1
|
Chitre TS, Mandot AM, Bhagwat RD, Londhe ND, Suryawanshi AR, Hirode PV, Bhatambrekar AL, Choudhari SY. 2,4,6-Trimethoxy chalcone derivatives: an integrated study for redesigning novel chemical entities as anticancer agents through QSAR, molecular docking, ADMET prediction, and computational simulation. J Biomol Struct Dyn 2024:1-24. [PMID: 38321946 DOI: 10.1080/07391102.2024.2309644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/18/2024] [Indexed: 02/08/2024]
Abstract
QSAR, an efficient and successful approach for optimizing lead compounds in drug design, was employed to study a reported series of compounds derived from 2,4,6-trimethoxy chalcone derivatives. The ability of these compounds to inhibit CDK1 was examined, with the help of QSARINS software for model development. The generated QSAR model revealed three significant descriptors, exhibiting strong correlations with impressive statistical values: cross-validation leave-one-out correlation coefficient (Q2LOO) = 0.6663, coefficient of determination (R2) = 0.7863, external validation coefficient (R2ext) = 0.7854, cross-validation leave-many-out correlation coefficient (Q2LMO) = 0.6256, Concordance Correlation Coefficient for cross-validation (CCCcv) = 0.8150, CCCtr = 0.8804, and CCCext = 0.8750. From the key structural findings and the insights gained from the descriptors, ETA_dPsi_A, WTPT-5, and GATS7s, new lead molecules were designed. The designed molecules were then evaluated for their CDK1 inhibitory activity using the three-descriptor model developed in this study. To evaluate their drug likeliness, in-silico ADMET predictions were made using Schrodinger's Software. Molecular docking was carried out to determine the interactions of designed compounds with the target protein. The designed compounds having excellent binding pocket molecular stability and anticancer effectiveness was substantiated by the findings of the molecular dynamics simulation. The results of this work point out important properties and crucial interactions necessary for efficient protein inhibition, suggesting lead candidates for further development as novel anticancer agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Trupti S Chitre
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Aayush M Mandot
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Ramali D Bhagwat
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Nikhil D Londhe
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Atharva R Suryawanshi
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Purvaj V Hirode
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Aniket L Bhatambrekar
- Department of Pharmaceutical Chemistry, AISSMS College of Pharmacy, Pune, Maharashtra, India
| | - Somdutta Y Choudhari
- Department of Pharmaceutical Chemistry, Modern College of Pharmacy, Pune, Maharashtra, India
| |
Collapse
|
2
|
Liu R, Li W, Yao Y, Wu Y, Luo HB, Li Z. Accelerating and Automating the Free Energy Perturbation Absolute Binding Free Energy Calculation with the RED-E Function. J Chem Inf Model 2023; 63:7755-7767. [PMID: 38048439 DOI: 10.1021/acs.jcim.3c01670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The accurate prediction of the binding affinities between small molecules and biological macromolecules plays a fundamental role in structure-based drug design, which is still challenging. The free energy perturbation-based absolute binding free energy (FEP-ABFE) approach has shown potential in its reliability. To correctly calculate the energy related to the ligand being restrained by the receptor, additional restraints between the ligand and the receptor are needed. However, determining the restraint parameters for individual ligands empirically is too trivial to be automated, and usually gives rise to numerical instabilities, which set back the applications of FEP-ABFE. To address these issues, we derived the analytical expression for the probability distribution of energy differences, P(ΔU), during the process of restraint addition, which is called the RED-E (restraint energy distribution at equilibrium position) function. Simulations indicated that the RED-E function can accurately describe P(ΔU) when restraints are added at the equilibrium position. Based on the RED-E function, an automatic restraint selection method was proposed to select the best restraint. With this method, there is a high phase-space overlap between the free and restrained states, such that using a 2-λ perturbation can accurately calculate the free energy of the restraint addition, which is a nearly 6 times acceleration compared with current widely used 12-λ perturbation method. The RED-E function gives insight into the non-Gaussian behavior of the sampled P(ΔU) in certain FEP processes in an analytical way. The highly automated and accelerated restraint selection also makes it possible for the large-scale application of FEP-ABFE in real drug discovery practices.
Collapse
Affiliation(s)
- Runduo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenchao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufen Yao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinuo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Hai-Bin Luo
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan 570228, China
- Song Li' Academician Workstation of Hainan University (School of Pharmaceutical Sciences), Yazhou Bay, Sanya 572000, China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Schmitt DL, Dranchak P, Parajuli P, Blivis D, Voss T, Kohnhorst CL, Kyoung M, Inglese J, An S. High-throughput screening identifies cell cycle-associated signaling cascades that regulate a multienzyme glucosome assembly in human cells. PLoS One 2023; 18:e0289707. [PMID: 37540718 PMCID: PMC10403072 DOI: 10.1371/journal.pone.0289707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023] Open
Abstract
We have previously demonstrated that human liver-type phosphofructokinase 1 (PFK1) recruits other rate-determining enzymes in glucose metabolism to organize multienzyme metabolic assemblies, termed glucosomes, in human cells. However, it has remained largely elusive how glucosomes are reversibly assembled and disassembled to functionally regulate glucose metabolism and thus contribute to human cell biology. We developed a high-content quantitative high-throughput screening (qHTS) assay to identify regulatory mechanisms that control PFK1-mediated glucosome assemblies from stably transfected HeLa Tet-On cells. Initial qHTS with a library of pharmacologically active compounds directed following efforts to kinase-inhibitor enriched collections. Consequently, three compounds that were known to inhibit cyclin-dependent kinase 2, ribosomal protein S6 kinase and Aurora kinase A, respectively, were identified and further validated under high-resolution fluorescence single-cell microscopy. Subsequent knockdown studies using small-hairpin RNAs further confirmed an active role of Aurora kinase A on the formation of PFK1 assemblies in HeLa cells. Importantly, all the identified protein kinases here have been investigated as key signaling nodes of one specific cascade that controls cell cycle progression in human cells. Collectively, our qHTS approaches unravel a cell cycle-associated signaling network that regulates the formation of PFK1-mediated glucosome assembly in human cells.
