1
|
Wang X, Ju J, Xie Y, Hang L. Emerging roles of the G-protein-coupled receptor 37 in neurological diseases and pain. Neuroscience 2024; 559:199-208. [PMID: 39244010 DOI: 10.1016/j.neuroscience.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/11/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Neurological disorders and pain are prevalent clinical issues that severely impact patients' quality of life and daily functioning. With the advancing exploration of these disease mechanisms, G protein-coupled receptor 37 (GPR37) has emerged as a critical protein, garnering widespread attention in the scientific community. As a member of the G protein-coupled receptor family, GPR37 features a seven-transmembrane helix structure and is widely expressed in various brain regions, including the substantia nigra and striatum. In addition to neurons, GPR37 is also detected in immune cells within the nervous system, indicating its potential role in neuron-immune cell interactions. Research has shown that the expression level of GPR37 in neurological disorders can affect neuron survival, cellular signaling, and overall neurological health. Abnormal expression of GPR37 is often associated with disease progression and symptom exacerbation in neurological disorders such as Parkinson's disease and stroke. In the context of pain, GPR37 alleviates pain and inflammatory responses by regulating the phagocytic activity and polarization state of macrophages. This article aims to delve into the mechanistic roles of GPR37 in neurological disorders and pain. Through a comprehensive literature review, we summarize the latest research on GPR37's involvement in neurological diseases and pain, highlighting its critical roles in neural signaling, inflammatory responses, and neuroprotection. This understanding expands the comprehension of GPR37's biological functions and provides new perspectives for improving the clinical outcomes of patients with neurological disorders and pain.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, China.
| | - Jiajun Ju
- Gusu College, Nanjing Medical University, Department of Anesthesiology, The First People's Hospital of Kunshan, Suzhou 215300, China.
| | - Yafei Xie
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, China.
| | - Lihua Hang
- Department of Anesthesiology, Kunshan Hospital Affiliated to Jiangsu University, Suzhou, 215300, China.
| |
Collapse
|
2
|
Mitchell JR, Vincelette L, Tuberman S, Sheppard V, Bergeron E, Calitri R, Clark R, Cody C, Kannan A, Keith J, Parakoyi A, Pikus M, Vance V, Ziane L, Brenhouse H, Laine MA, Shansky RM. Behavioral and neural correlates of diverse conditioned fear responses in male and female rats. Neurobiol Stress 2024; 33:100675. [PMID: 39391589 PMCID: PMC11465128 DOI: 10.1016/j.ynstr.2024.100675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Pavlovian fear conditioning is a widely used tool that models associative learning in rodents. For decades the field has used predominantly male rodents and focused on a sole conditioned fear response: freezing. However, recent work from our lab and others has identified darting as a female-biased conditioned response, characterized by an escape-like movement across a fear conditioning chamber. It is also accompanied by a behavioral phenotype: Darters reliably show decreased freezing compared to Non-darters and males and reach higher velocities in response to the foot shock ("shock response"). However, the relationship between shock response and conditioned darting is not known. This study investigated if this link is due to differences in general processing of aversive stimuli between Darters, Non-darters and males. Across a variety of modalities, including corticosterone measures, the acoustic startle test, and sensitivity to thermal pain, Darters were found not to be more reactive or sensitive to aversive stimuli, and, in some cases, they appear less reactive to Non-darters and males. Analyses of cFos activity in regions involved in pain and fear processing following fear conditioning identified discrete patterns of expression among Darters, Non-darters, and males exposed to low and high intensity foot shocks. The results from these studies further our understanding of the differences between Darters, Non-darters and males and highlight the importance of studying individual differences in fear conditioning as indicators of fear state.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rose Clark
- Northeastern University, Boston, MA, USA
| | | | | | - Jack Keith
- Northeastern University, Boston, MA, USA
| | | | | | | | | | | | - Mikaela A. Laine
- Northeastern University, Boston, MA, USA
- Smith College, Northampton, MA, USA
| | | |
Collapse
|
3
|
