1
|
Al-Ayadhi L, Bhat RS, Alghamdi FA, Alhadlaq AS, El-Ansary A. Influence of Auditory Integrative Training on Casein Kinase 2 and Its Impact on Behavioral and Social Interaction in Children with Autism Spectrum Disorder. Curr Issues Mol Biol 2023; 45:4317-4330. [PMID: 37232743 DOI: 10.3390/cimb45050274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Considerable disturbances in post-translational protein phosphorylation have recently been discovered in multiple neurological disorders. Casein kinase-2 (CK2) is a tetrameric Ser/Thr protein kinase that phosphorylates a large number of substrates and contributes in several cellular physiological and pathological processes. CK2 is highly expressed in the mammalian brain and catalyzes the phosphorylation of a large number of substrates that are crucial in neuronal or glial homeostasis and inflammatory signaling processes across synapses. In this study, we investigated the impact of auditory integration therapy (AIT) for the treatment of sensory processing abnormalities in autism on plasma CK2 levels. A total of 25 ASD children, aged between 5 and 12 years, were enrolled and participated in the present research study. AIT was performed for two weeks, for a period of 30 min, twice a day, with a 3 h interval between sessions. Before and after AIT, the Childhood Autism Rating Scale (CARS), Social Responsiveness Scale (SRS), and Short Sensory Profile (SSP) scores were calculated, and plasma CK2 levels were assayed using an ELISA test. The CARS and SRS indices of autism severity improved as a result of AIT, which could be related to the decreased level of plasma CK2. However, the mean value of the SSP scores was not significantly increased after AIT. The relationship between CK2 downregulation and glutamate excitotoxicity, neuro-inflammation, and leaky gut, as etiological mechanisms in ASD, was proposed and discussed. Further research, conducted on a larger scale and with a longer study duration, are required to assess whether the cognitive improvement in ASD children after AIT is related to the downregulation of CK2.
Collapse
Affiliation(s)
- Laila Al-Ayadhi
- Department of Physiology, Faculty of Medicine, King Saud University, Riyadh 11495, Saudi Arabia
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, College of Science, King Saud University, Riyadh 11495, Saudi Arabia
| | - Farah Ali Alghamdi
- College of Medicine, Dar Al Uloom University, Riyadh 13314, Saudi Arabia
| | | | - Afaf El-Ansary
- Autism Research and Treatment Center, Riyadh 12713, Saudi Arabia
- Autism Center, Lotus Holistic Medical Center, Abu Dhabi 110281, United Arab Emirates
| |
Collapse
|
2
|
Pan L, Li T, Wang R, Deng W, Pu H, Deng M. Roles of Phosphorylation of N-Methyl-D-Aspartate Receptor in Chronic Pain. Cell Mol Neurobiol 2023; 43:155-175. [PMID: 35032275 DOI: 10.1007/s10571-022-01188-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/03/2022] [Indexed: 01/07/2023]
Abstract
Phosphorylation of N-methyl-D-aspartate receptor (NMDAR) is widely regarded as a vital modification of synaptic function. Various protein kinases are responsible for direct phosphorylation of NMDAR, such as cyclic adenosine monophosphate-dependent protein kinase A, protein kinase C, Ca2+/calmodulin-dependent protein kinase II, Src family protein tyrosine kinases, cyclin-dependent kinase 5, and casein kinase II. The detailed function of these kinases on distinct subunits of NMDAR has been reported previously and contributes to phosphorylation at sites predominately within the C-terminal of NMDAR. Phosphorylation underlies both structural and functional changes observed in chronic pain, and studies have demonstrated that inhibitors of kinases are significantly effective in alleviating pain behavior in different chronic pain models. In addition, the exploration of drugs that aim to disrupt the interaction between kinases and NMDAR is promising in clinical research. Based on research regarding the modulation of NMDAR in chronic pain models, this review provides an overview of the phosphorylation of NMDAR-related mechanisms underlying chronic pain to elucidate molecular and pharmacologic references for chronic pain management.