Collapse
Affiliation(s)
- Danielle L. Schmitt
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Patricia Dranchak
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Prakash Parajuli
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Dvir Blivis
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Ty Voss
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
| | - Casey L. Kohnhorst
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| | - James Inglese
- National Institutes of Health, National Center for Advancing Translational Sciences, Rockville, Maryland, United States of America
- National Institutes of Health, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, United States of America
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States of America
| |
Collapse
|
4
|
Al-Sanea MM, Obaidullah AJ, Shaker ME, Chilingaryan G, Alanazi MM, Alsaif NA, Alkahtani HM, Alsubaie SA, Abdelgawad MA. A New CDK2 Inhibitor with 3-Hydrazonoindolin-2-One Scaffold Endowed with Anti-Breast Cancer Activity: Design, Synthesis, Biological Evaluation, and In Silico Insights. Molecules 2021; 26:molecules26020412. [PMID: 33466812 PMCID: PMC7830330 DOI: 10.3390/molecules26020412] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Background: Cyclin-dependent kinases (CDKs) regulate mammalian cell cycle progression and RNA transcription. Based on the structural analysis of previously reported CDK2 inhibitors, a new compound with 3-hydrazonoindolin-2-one scaffold (HI 5) was well designed, synthesized, and biologically evaluated as a promising anti-breast cancer hit compound. Methods: The potential anti-cancerous effect of HI 5 was evaluated using cytotoxicity assay, flow cytometric analysis of apoptosis and cell cycle distribution, ELISA immunoassay, in vitro CDK2/cyclin A2 activity, and molecular operating environment (MOE) virtual docking studies. Results: The results revealed that HI 5 exhibits pronounced CDK2 inhibitory activity and cytotoxicity in human breast cancer MCF-7 cell line. The cytotoxicity of HI 5 was found to be intrinsically mediated apoptosis, which in turn, is associated with low Bcl-2 expression and high activation of caspase 3 and p53. Besides, HI 5 blocked the proliferation of the MCF-7 cell line and arrested the cell cycle at the G2/M phase. The docking studies did not confirm which one of geometric isomers (syn and anti) is responsible for binding affinity and intrinsic activity of HI 5. However, the molecular dynamic studies have confirmed that the syn-isomer has more favorable binding interaction and thus is responsible for CDK2 inhibitory activity. Discussion: These findings displayed a substantial basis of synthesizing further derivatives based on the 3-hydrazonoindolin-2-one scaffold for favorable targeting of breast cancer.
Collapse
Affiliation(s)
- Mohammad M. Al-Sanea
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
- Correspondence: (M.M.A.-S.); (A.J.O.); Tel.: +966-594076460 (M.M.A.-S.)
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
- Correspondence: (M.M.A.-S.); (A.J.O.); Tel.: +966-594076460 (M.M.A.-S.)
| | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Garri Chilingaryan
- Institute of Biomedicine and Pharmacy, Russian-Armenian University, Yerevan 0051, Armenia;
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Sultan A. Alsubaie
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.M.A.); (N.A.A.); (H.M.A.); (S.A.A.)
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf Province, Saudi Arabia;
- Department of Pharmaceutical Organic Chemistry, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
5
|
Marak BN, Dowarah J, Khiangte L, Singh VP. A comprehensive insight on the recent development of Cyclic Dependent Kinase inhibitors as anticancer agents. Eur J Med Chem 2020; 203:112571. [DOI: 10.1016/j.ejmech.2020.112571] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
|
6
|
Abdeldayem A, Raouf YS, Constantinescu SN, Moriggl R, Gunning PT. Advances in covalent kinase inhibitors. Chem Soc Rev 2020; 49:2617-2687. [DOI: 10.1039/c9cs00720b] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This comprehensive review details recent advances, challenges and innovations in covalent kinase inhibition within a 10 year period (2007–2018).
Collapse
Affiliation(s)
- Ayah Abdeldayem
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | - Yasir S. Raouf
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| | | | - Richard Moriggl
- Institute of Animal Breeding and Genetics
- University of Veterinary Medicine
- 1210 Vienna
- Austria
| | - Patrick T. Gunning
- Department of Chemical & Physical Sciences
- University of Toronto
- Mississauga
- Canada
- Department of Chemistry
| |
Collapse
|
7
|
Jorda R, Hendrychová D, Voller J, Řezníčková E, Gucký T, Kryštof V. How Selective Are Pharmacological Inhibitors of Cell-Cycle-Regulating Cyclin-Dependent Kinases? J Med Chem 2018; 61:9105-9120. [PMID: 30234987 DOI: 10.1021/acs.jmedchem.8b00049] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclin-dependent kinases (CDKs) are an important and emerging class of drug targets for which many small-molecule inhibitors have been developed. However, there is often insufficient data available on the selectivity of CDK inhibitors (CDKi) to attribute the effects on the presumed target CDK to these inhibitors. Here, we highlight discrepancies between the kinase selectivity of CDKi and the phenotype exhibited; we evaluated 31 CDKi (claimed to target CDK1-4) for activity toward CDKs 1, 2, 4, 5, 7, 9 and for effects on the cell cycle. Our results suggest that most CDKi should be reclassified as pan-selective and should not be used as a tool. In addition, some compounds did not even inhibit CDKs as their primary cellular targets; for example, NU6140 showed potent inhibition of Aurora kinases. We also established an online database of commercially available CDKi for critical evaluation of their utility as molecular probes. Our results should help researchers select the most relevant chemical tools for their specific applications.