Mitchell JR, Vincelette L, Tuberman S, Sheppard V, Bergeron E, Calitri R, Clark R, Cody C, Kannan A, Keith J, Parakoyi A, Pikus M, Vance V, Ziane L, Brenhouse H, Laine MA, Shansky RM. Behavioral and neural correlates of diverse conditioned fear responses in male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608817. [PMID: 39229164 PMCID: PMC11370446 DOI: 10.1101/2024.08.20.608817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Pavlovian fear conditioning is a widely used tool that models associative learning in rodents. For decades the field has used predominantly male rodents and focused on a sole conditioned fear response: freezing. However, recent work from our lab and others has identified darting as a female-biased conditioned response, characterized by an escape-like movement across a fear conditioning chamber. It is also accompanied by a behavioral phenotype: Darters reliably show decreased freezing compared to Non-darters and males and reach higher velocities in response to the foot shock ("shock response"). However, the relationship between shock response and conditioned darting is not known. This study investigated if this link is due to differences in general processing of aversive stimuli between Darters, Non-darters and males. Across a variety of modalities, including corticosterone measures, the acoustic startle test, and sensitivity to thermal pain, Darters were found not to be more reactive or sensitive to aversive stimuli, and, in some cases, they appear less reactive to Non-darters and males. Analyses of cFos activity in regions involved in pain and fear processing following fear conditioning identified discrete patterns of expression among Darters, Non-darters, and males exposed to low and high intensity foot shocks. The results from these studies further our understanding of the differences between Darters, Non-darters and males and highlight the importance of studying individual differences in fear conditioning as indicators of fear state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mikaela A. Laine
- Northeastern University, Boston, MA
- Smith College, Northampton, MA
| | | |
Collapse
|
4
|
Zhou X, Zhang YC, Lu KQ, Xiao R, Tang WC, Wang F. The Role of p38 Mitogen-Activated Protein Kinase-Mediated F-Actin in the Acupuncture-Induced Mitigation of Inflammatory Pain in Arthritic Rats. Brain Sci 2024; 14:380. [PMID: 38672029 PMCID: PMC11048453 DOI: 10.3390/brainsci14040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The analgesic efficacy of acupuncture has been widely recognized. However, the mechanism by which manual acupuncture-generated mechanical stimuli translate into biological signals remains unclear. This study employed a CFA-induced inflammatory pain rat model. Acupuncture intervention was then performed following standardized procedures. Enzyme-linked immunosorbent assay (ELISA) assessed inflammatory cytokines levels, while immunofluorescence and qRT-PCR screened the level of p38 and F-actin expression in the ST36 acupoint area of rats. Results indicated increased inflammatory factors, including IL-1β and TNFα, with reduced paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) in CFA rats compared to unmodeled rats. After acupuncture intervention, the heightened expression level of F-actin and p38 mRNA and the phosphorylation of p38 in the acupoint area was observed alongside decreased inflammatory factors in diseased ankle joints. The application of lifting and thrusting manipulations further enhanced the effect of acupuncture, in which the molecular expression level of muscle and connective tissue increased most significantly, indicating that these two tissues play a major role in the transformation of acupuncture stimulation. Moreover, antagonizing p38 expression hindered acupuncture efficacy, supporting the hypothesis that p38 MAPK-mediated F-actin transduces mechanical signals generated by acupuncture and related manipulation into biological signals.
Collapse
Affiliation(s)
| | | | | | | | | | - Fan Wang
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.Z.); (Y.-C.Z.); (K.-Q.L.); (R.X.); (W.-C.T.)
| |
Collapse
|
5
|
Buzza A, Tapas K, Zhuo J, Anders JJ, Lewis SJ, Jenkins MW, Moffitt M. Selective neural inhibition via photobiomodulation alleviates behavioral hypersensitivity associated with small sensory fiber activation. Lasers Surg Med 2024; 56:305-314. [PMID: 38291819 PMCID: PMC10954407 DOI: 10.1002/lsm.23762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/16/2023] [Accepted: 01/13/2024] [Indexed: 02/01/2024]
Abstract
OBJECTIVE Photobiomodulation at higher irradiances has great potential as a pain-alleviating method that selectively inhibits small diameter nerve fibers and corresponding sensory experiences, such as nociception and heat sensation. The longevity and magnitude of these effects as a function of laser irradiation parameters at the nerve was explored. METHODS In a rodent chronic pain model (spared nerve injury-SNI), light was applied directly at the sural nerve with four delivery schemes: two irradiance levels (7.64 and 2.55 W/cm2 ) for two durations each, corresponding to either 4.8 or 14.4 J total energy, and the effect on sensory hypersensitivities was evaluated. RESULTS At emitter irradiances of 7.64 W/cm2 (for 240 s), 2.55 W/cm2 (for 720 s), and 7.64 W/cm2 (for 80 s) the heat hypersensitivity was relieved the day following photobiomodulation (PBM) treatment by 37 ± 8.1% (statistically significant, p < 0.001), 26% ± 6% (p = 0.072), and 28 ± 6.1% (statistically significant, p = 0.032), respectively, and all three treatments reduced the hypersensitivity over the course of the experiment (13 days) at a statistically significant level (mixed-design analysis of variance, p < 0.05). The increases in tissue temperature (5.3 ± 1.0 and 1.3 ± 0.4°C from 33.3°C for the higher and lower power densities, respectively) at the neural target were well below those typically associated with permanent action potential disruption. CONCLUSIONS The data from this study support the use of direct PBM on nerves of interest to reduce sensitivities associated with small-diameter fiber activity.