Collapse
Affiliation(s)
- Liangyu Pan
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Tiansheng Li
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Rui Wang
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Weiheng Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Huangsheng Pu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, 410073, Hunan, China.
| | - Meichun Deng
- Department of Biochemistry and Molecular Biology and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China. .,Hunan Key Laboratory of Animal Models for Human Diseases & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
White A, McGlone A, Gomez-Pastor R. Protein Kinase CK2 and Its Potential Role as a Therapeutic Target in Huntington's Disease. Biomedicines 2022; 10:1979. [PMID: 36009526 PMCID: PMC9406209 DOI: 10.3390/biomedicines10081979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Huntington's Disease (HD) is a devastating neurodegenerative disorder caused by a CAG trinucleotide repeat expansion in the HTT gene, for which no disease modifying therapies are currently available. Much of the recent research has focused on developing therapies to directly lower HTT expression, and while promising, these therapies have presented several challenges regarding administration and efficacy. Another promising therapeutic approach is the modulation of HTT post-translational modifications (PTMs) that are dysregulated in disease and have shown to play a key role in HTT toxicity. Among all PTMs, modulation of HTT phosphorylation has been proposed as an attractive therapeutic option due to the possibility of orally administering specific kinase effectors. One of the kinases described to participate in HTT phosphorylation is Protein Kinase CK2. CK2 has recently emerged as a target for the treatment of several neurological and psychiatric disorders, although its role in HD remains controversial. While pharmacological studies in vitro inhibiting CK2 resulted in reduced HTT phosphorylation and increased toxicity, genetic approaches in mouse models of HD have provided beneficial effects. In this review we discuss potential therapeutic approaches related to the manipulation of HTT-PTMs with special emphasis on the role of CK2 as a therapeutic target in HD.
Collapse
Affiliation(s)
| | | | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Zhang W, Ye F, Chen S, Peng J, Pang N, Yin F. Splicing Interruption by Intron Variants in CSNK2B Causes Poirier–Bienvenu Neurodevelopmental Syndrome: A Focus on Genotype–Phenotype Correlations. Front Neurosci 2022; 16:892768. [PMID: 35774559 PMCID: PMC9237577 DOI: 10.3389/fnins.2022.892768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
CSNK2B has recently been identified as the causative gene for Poirier–Bienvenu neurodevelopmental syndrome (POBINDS). POBINDS is a rare neurodevelopmental disorder characterized by early-onset epilepsy, developmental delay, hypotonia, and dysmorphism. Limited by the scarcity of patients, the genotype–phenotype correlations in POBINDS are still unclear. In the present study, we describe the clinical and genetic characteristics of eight individuals with POBINDS, most of whom suffered developmental delay, generalized epilepsy, and hypotonia. Minigene experiments confirmed that two intron variants (c.367+5G>A and c.367+6T>C) resulted in the skipping of exon 5, leading to a premature termination of mRNA transcription. Combining our data with the available literature, the types of POBINDS-causing variants included missense, nonsense, frameshift, and splicing, but the variant types do not reflect the clinical severity. Reduced casein kinase 2 holoenzyme activity may represent a unifying pathogenesis. We also found that individuals with missense variants in the zinc finger domain had manageable seizures (p = 0.009) and milder intellectual disability (p = 0.003) than those with missense variants in other domains of CSNK2B. This is the first study of genotype–phenotype correlations in POBINDS, drawing attention to the pathogenicity of intron variants and expanding the understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Nan Pang,
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Fei Yin,
| |
Collapse
|
5
|
Ballardin D, Cruz-Gamero JM, Bienvenu T, Rebholz H. Comparing Two Neurodevelopmental Disorders Linked to CK2: Okur-Chung Neurodevelopmental Syndrome and Poirier-Bienvenu Neurodevelopmental Syndrome—Two Sides of the Same Coin? Front Mol Biosci 2022; 9:850559. [PMID: 35693553 PMCID: PMC9182197 DOI: 10.3389/fmolb.2022.850559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.
Collapse
Affiliation(s)
- Demetra Ballardin
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Jose M. Cruz-Gamero
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
| | - Thierry Bienvenu
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’organe, Hôpital Cochin, APHP, Centre Université de Paris, Paris, France
| | - Heike Rebholz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
- *Correspondence: Heike Rebholz,
| |
Collapse
|
6
|
Ernst ME, Baugh EH, Thomas A, Bier L, Lippa N, Stong N, Mulhern MS, Kushary S, Akman CI, Heinzen EL, Yeh R, Bi W, Hanchard NA, Burrage LC, Leduc MS, Chong JSC, Bend R, Lyons MJ, Lee JA, Suwannarat P, Brilstra E, Simon M, Koopmans M, van Binsbergen E, Groepper D, Fleischer J, Nava C, Keren B, Mignot C, Mathieu S, Mancini GMS, Madan-Khetarpal S, Infante EM, Bluvstein J, Seeley A, Bachman K, Klee EW, Schultz-Rogers LE, Hasadsri L, Barnett S, Ellingson MS, Ferber MJ, Narayanan V, Ramsey K, Rauch A, Joset P, Steindl K, Sheehan T, Poduri A, Vasquez A, Ruivenkamp C, White SM, Pais L, Monaghan KG, Goldstein DB, Sands TT, Aggarwal V. CSNK2B: A broad spectrum of neurodevelopmental disability and epilepsy severity. Epilepsia 2021; 62:e103-e109. [PMID: 34041744 DOI: 10.1111/epi.16931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.