Collapse
Affiliation(s)
- Radek Jorda
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Denisa Hendrychová
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Jiří Voller
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Eva Řezníčková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Tomáš Gucký
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research , Palacký University and Institute of Experimental Botany ASCR , Šlechtitelů 27 , 78371 Olomouc , Czech Republic
| |
Collapse
|
8
|
SU9516 Increases α7β1 Integrin and Ameliorates Disease Progression in the mdx Mouse Model of Duchenne Muscular Dystrophy. Mol Ther 2017; 25:1395-1407. [PMID: 28391962 DOI: 10.1016/j.ymthe.2017.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 01/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7β1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7β1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7β1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD.
Collapse
|
9
|
Isatin inhibits the proliferation and invasion of SH-SY5Y neuroblastoma cells. Mol Med Rep 2016; 13:2757-62. [DOI: 10.3892/mmr.2016.4850] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/17/2015] [Indexed: 11/05/2022] Open
|
10
|
Miguel RB, Petersen PAD, Gonzales-Zubiate FA, Oliveira CC, Kumar N, do Nascimento RR, Petrilli HM, da Costa Ferreira AM. Inhibition of cyclin-dependent kinase CDK1 by oxindolimine ligands and corresponding copper and zinc complexes. J Biol Inorg Chem 2015; 20:1205-17. [PMID: 26411703 DOI: 10.1007/s00775-015-1300-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/21/2015] [Indexed: 12/11/2022]
Abstract
Oxindolimine-copper(II) and zinc(II) complexes that previously have shown to induce apoptosis, with DNA and mitochondria as main targets, exhibit here significant inhibition of kinase CDK1/cyclin B protein. Copper species are more active than the corresponding zinc, and the free ligand shows to be less active, indicating a major influence of coordination in the process, and a further modulation by the coordinated ligand. Molecular docking and classical molecular dynamics provide a better understanding of the effectiveness and kinase inhibition mechanism by these compounds, showing that the metal complex provides a stronger interaction than the free ligand with the ATP-binding site. The metal ion introduces charge in the oxindole species, giving it a more rigid conformation that then becomes more effective in its interactions with the protein active site. Analogous experiments resulted in no significant effect regarding phosphatase inhibition. These results can explain the cytotoxicity of these metal complexes towards different tumor cells, in addition to its capability of binding to DNA, and decreasing membrane potential of mitochondria.
Collapse
Affiliation(s)
- Rodrigo Bernardi Miguel
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Philippe Alexandre Divina Petersen
- Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R 187, São Paulo, 05508-090, SP, Brazil
| | - Fernando A Gonzales-Zubiate
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, SP, Brazil
| | - Carla Columbano Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, 05508-000, SP, Brazil
| | - Naresh Kumar
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil
| | - Rafael Rodrigues do Nascimento
- Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R 187, São Paulo, 05508-090, SP, Brazil
| | - Helena Maria Petrilli
- Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, Rua do Matão, Travessa R 187, São Paulo, 05508-090, SP, Brazil.
| | - Ana Maria da Costa Ferreira
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
11
|
Peyressatre M, Prével C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel) 2015; 7:179-237. [PMID: 25625291 PMCID: PMC4381256 DOI: 10.3390/cancers7010179] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/12/2015] [Indexed: 12/12/2022] Open
Abstract
Cyclin-dependent kinases (CDK/Cyclins) form a family of heterodimeric kinases that play central roles in regulation of cell cycle progression, transcription and other major biological processes including neuronal differentiation and metabolism. Constitutive or deregulated hyperactivity of these kinases due to amplification, overexpression or mutation of cyclins or CDK, contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases therefore constitute biomarkers of proliferation and attractive pharmacological targets for development of anticancer therapeutics. The structural features of several of these kinases have been elucidated and their molecular mechanisms of regulation characterized in depth, providing clues for development of drugs and inhibitors to disrupt their function. However, like most other kinases, they constitute a challenging class of therapeutic targets due to their highly conserved structural features and ATP-binding pocket. Notwithstanding, several classes of inhibitors have been discovered from natural sources, and small molecule derivatives have been synthesized through rational, structure-guided approaches or identified in high throughput screens. The larger part of these inhibitors target ATP pockets, but a growing number of peptides targeting protein/protein interfaces are being proposed, and a small number of compounds targeting allosteric sites have been reported.
Collapse
Affiliation(s)
- Marion Peyressatre
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Camille Prével
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - Morgan Pellerano
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| | - May C Morris
- Institut des Biomolécules Max Mousseron, IBMM-CNRS-UMR5247, 15 Av. Charles Flahault, 34093 Montpellier, France.
| |
Collapse
|
12
|
Abate AA, Pentimalli F, Esposito L, Giordano A. ATP-noncompetitive CDK inhibitors for cancer therapy: an overview. Expert Opin Investig Drugs 2013; 22:895-906. [PMID: 23735075 DOI: 10.1517/13543784.2013.798641] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Cyclin-dependent kinases (CDKs) are the key drivers of cell cycle progression and are often deregulated in cancer, therefore, targeting CDKs has long been pursued as a therapeutic strategy to tackle cancer. Unfortunately, however, none of the first-generation CDK inhibitors has yielded the expected efficacy to be successfully translated to the clinic mostly because, by targeting the very conserved kinase ATP-binding site resulted to be poorly specific and quite toxic. AREAS COVERED Here, the authors review recent approaches aimed at developing more specific CDK inhibitors mostly through the aid of computational drug design studies and report various small molecules and peptides, which resulted in promising CDK ATP-noncompetitive inhibitors. EXPERT OPINION Despite few successes, these new approaches still need additional considerations to generate effective antitumoral agents. The authors discuss some of the hurdles to overcome for a successful clinical translation.