Collapse
Affiliation(s)
- Andrew Buzza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kalista Tapas
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Junqi Zhuo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Juanita J Anders
- Department of Anatomy, Physiology, and Genetics, Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephen J Lewis
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael W Jenkins
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michael Moffitt
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Arantes ALF, Carvalho MC, Brandão ML, Prado WA, Crippa JADS, Lovick TA, Genaro K. Antinociceptive action of cannabidiol on thermal sensitivity and post-operative pain in male and female rats. Behav Brain Res 2024; 459:114793. [PMID: 38048909 DOI: 10.1016/j.bbr.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
This study investigated the antinociceptive potential of cannabidiol (CBD) in male and female Wistar rats. The assessment and analysis included tail withdrawal to thermal stimulation (tail flick test) and mechanical allodynia induced by plantar incision injury (von Frey test). CBD reduced acute thermal sensitivity in uninjured animals and post-operative mechanical allodynia in males and females. In the tail flick test, CBD 30 mg/kg i.p. was required to induce antinociception in males. During the proestrus phase, females did not show a statistically significant antinociceptive response to CBD treatment despite a noticeable trend. In contrast, in a separate group of rats tested during the late diestrus phase, antinociception varied with CBD dosage and time. In the post-operative pain model, CBD at 3 mg/kg decreased mechanical allodynia in males. Similarly, this dose reduced allodynia in females during proestrus. However, in females during late diestrus, the lower dose of CBD (0.3 mg/kg) reduced mechanical allodynia, although the latency to onset of the effect was slower (90 min). The effectiveness of a 10-fold lower dose of CBD during the late diestrus stage in females suggests that ovarian hormones can influence the action of CBD. While CBD has potential for alleviating pain in humans, personalized dosing regimens may need to be developed to treat pain in women.
Collapse
Affiliation(s)
- Ana Luisa Ferreira Arantes
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Milene Cristina Carvalho
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, SP 14040-900, Brazil; Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Marcus Lira Brandão
- Institute of Neurosciences and Behavior and Laboratory of Neuropsychopharmacology of Faculty of Philosophy, Sciences and Letters of University of São Paulo, Ribeirao Preto, SP 14040-900, Brazil
| | - Wiliam Alves Prado
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, SP 14040-900, Brazil
| | - José Alexandre de Souza Crippa
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, SP 14040-900, Brazil; National Institute of Science and Technology for Translational Medicine, Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (INCT-TM, CNPq), Brasília, DF 71605-001, Brazil
| | - Thelma Anderson Lovick
- Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Karina Genaro
- Department of Anesthesiology, School of Medicine, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
7
|
Karimi SA, Zahra FT, Martin LJ. IUPHAR review: Navigating the role of preclinical models in pain research. Pharmacol Res 2024; 200:107073. [PMID: 38232910 DOI: 10.1016/j.phrs.2024.107073] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
Chronic pain is a complex and challenging medical condition that affects millions of people worldwide. Understanding the underlying mechanisms of chronic pain is a key goal of preclinical pain research so that more effective treatment strategies can be developed. In this review, we explore nociception, pain, and the multifaceted factors that lead to chronic pain by focusing on preclinical models. We provide a detailed look into inflammatory and neuropathic pain models and discuss the most used animal models for studying the mechanisms behind these conditions. Additionally, we emphasize the vital role of these preclinical models in developing new pain-relief drugs, focusing on biologics and the therapeutic potential of NMDA and cannabinoid receptor antagonists. We also discuss the challenges of TRPV1 modulation for pain treatment, the clinical failures of neurokinin (NK)- 1 receptor antagonists, and the partial success story of Ziconotide to provide valuable lessons for preclinical pain models. Finally, we highlight the overall success and limitations of current treatments for chronic pain while providing critical insights into the development of more effective therapies to alleviate the burden of chronic pain.
Collapse
Affiliation(s)
- Seyed Asaad Karimi
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Fatama Tuz Zahra
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada.
| |
Collapse
|
8
|
Modi AD, Parekh A, Patel ZH. Methods for evaluating gait associated dynamic balance and coordination in rodents. Behav Brain Res 2024; 456:114695. [PMID: 37783346 DOI: 10.1016/j.bbr.2023.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/04/2023]
Abstract
Balance is the dynamic and unconscious control of the body's centre of mass to maintain postural equilibrium. Regulated by the vestibular system, head movement and acceleration are processed by the brain to adjust joints. Several conditions result in a loss of balance, including Alzheimer's Disease, Parkinson's Disease, Menière's Disease and cervical spondylosis, all of which are caused by damage to certain parts of the vestibular pathways. Studies about the impairment of the vestibular system are challenging to carry out in human trials due to smaller study sizes limiting applications of the results and a lacking understanding of the human balance control mechanism. In contrast, more controlled research can be performed in animal studies which have fewer confounding factors than human models and allow specific conditions that affect balance to be replicated. Balance control can be studied using rodent balance-related behavioural tests after spinal or brain lesions, such as the Basso, Beattie and Bresnahan (BBB) Locomotor Scale, Foot Fault Scoring System, Ledged Beam Test, Beam Walking Test, and Ladder Beam Test, which are discussed in this review article along with their advantages and disadvantages. These tests can be performed in preclinical rodent models of femoral nerve injury, stroke, spinal cord injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Akshat D Modi
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Genetics and Development, Krembil Research Institute, Toronto, Ontario M5T 0S8, Canada.
