministry of Education, Changsha 410128, China
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops, Ministry of Agriculture and Rural Affairs of China, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
13
|
Chrononutrition-When We Eat Is of the Essence in Tackling Obesity. Nutrients 2022; 14:nu14235080. [PMID: 36501110 PMCID: PMC9739590 DOI: 10.3390/nu14235080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity is a chronic and relapsing public health problem with an extensive list of associated comorbidities. The worldwide prevalence of obesity has nearly tripled over the last five decades and continues to pose a serious threat to wider society and the wellbeing of future generations. The pathogenesis of obesity is complex but diet plays a key role in the onset and progression of the disease. The human diet has changed drastically across the globe, with an estimate that approximately 72% of the calories consumed today come from foods that were not part of our ancestral diets and are not compatible with our metabolism. Additionally, multiple nutrient-independent factors, e.g., cost, accessibility, behaviours, culture, education, work commitments, knowledge and societal set-up, influence our food choices and eating patterns. Much research has been focused on 'what to eat' or 'how much to eat' to reduce the obesity burden, but increasingly evidence indicates that 'when to eat' is fundamental to human metabolism. Aligning feeding patterns to the 24-h circadian clock that regulates a wide range of physiological and behavioural processes has multiple health-promoting effects with anti-obesity being a major part. This article explores the current understanding of the interactions between the body clocks, bioactive dietary components and the less appreciated role of meal timings in energy homeostasis and obesity.
Collapse
|
14
|
Farhadi Z, Azizian H, Haji-Seyed-Javadi R, Khaksari M. A review: Effects of estrogen and estrogen receptor modulators on leptin resistance: Mechanisms and pathway. OBESITY MEDICINE 2022; 34:100446. [DOI: 10.1016/j.obmed.2022.100446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
|
15
|
Song TF, Chu CH, Nien JT, Li RH, Wang HY, Chen AG, Chang YC, Yang KT, Chang YK. The Association of Obesity and Cardiorespiratory Fitness in Relation to Cognitive Flexibility: An Event-Related Potential Study. Front Hum Neurosci 2022; 16:862801. [PMID: 35615745 PMCID: PMC9124940 DOI: 10.3389/fnhum.2022.862801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
This study investigates an association between obesity and cardiorespiratory fitness concerning their potential effects on cognitive flexibility in young adults from behavioral and neuroelectrical perspectives. Eligible young adults (N = 140, 18-25 years) were assigned into one of four groups, according to their status of obesity (i.e., body mass index) and cardiorespiratory fitness levels (i.e., estimated maximal oxygen uptake), namely, normal weight with high cardiorespiratory fitness (NH), obese with high cardiorespiratory fitness (OH), normal weight with low cardiorespiratory fitness (NL), and obese with low cardiorespiratory fitness (OL). The task-switching test was utilized, and its induced endogenous (P3) and exogenous (N1) event-related potential components were recorded. Concerning behavioral indices, the NH demonstrated superior behavioral performance across global switching and local switching of the task-switching test compared to individuals with lower cardiorespiratory fitness and obesity (i.e., NL, OH, and OL). Additionally, the OH demonstrated better performance than the OL during the heterogeneous condition. For neuroelectrical indices, the NH had larger mean P3 amplitudes during global and local switching than the other three groups. A larger N1 amplitude was also observed in the NH during local switching than in the OH group. The findings suggest that cardiorespiratory fitness has beneficial effects on cognitive flexibility, attentional resource allocation, and sensory evaluation in young adults. Furthermore, our research provided novel evidence showing that cardiorespiratory fitness might potentially alleviate the adverse effects of obesity on cognitive flexibility in young adults.