Collapse
Affiliation(s)
- Agnese Anna Abate
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
13
|
Zhong Y, Xue M, Zhao X, Yuan J, Liu X, Huang J, Zhao Z, Li H, Xu Y. Substituted indolin-2-ones as p90 ribosomal S6 protein kinase 2 (RSK2) inhibitors: Molecular docking simulation and structure-activity relationship analysis. Bioorg Med Chem 2013; 21:1724-34. [PMID: 23434140 DOI: 10.1016/j.bmc.2013.01.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 11/26/2022]
Abstract
A series of novel indolin-2-ones inhibitors against p90 ribosomal S6 protein kinase 2 (RSK2) were designed and synthesized and their structure-activity relationship (SAR) was studied. The most potent inhibitor, compound 3s, exhibited potent inhibition against RSK2 with an IC50 value of 0.5 μM and presented a satisfactory selectivity against 23 kinases. The interactions of these inhibitors with RSK2 were investigated based on the proposed binding poses with molecular docking simulation. Four compounds and six compounds exhibited moderate anti-proliferation activities against PC 3 cells and MCF-7 cells, respectively.
Collapse
Affiliation(s)
- Ye Zhong
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Prakash CR, Theivendren P, Raja S. Indolin-2-Ones in Clinical Trials as Potential Kinase Inhibitors: A Review. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/pp.2012.31010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Matsumoto A, Takeishi S, Kanie T, Susaki E, Onoyama I, Tateishi Y, Nakayama K, Nakayama KI. p57 is required for quiescence and maintenance of adult hematopoietic stem cells. Cell Stem Cell 2011; 9:262-71. [PMID: 21885021 DOI: 10.1016/j.stem.2011.06.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 06/01/2011] [Accepted: 06/27/2011] [Indexed: 12/25/2022]
Abstract
Quiescence is required for the maintenance of hematopoietic stem cells (HSCs). Members of the Cip/Kip family of cyclin-dependent kinase (CDK) inhibitors (p21, p27, p57) have been implicated in HSC quiescence, but loss of p21 or p27 in mice affects HSC quiescence or functionality only under conditions of stress. Although p57 is the most abundant family member in quiescent HSCs, its role has remained uncharacterized. Here we show a severe defect in the self-renewal capacity of p57-deficient HSCs and a reduction of the proportion of the cells in G(0) phase. Additional ablation of p21 in a p57-null background resulted in a further decrease in the colony-forming activity of HSCs. Moreover, the HSC abnormalities of p57-deficient mice were corrected by knocking in the p27 gene at the p57 locus. Our results therefore suggest that, among Cip/Kip family CDK inhibitors, p57 plays a predominant role in the quiescence and maintenance of adult HSCs.
Collapse
Affiliation(s)
- Akinobu Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Whole organism-based small-molecule screens have proven powerful in identifying novel therapeutic chemicals, yet this approach has not been exploited to identify new cognitive enhancers. Here we present an automated high-throughput system for measuring nonassociative learning behaviors in larval zebrafish. Using this system, we report that spaced training blocks of repetitive visual stimuli elicit protein synthesis-dependent long-term habituation in larval zebrafish, lasting up to 24 h. Moreover, repetitive acoustic stimulation induces robust short-term habituation that can be modulated by stimulation frequency and instantaneously dishabituated through cross-modal stimulation. To characterize the neurochemical pathways underlying short-term habituation, we screened 1,760 bioactive compounds with known targets. Although we found extensive functional conservation of short-term learning between larval zebrafish and mammalian models, we also discovered several compounds with previously unknown roles in learning. These compounds included a myristic acid analog known to interact with Src family kinases and an inhibitor of cyclin dependent kinase 2, demonstrating that high-throughput chemical screens combined with high-resolution behavioral assays provide a powerful approach for the discovery of novel cognitive modulators.
Collapse
|
17
|
Henise JC, Taunton J. Irreversible Nek2 kinase inhibitors with cellular activity. J Med Chem 2011; 54:4133-46. [PMID: 21627121 DOI: 10.1021/jm200222m] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A structure-based approach was used to design irreversible, cysteine-targeted inhibitors of the human centrosomal kinase, Nek2. Potent inhibition of Nek2 kinase activity in biochemical and cell-based assays required a noncatalytic cysteine residue (Cys22), located near the glycine-rich loop in a subset of human kinases. Elaboration of an oxindole scaffold led to our most selective compound, oxindole propynamide 16 (JH295). Propynamide 16 irreversibly inhibited cellular Nek2 without affecting the mitotic kinases, Cdk1, Aurora B, or Plk1. Moreover, 16 did not perturb bipolar spindle assembly or the spindle assembly checkpoint. To our knowledge, 16 is the first small molecule shown to inactivate Nek2 kinase activity in cells.