| | - Anavi Parekh
- Department of Neuroscience, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Zeenal H Patel
- Department of Biological Sciences, University of Toronto, Scarborough, Ontario M1C 1A4, Canada; Department of Biochemistry, University of Toronto, Scarborough, Ontario M1C 1A4, Canada
| |
Collapse
|
9
|
Centeno MV, Alam MS, Haldar K, Apkarian AV. Long-range action of an HDAC inhibitor treats chronic pain in a spared nerve injury rat model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571583. [PMID: 38168166 PMCID: PMC10760082 DOI: 10.1101/2023.12.13.571583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Histone deacetylase inhibitors (HDACi) that modulate epigenetic regulation and are approved for treating rare cancers have, in disease models, also been shown to mitigate neurological conditions, including chronic pain. They are of interest as non-opioid treatments, but achieving long-term efficacy with limited dosing has remained elusive. Here we utilize a triple combination formulation (TCF) comprised of a pan-HDACi vorinostat (Vo at its FDA-approved daily dose of 50mg/Kg), the caging agent 2-hydroxypropyl-β-cyclodextrin (HPBCD) and polyethylene glycol (PEG) known to boost plasma and brain exposure and efficacy of Vo in mice and rats, of various ages, spared nerve injury (SNI) model of chronic neuropathic pain. Administration of the TCF (but not HPBCD and PEG) decreased mechanical allodynia for 4 weeks without antagonizing weight, anxiety, or mobility. This was achieved at less than 1% of the total dose of Vo approved for 4 weeks of tumor treatment and associated with decreased levels of major inflammatory markers and microglia in ipsilateral (but not contralateral) spinal cord regions. A single TCF injection was sufficient for 3-4 weeks of efficacy: this was mirrored in repeat injections, specific for the injured paw and not seen on sham treatment. Pharmacodynamics in an SNI mouse model suggested pain relief was sustained for days to weeks after Vo elimination. Doubling Vo in a single TCF injection proved effectiveness was limited to male rats, where the response amplitude tripled and remained effective for > 2 months, an efficacy that outperforms all currently available chronic pain pharmacotherapies. Together, these data suggest that through pharmacological modulation of Vo, the TCF enables single-dose effectiveness with extended action, reduces long-term HDACi dosage, and presents excellent potential to develop as a non-opioid treatment option for chronic pain.
Collapse
Affiliation(s)
- Maria Virginia Centeno
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Md Suhail Alam
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana 46556
| | - Kasturi Haldar
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana 46556
| | - Apkar Vania Apkarian
- Center for Translational Pain Research, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
- Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
10
|
Katic L, Priscan A. Multifaceted Roles of ALK Family Receptors and Augmentor Ligands in Health and Disease: A Comprehensive Review. Biomolecules 2023; 13:1490. [PMID: 37892172 PMCID: PMC10605310 DOI: 10.3390/biom13101490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
This review commemorates the 10-year anniversary of the discovery of physiological ligands Augα (Augmentor α; ALKAL2; Fam150b) and Augβ (Augmentor β; ALKAL1; Fam150a) for anaplastic lymphoma kinase (ALK) and leukocyte tyrosine kinase (LTK), previously considered orphan receptors. This manuscript provides an in-depth review of the biophysical and cellular properties of ALK family receptors and their roles in cancer, metabolism, pain, ophthalmology, pigmentation, central nervous system (CNS) function, and reproduction. ALK and LTK receptors are implicated in the development of numerous cancers, and targeted inhibition of their signaling pathways can offer therapeutic benefits. Additionally, ALK family receptors are involved in regulating body weight and metabolism, modulating pain signaling, and contributing to eye development and pigmentation. In the CNS, these receptors play a role in synapse modulation, neurogenesis, and various psychiatric pathologies. Lastly, ALK expression is linked to reproductive functions, with potential implications for patients undergoing ALK inhibitor therapy. Further research is needed to better understand the complex interactions of ALK family receptors and Aug ligands and to repurpose targeted therapy for a wide range of human diseases.
Collapse
Affiliation(s)
- Luka Katic
- Department of Medicine, Icahn School of Medicine at Mount Sinai Morningside/West, 1000 Tenth Avenue, New York, NY 10019, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Anamarija Priscan
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA;
| |
Collapse
|