Collapse
Affiliation(s)
- Tai-Fen Song
- Department of Sport Performance, National Taiwan University of Sport, Taichung, Taiwan
| | - Chien-Heng Chu
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Jui-Ti Nien
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Ruei-Hong Li
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
| | - Hsin-Yi Wang
- Center of Physical Education, Tzu Chi University, Hualien, Taiwan
| | - Ai-Guo Chen
- College of Physical Education, Yangzhou University, Yangzhou, China
| | - Yi-Chieh Chang
- Physical Education Center, Chung Shan Medical University, Taichung, Taiwan
| | - Kao-Teng Yang
- Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan
| | - Yu-Kai Chang
- Department of Physical Education and Sport Sciences, National Taiwan Normal University, Taipei, Taiwan
- Institute for Research Excellence in Learning Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
16
|
Arjunan A, Sah DK, Jung YD, Song J. Hepatic Encephalopathy and Melatonin. Antioxidants (Basel) 2022; 11:antiox11050837. [PMID: 35624703 PMCID: PMC9137547 DOI: 10.3390/antiox11050837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/06/2022] [Accepted: 04/24/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatic encephalopathy (HE) is a severe metabolic syndrome linked with acute/chronic hepatic disorders. HE is also a pernicious neuropsychiatric complication associated with cognitive decline, coma, and death. Limited therapies are available to treat HE, which is formidable to oversee in the clinic. Thus, determining a novel therapeutic approach is essential. The pathogenesis of HE has not been well established. According to various scientific reports, neuropathological symptoms arise due to excessive accumulation of ammonia, which is transported to the brain via the blood–brain barrier (BBB), triggering oxidative stress and inflammation, and disturbing neuronal-glial functions. The treatment of HE involves eliminating hyperammonemia by enhancing the ammonia scavenging mechanism in systemic blood circulation. Melatonin is the sole endogenous hormone linked with HE. Melatonin as a neurohormone is a potent antioxidant that is primarily synthesized and released by the brain’s pineal gland. Several HE and liver cirrhosis clinical studies have demonstrated impaired synthesis, secretion of melatonin, and circadian patterns. Melatonin can cross the BBB and is involved in various neuroprotective actions on the HE brain. Hence, we aim to elucidate how HE impairs brain functions, and elucidate the precise molecular mechanism of melatonin that reverses the HE effects on the central nervous system.
Collapse
Affiliation(s)
- Archana Arjunan
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Dhiraj Kumar Sah
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Korea;
- Correspondence: (Y.D.J.); (J.S.); Tel.: +82-61-379-2706 (J.S.)
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea;
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, 264 Seoyangro, Hwasun 58128, Korea
- Correspondence: (Y.D.J.); (J.S.); Tel.: +82-61-379-2706 (J.S.)
| |
Collapse
|
17
|
Suriagandhi V, Nachiappan V. Therapeutic Target Analysis and Molecular Mechanism of Melatonin - Treated Leptin Resistance Induced Obesity: A Systematic Study of Network Pharmacology. Front Endocrinol (Lausanne) 2022; 13:927576. [PMID: 35937803 PMCID: PMC9352999 DOI: 10.3389/fendo.2022.927576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Obesity is a medical problem with an increased risk for other metabolic disorders like diabetes, heart problem, arthritis, etc. Leptin is an adipose tissue-derived hormone responsible for food intake, energy expenditure, etc., and leptin resistance is one of the significant causes of obesity. Excess leptin secretion by poor diet habits and impaired hypothalamic leptin signaling leads to LR. Melatonin a sleep hormone; also possess antioxidant and anti-inflammatory properties. The melatonin can attenuate the complications of obesity by regulating its targets towards LR induced obesity. AIM The aim of this study includes molecular pathway and network analysis by using a systems pharmacology approach to identify a potential therapeutic mechanism of melatonin on leptin resistance-induced obesity. METHODS The bioinformatic methods are used to find therapeutic targets of melatonin in the treatment of leptin resistance-induced obesity. It includes target gene identification using public databases, Gene ontology, and KEGG pathway enrichment by 'ClusterProfiler' using the R language, network analysis by Cytoscape, and molecular Docking by Autodock. RESULTS We obtained the common top 33 potential therapeutic targets of melatonin and LR-induced obesity from the total melatonin targets 254 and common LR obesity targets 212 using the data screening method. They are involved in biological processes related to sleep and obesity, including the cellular response to external stimulus, chemical stress, and autophagy. From a total of 180 enriched pathways, we took the top ten pathways for further analysis, including lipid and atherosclerosis, endocrine, and AGE-RAGE signaling pathway in diabetic complications. The top 10 pathways interacted with the common 33 genes and created two functional modules. Using Cytoscape network analysis, the top ten hub genes (TP53, AKT1, MAPK3, PTGS2, TNF, IL6, MAPK1, ERBB2, IL1B, MTOR) were identified by the MCC algorithm of the CytoHubba plugin. From a wide range of pathway classes, melatonin can reduce LR-induced obesity risks by regulating the major six classes. It includes signal transduction, endocrine system, endocrine and metabolic disease, environmental adaptation, drug resistance antineoplastic, and cardiovascular disease. CONCLUSION The pharmacological mechanism of action in this study shows the ten therapeutic targets of melatonin in LR-induced obesity.
Collapse
|
18
|
Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 2021; 23:ijms23010218. [PMID: 35008644 PMCID: PMC8745381 DOI: 10.3390/ijms23010218] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.
Collapse
|