Collapse
Affiliation(s)
- Jeffrey C Henise
- Program in Chemistry and Chemical Biology, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158, United States
| | | |
Collapse
|
18
|
Jorda R, Havlíček L, McNae IW, Walkinshaw MD, Voller J, Šturc A, Navrátilová J, Kuzma M, Mistrík M, Bártek J, Strnad M, Kryštof V. Pyrazolo[4,3-d]pyrimidine Bioisostere of Roscovitine: Evaluation of a Novel Selective Inhibitor of Cyclin-Dependent Kinases with Antiproliferative Activity. J Med Chem 2011; 54:2980-93. [DOI: 10.1021/jm200064p] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Radek Jorda
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Libor Havlíček
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 78371 Olomouc, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany ASCR, Videnska 1083, 142 20 Prague, Czech Republic
| | - Iain W. McNae
- Structural Biochemistry Group, University of Edinburgh, Michael Swann Building, King’s Buildings, Edinburgh, EH9 3JR, Scotland
| | - Malcolm D. Walkinshaw
- Structural Biochemistry Group, University of Edinburgh, Michael Swann Building, King’s Buildings, Edinburgh, EH9 3JR, Scotland
| | - Jiří Voller
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Department of Growth Regulators, Palacký University, Šlechtitelů 11, Olomouc, CZ-783 71, Czech Republic
| | - Antonín Šturc
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Jana Navrátilová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Marek Kuzma
- Laboratory of Molecular Structure Characterization, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, Czech Republic
| | - Martin Mistrík
- Laboratory of Genome Integrity and Institute of Molecular and Translational Medicine, Palacký University, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Jiří Bártek
- Laboratory of Genome Integrity and Institute of Molecular and Translational Medicine, Palacký University, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| | - Vladimír Kryštof
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany ASCR, Šlechtitelů 11, 78371 Olomouc, Czech Republic
| |
Collapse
|
19
|
Yuan H, Lu T, Ran T, Liu H, Lu S, Tai W, Leng Y, Zhang W, Wang J, Chen Y. Novel Strategy for Three-Dimensional Fragment-Based Lead Discovery. J Chem Inf Model 2011; 51:959-74. [DOI: 10.1021/ci200003c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haoliang Yuan
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ting Ran
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Shuai Lu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Wenting Tai
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Ying Leng
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Weiwei Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Jian Wang
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| |
Collapse
|
20
|
Uchiyama H, Sowa Y, Wakada M, Yogosawa M, Nakanishi R, Horinaka M, Shimazaki C, Taniwaki M, Sakai T. Cyclin-dependent kinase inhibitor SU9516 enhances sensitivity to methotrexate in human T-cell leukemia Jurkat cells. Cancer Sci 2010; 101:728-34. [PMID: 20059476 PMCID: PMC11158204 DOI: 10.1111/j.1349-7006.2009.01449.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Methotrexate (MTX) has been used to treat various hematological malignancies. Since MTX prevents tumor cells from proliferating by inhibiting dihydrofolate reductase (DHFR), DHFR expression is a key determinant of resistance to MTX in malignant hematological tumor cells. The antiproliferative effect of MTX was significantly enhanced by the knockdown of DHFR expression by siRNA in Jurkat cells. Therefore, a novel strategy down-regulating DHFR expression seems promising for enhancing sensitivity to MTX. We found that SU9516, a cyclin-dependent kinase inhibitor, reduced the expression of both DHFR mRNA and protein. Moreover, we found that DHFR promoter activity was attenuated by SU9516 dependent on the E2F site. Finally, pretreatment with SU9516 significantly enhanced sensitivity to MTX in a colony formation assay. We conclude that a combination of cyclin-dependent kinase inhibitors and MTX may be useful for overcoming resistance to MTX.
Collapse
Affiliation(s)
- Hitoji Uchiyama
- Department of Molecular-Targeting Cancer Prevention, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mologni L, Rostagno R, Brussolo S, Knowles PP, Kjaer S, Murray-Rust J, Rosso E, Zambon A, Scapozza L, McDonald NQ, Lucchini V, Gambacorti-Passerini C. Synthesis, structure–activity relationship and crystallographic studies of 3-substituted indolin-2-one RET inhibitors. Bioorg Med Chem 2010; 18:1482-96. [DOI: 10.1016/j.bmc.2010.01.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 01/26/2023]
|
22
|
B5, a novel pyrrole-substituted indolinone, exerts potent antitumor efficacy through G2/M cell cycle arrest. Invest New Drugs 2009; 28:26-34. [DOI: 10.1007/s10637-008-9211-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Accepted: 12/16/2008] [Indexed: 01/12/2023]
|
23
|
Synthesis and biological evaluation of diversely substituted indolin-2-ones. Eur J Med Chem 2008; 43:2316-22. [DOI: 10.1016/j.ejmech.2008.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 12/11/2007] [Accepted: 01/10/2008] [Indexed: 11/18/2022]
|
24
|
Molecular dynamics, density functional, ADMET predictions, virtual screening, and molecular interaction field studies for identification and evaluation of novel potential CDK2 inhibitors in cancer therapy. J Phys Chem A 2008; 112:8902-10. [PMID: 18698751 DOI: 10.1021/jp8011969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy.
Collapse
|
25
|
Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 2008; 4:313-21. [PMID: 18408713 DOI: 10.1038/nchembio.83] [Citation(s) in RCA: 1668] [Impact Index Per Article: 98.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Accepted: 03/06/2008] [Indexed: 11/09/2022]
Abstract
Necroptosis is a cellular mechanism of necrotic cell death induced by apoptotic stimuli in the form of death domain receptor engagement by their respective ligands under conditions where apoptotic execution is prevented. Although it occurs under regulated conditions, necroptotic cell death is characterized by the same morphological features as unregulated necrotic death. Here we report that necrostatin-1, a previously identified small-molecule inhibitor of necroptosis, is a selective allosteric inhibitor of the death domain receptor-associated adaptor kinase RIP1 in vitro. We show that RIP1 is the primary cellular target responsible for the antinecroptosis activity of necrostatin-1. In addition, we show that two other necrostatins, necrostatin-3 and necrostatin-5, also target the RIP1 kinase step in the necroptosis pathway, but through mechanisms distinct from that of necrostatin-1. Overall, our data establish necrostatins as the first-in-class inhibitors of RIP1 kinase, the key upstream kinase involved in the activation of necroptosis.
Collapse
Affiliation(s)
- Alexei Degterev
- Tufts University, School of Medicine, Department of Biochemistry, 136 Harrison Avenue, Boston, Massachusetts 02111, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Echalier A, Bettayeb K, Ferandin Y, Lozach O, Clément M, Valette A, Liger F, Marquet B, Morris JC, Endicott JA, Joseph B, Meijer L. Meriolins (3-(pyrimidin-4-yl)-7-azaindoles): synthesis, kinase inhibitory activity, cellular effects, and structure of a CDK2/cyclin A/meriolin complex. J Med Chem 2008; 51:737-51. [PMID: 18232649 DOI: 10.1021/jm700940h] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the synthesis and biological characterization of 3-(pyrimidin-4-yl)-7-azaindoles (meriolins), a chemical hybrid between the natural products meridianins and variolins, derived from marine organisms. Meriolins display potent inhibitory activities toward cyclin-dependent kinases (CDKs) and, to a lesser extent, other kinases (GSK-3, DYRK1A). The crystal structures of 1e (meriolin 5) and variolin B (Bettayeb, K.; Tirado, O. M.; Marionneau-Lambert, S.; Ferandin, Y.; Lozach, O.; Morris, J.; Mateo-Lozano, S.; Drückes, P.; Schächtele, C.; Kubbutat, M.; Liger, F.; Marquet, B.; Joseph, B.; Echalier, A.; Endicott, J.; Notario, V.; Meijer, L. Cancer Res. 2007, 67, 8325-8334) in complex with CDK2/cyclin A reveal that the two inhibitors are orientated in very different ways inside the ATP-binding pocket of the kinase. A structure-activity relationship provides further insight into the molecular mechanism of action of this family of kinase inhibitors. Meriolins are also potent antiproliferative and proapoptotic agents in cells cultured either as monolayers or in spheroids. Proapoptotic efficacy of meriolins correlates best with their CDK2 and CDK9 inhibitory activity. Meriolins thus constitute a promising class of pharmacological agents to be further evaluated against the numerous human diseases that imply abnormal regulation of CDKs including cancers, neurodegenerative disorders, and polycystic kidney disease.
Collapse
Affiliation(s)
- Aude Echalier
- Laboratory of Molecular Biophysics, Department of Biochemistry, The Rex Richards Building, University of Oxford, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Sassatelli M, Bouchikhi F, Aboab B, Anizon F, Fabbro D, Prudhomme M, Moreau P. In-vitro antiproliferative activities and kinase inhibitory potencies of glycosyl-isoindigo derivatives. Anticancer Drugs 2007; 18:1069-74. [PMID: 17704657 DOI: 10.1097/cad.0b013e328182d281] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the course of studies on the preparation of potential kinase inhibitors, we were interested in the synthesis of diversely substituted glycosyl-isoindigo derivatives. To get an insight into the effect of the substitution pattern of the isoindigo aromatic and carbohydrate moieties on the biological activities and to identify the cellular target(s) involved in the in-vitro antiproliferative activity of these derivatives, their inhibitory activities toward a panel of 10 different kinases were examined. The best inhibitory activities were found toward cyclin-dependent kinase 2/cyclin A. Molecular modelling experiments were carried out to investigate the binding interactions between the active site of cyclin-dependent kinase 2 and the lead compound of this series.
Collapse
Affiliation(s)
- Mathieu Sassatelli
- Laboratoire SEESIB, Université Blaise Pascal, UMR 6504 du CNRS, Aubière, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Kobayashi S, Lee SH, Meng XW, Mott JL, Bronk SF, Werneburg NW, Craig RW, Kaufmann SH, Gores GJ. Serine 64 phosphorylation enhances the antiapoptotic function of Mcl-1. J Biol Chem 2007; 282:18407-18417. [PMID: 17463001 DOI: 10.1074/jbc.m610010200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mcl-1 is an antiapoptotic Bcl-2 family member that is highly regulated and when dysregulated contributes to cancer. The Mcl-1 protein is phosphorylated at multiple sites in response to different signaling events. Phosphorylations at Thr163 (by ERK) and Ser159 (by glycogen-synthase kinase 3beta) have recently been shown to slow and enhance, respectively, Mcl-1 protein turnover. Phosphorylation is also known to be stimulated at other, as-yet uncharacterized sites in the G2/M phase of the cell cycle. Using an S peptide-tagged Mcl-1 T163A mutant, Ser64 was identified as a novel Mcl-1 phosphorylation site by mass spectrometry. Immunoblotting demonstrated that phosphorylation at this site was maximal in cells in G2/M phase, was enhanced by tumor necrosis factor-alpha-related apoptosis-inducing ligand (TRAIL) treatment, was blocked by inhibitors of CDK (but not ERK or glycogen-synthase kinase 3beta), and was stimulated in vitro by CDK 1, CDK2, and JNK1. The half-life of a nonphosphorylatable S64A Mcl-1 mutant was indistinguishable from that of the wild type polypeptide. In contrast, this mutant failed to protect cells from TRAIL-mediated apoptosis, whereas reconstitution with the phosphomimetic S64E Mcl-1 mutant rendered cells TRAIL-resistant. This anti-apoptotic phenotype of the S64E Mcl-1 mutant was also associated with enhanced binding to the proapoptotic proteins Bim, Noxa, and Bak. A pharmacological CDK inhibitor that reduced Ser64 phosphorylation also sensitized cells to TRAIL cytotoxicity. Collectively, these observations not only identify G2/M-associated phosphorylation at Ser64 as a critical determinant of the antiapoptotic activity of Mcl-1 but also elucidate a novel mechanism by which CDK1/2 inhibitors can enhance the effectiveness of the cytotoxic cytokine TRAIL.
Collapse
Affiliation(s)
- Shogo Kobayashi
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Sun-Hee Lee
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Xue W Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Justin L Mott
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Steven F Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Nathan W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Ruth W Craig
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755
| | - Scott H Kaufmann
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, Minnesota 55905; Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, Minnesota 55905
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905.
| |
Collapse
|
29
|
|
30
|
Wong TW, Lee FY, Yu C, Luo FR, Oppenheimer S, Zhang H, Smykla RA, Mastalerz H, Fink BE, Hunt JT, Gavai AV, Vite GD. Preclinical antitumor activity of BMS-599626, a pan-HER kinase inhibitor that inhibits HER1/HER2 homodimer and heterodimer signaling. Clin Cancer Res 2006; 12:6186-93. [PMID: 17062696 DOI: 10.1158/1078-0432.ccr-06-0642] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The studies described here are intended to characterize the ability of BMS-599626, a small-molecule inhibitor of the human epidermal growth factor receptor (HER) kinase family, to modulate signaling and growth of tumor cells that depend on HER1 and/or HER2. EXPERIMENTAL DESIGN The potency and selectivity of BMS-599626 were assessed in biochemical assays using recombinant protein kinases, as well as in cell proliferation assays using tumor cell lines with varying degrees of dependence on HER1 or HER2 signaling. Modulation of receptor signaling was determined in cell assays by Western blot analyses of receptor autophosphorylation and downstream signaling. The ability of BMS-599626 to inhibit receptor heterodimer signaling in tumor cells was studied by receptor coimmunoprecipitation. Antitumor activity of BMS-599626 was evaluated using a number of different xenograft models that represent a spectrum of human tumors with HER1 or HER2 overexpression. RESULTS BMS-599626 inhibited HER1 and HER2 with IC50 of 20 and 30 nmol/L, respectively, and was highly selective when tested against a broad panel of diverse protein kinases. Biochemical studies suggested that BMS-599626 inhibited HER1 and HER2 through distinct mechanisms. BMS-599626 abrogated HER1 and HER2 signaling and inhibited the proliferation of tumor cell lines that are dependent on these receptors, with IC50 in the range of 0.24 to 1 micromol/L. BMS-599626 was highly selective for tumor cells that depend on HER1/HER2 and had no effect on the proliferation of cell lines that do not express these receptors. In tumor cells that are capable of forming HER1/HER2 heterodimers, BMS-599626 inhibited heterodimerization and downstream signaling. BMS-599626 had antitumor activity in models that overexpress HER1 (GEO), as well as in models that have HER2 gene amplification (KPL4) or overexpression (Sal2), and there was good correlation between the inhibition of receptor signaling and antitumor activity. CONCLUSIONS BMS-599626 is a highly selective and potent inhibitor of HER1 and HER2 kinases and inhibits tumor cell proliferation through modulation of receptor signaling. BMS-599626 inhibits HER1/HER2 receptor heterodimerization and provides an additional mechanism of inhibiting tumors in which receptor coexpression and heterodimerization play a major role in driving tumor growth. The preclinical data support the advancement of BMS-599626 into clinical development for the treatment of cancer.
Collapse
Affiliation(s)
- Tai W Wong
- Oncology Drug Discovery, Bristol Myers Squibb Pharmaceutical Research Institute, Princeton, New Jersey 08534, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Heady L, Fernandez-Serra M, Mancera RL, Joyce S, Venkitaraman AR, Artacho E, Skylaris CK, Ciacchi LC, Payne MC. Novel structural features of CDK inhibition revealed by an ab initio computational method combined with dynamic simulations. J Med Chem 2006; 49:5141-53. [PMID: 16913703 DOI: 10.1021/jm060190+] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rational development of specific inhibitors for the approximately 500 protein kinases encoded in the human genome is impeded by a poor understanding of the structural basis for the activity and selectivity of small molecules that compete for ATP binding. Combining classical dynamic simulations with a novel ab initio computational approach linear-scalable to molecular interactions involving thousands of atoms, we have investigated the binding of five distinct inhibitors to the cyclin-dependent kinase CDK2. We report here that polarization and dynamic hydrogen bonding effects, so far undetected by crystallography, affect both their activity and selectivity. The effects arise from the specific solvation patterns of water molecules in the ATP binding pocket or the intermittent formation of hydrogen bonds during the dynamics of CDK/inhibitor interactions and explain the unexpectedly high potency of certain inhibitors such as 3-(3H-imidazol-4-ylmethylene)-5-methoxy-1,3-dihydro-indol-2-one (SU9516). The Lys89 residue in the ATP-binding pocket of CDK2 is observed to form temporary hydrogen bonds with the three most potent inhibitors. This residue is replaced in CDK4 by Thr89, whose shorter side-chain cannot form similar bonds, explaining the relative selectivity of the inhibitors for CDK2. Our results provide a generally applicable computational method for the analysis of biomolecular structures and reveal hitherto unrecognized features of the interaction between protein kinases and their inhibitors.
Collapse
Affiliation(s)
- Lucy Heady
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Oblak M, Grdadolnik SG, Kotnik M, Poterszman A, Atkinson RA, Nierengarten H, Desplancq D, Moras D, Solmajer T. Biophysical characterization of an indolinone inhibitor in the ATP-binding site of DNA gyrase. Biochem Biophys Res Commun 2006; 349:1206-13. [PMID: 16979583 DOI: 10.1016/j.bbrc.2006.08.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 08/21/2006] [Indexed: 11/27/2022]
Abstract
Fighting bacterial resistance is a challenging task in the field of medicinal chemistry. DNA gyrase represents a validated antibacterial target and has drawn much interest in recent years. By a structure-based approach we have previously discovered compound 1, an indolinone derivative, possessing inhibitory activity against DNA gyrase. In the present paper, a detailed biophysical characterization of this inhibitor is described. Using mass spectrometry, NMR spectroscopy, and fluorescence experiments we have demonstrated that compound 1 binds reversibly to the ATP-binding site of the 24 kDa N-terminal fragment of DNA gyrase B from Escherichia coli (GyrB24) with low micromolar affinity. Based on these data, a plausible molecular model of compound 1 in the active site of GyrB24 was constructed. The predicted binding mode explains the competitive inhibitory mechanism with respect to ATP and forms a useful basis for further development of potent DNA gyrase inhibitors.
Collapse
Affiliation(s)
- Marko Oblak
- Laboratory of Molecular Modeling and NMR Spectroscopy, National Institute of Chemistry, POB660, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sassatelli M, Debiton E, Aboab B, Prudhomme M, Moreau P. Synthesis and antiproliferative activities of indolin-2-one derivatives bearing amino acid moieties. Eur J Med Chem 2006; 41:709-16. [PMID: 16675065 DOI: 10.1016/j.ejmech.2006.03.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 02/16/2006] [Accepted: 03/09/2006] [Indexed: 10/24/2022]
Abstract
A convenient synthesis of indolin-2-ones substituted in the 3 position by an aminomethylene group bearing different amino acid moieties is described. Their antiproliferative activities were evaluated toward a panel of human solid tumor cell lines (PC 3, DLD-1, MCF-7, M4 Beu, A549, PA 1) and healthy cell lines (a murine fibroblast L929 and a human fibroblast primary culture).
Collapse
Affiliation(s)
- Mathieu Sassatelli
- Laboratoire SEESIB, Université Blaise-Pascal, UMR 6504 du CNRS, 24 avenue des Landais, 63177 Aubière, France
| | | | | | | | | |
Collapse
|
34
|
Sridhar J, Akula N, Pattabiraman N. Selectivity and potency of cyclin-dependent kinase inhibitors. AAPS JOURNAL 2006; 8:E204-21. [PMID: 16584130 PMCID: PMC2751441 DOI: 10.1208/aapsj080125] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Members of the cyclin-dependent kinase (CDK) family play key roles in various cellular processes. There are 11 members of the CDK family known till now. CDKs are activated by forming noncovalent complexes with cyclins such as A-, B-, C-, D- (D1, D2, and D3), and E-type cyclins. Each isozyme of this family is responsible for particular aspects (cell signaling, transcription, etc) of the cell cycle, and some of the CDK isozymes are specific to certain kinds of tissues. Aberrant expression and overexpression of these kinases are evidenced in many disease conditions. Inhibition of isozymes of CDKs specifically can yield beneficiary treatment modalities with minimum side effects. More than 80 3-dimensional structures of CDK2, CDK5, and CDK6 complexed with inhibitors have been published. This review provides an understanding of the structural aspects of CDK isozymes and binding modes of various known CDK inhibitors so that these kinases can be better targeted for drug discovery and design. The amino acid residues that constitute the cyclin binding region, the substrate binding region, and the area around the adenosine triphosphate (ATP) binding site have been compared for CDK isozymes. Those amino acids at the ATP binding site that could be used to improve the potency and subtype specificity have been described.
Collapse
Affiliation(s)
- Jayalakshmi Sridhar
- />Laboratory for In-silico Biology and Drug Discovery, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room W417, 3970 Reservoir Rd NW, 20005 Washington, DC
| | - Nagaraju Akula
- />Laboratory for In-silico Biology and Drug Discovery, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room W417, 3970 Reservoir Rd NW, 20005 Washington, DC
| | - Nagarajan Pattabiraman
- />Laboratory for In-silico Biology and Drug Discovery, Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Room W417, 3970 Reservoir Rd NW, 20005 Washington, DC
- />Department of Biochemistry & Molecular Biology, Georgetown University, Washington DC
| |
Collapse
|
35
|
Thomas MP, McInnes C, Fischer PM. Protein structures in virtual screening: a case study with CDK2. J Med Chem 2006; 49:92-104. [PMID: 16392795 DOI: 10.1021/jm050554i] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of protein structure on the successful reproduction of known ligand poses by high-throughput docking programs is rarely discussed. Two commonly used programs, Glide and GOLD, were used to dock a set of CDK2 inhibitors of known bound pose into 20 different CDK2 structures. The numbers of docked poses that reproduced the known pose are reported. Depending on the program and protein structure, 0.3%-96.2% of the ligands docked with the correct pose. Although it is not possible to say that any one structure is "the best" for virtual screening, there are some structures that are clearly better than others. The main determinants of this are the volume of the binding site into which the ligands are docked and the exact orientation of the residues forming the binding site.
Collapse
Affiliation(s)
- Mark P Thomas
- Cyclacel Ltd., James Lindsay Place, Dundee, DD1 5JJ, UK.
| | | | | |
Collapse
|
36
|
Sessa F, Mapelli M, Ciferri C, Tarricone C, Areces LB, Schneider TR, Stukenberg PT, Musacchio A. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 2005; 18:379-91. [PMID: 15866179 DOI: 10.1016/j.molcel.2005.03.031] [Citation(s) in RCA: 295] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2004] [Revised: 03/19/2005] [Accepted: 03/31/2005] [Indexed: 11/25/2022]
Abstract
Aurora family serine/threonine kinases control mitotic progression, and their deregulation is implicated in tumorigenesis. Aurora A and Aurora B, the best-characterized members of mammalian Aurora kinases, are approximately 60% identical but bind to unrelated activating subunits. The structure of the complex of Aurora A with the TPX2 activator has been reported previously. Here, we report the crystal structure of Aurora B in complex with the IN-box segment of the inner centromere protein (INCENP) activator and with the small molecule inhibitor Hesperadin. The Aurora B:INCENP complex is remarkably different from the Aurora A:TPX2 complex. INCENP forms a crown around the small lobe of Aurora B and induces the active conformation of the T loop allosterically. The structure represents an intermediate state of activation of Aurora B in which the Aurora B C-terminal segment stabilizes an open conformation of the catalytic cleft, and a critical ion pair in the kinase active site is impaired. Phosphorylation of two serines in the carboxyl terminus of INCENP generates the fully active kinase.
Collapse
Affiliation(s)
- Fabio Sessa
- Department of Experimental Oncology, European Institute of Oncology, Via Ripamonti 435, 20141 Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pevarello P, Villa M. Cyclin-dependent kinase inhibitors: a survey of the recent patent literature. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.15.6.675] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
38
|
Sassatelli M, Saab E, Anizon F, Prudhomme M, Moreau P. Synthesis of glycosyl-isoindigo derivatives. Tetrahedron Lett 2004. [DOI: 10.1016/j.tetlet.2004.04.167] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|