Collapse
Affiliation(s)
- Michelle E Ernst
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Amanda Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Natalie Lippa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Maureen S Mulhern
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sulagna Kushary
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Cigdem I Akman
- Department of Neurology, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, NY, USA
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raymond Yeh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Magalie S Leduc
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Josephine S C Chong
- Joint CUHK-Baylor Center of Medical Genetics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Renee Bend
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | | | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Rockville, MD, USA
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marije Koopmans
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel Groepper
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Julie Fleischer
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Caroline Nava
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Boris Keren
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Cyril Mignot
- Department of Genetics, APHP Sorbonne University, Paris, France.,Reference Center for Intellectual Disabilities of Rare Causes, Paris, France
| | - Sophie Mathieu
- Department of Neuropediatrics, APHP Sorbonne University, Trousseau Hospital, Paris, France
| | - Grazia M S Mancini
- Department of Clinical Genetics, ErasmusMC University Medical Center, Rotterdam, The Netherlands
| | | | - Elena M Infante
- Department of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Laura E Schultz-Rogers
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Linda Hasadsri
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sarah Barnett
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marissa S Ellingson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Ferber
- Clinical Genome Sequencing Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren, Zürich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zürich, Schlieren, Zürich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren, Zürich, Switzerland
| | - Theodore Sheehan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Alejandra Vasquez
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tristan T Sands
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Neurology, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, NY, USA
| | - Vimla Aggarwal
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
7
|
CK2-An Emerging Target for Neurological and Psychiatric Disorders. Pharmaceuticals (Basel) 2017; 10:ph10010007. [PMID: 28067771 PMCID: PMC5374411 DOI: 10.3390/ph10010007] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/20/2016] [Accepted: 12/30/2016] [Indexed: 12/16/2022] Open
Abstract
Protein kinase CK2 has received a surge of attention in recent years due to the evidence of its overexpression in a variety of solid tumors and multiple myelomas as well as its participation in cell survival pathways. CK2 is also upregulated in the most prevalent and aggressive cancer of brain tissue, glioblastoma multiforme, and in preclinical models, pharmacological inhibition of the kinase has proven successful in reducing tumor size and animal mortality. CK2 is highly expressed in the mammalian brain and has many bona fide substrates that are crucial in neuronal or glial homeostasis and signaling processes across synapses. Full and conditional CK2 knockout mice have further elucidated the importance of CK2 in brain development, neuronal activity, and behavior. This review will discuss recent advances in the field that point to CK2 as a regulator of neuronal functions and as a potential novel target to treat neurological and psychiatric disorders.
Collapse
|
8
|
Posttranslational Modifications Regulate the Postsynaptic Localization of PSD-95. Mol Neurobiol 2016; 54:1759-1776. [PMID: 26884267 DOI: 10.1007/s12035-016-9745-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/22/2016] [Indexed: 01/08/2023]
Abstract
The postsynaptic density (PSD) consists of a lattice-like array of interacting proteins that organizes and stabilizes synaptic receptors, ion channels, structural proteins, and signaling molecules required for normal synaptic transmission and synaptic function. The scaffolding and hub protein postsynaptic density protein-95 (PSD-95) is a major element of central chemical synapses and interacts with glutamate receptors, cell adhesion molecules, and cytoskeletal elements. In fact, PSD-95 can regulate basal synaptic stability as well as the activity-dependent structural plasticity of the PSD and, therefore, of the excitatory chemical synapse. Several studies have shown that PSD-95 is highly enriched at excitatory synapses and have identified multiple protein structural domains and protein-protein interactions that mediate PSD-95 function and trafficking to the postsynaptic region. PSD-95 is also a target of several signaling pathways that induce posttranslational modifications, including palmitoylation, phosphorylation, ubiquitination, nitrosylation, and neddylation; these modifications determine the synaptic stability and function of PSD-95 and thus regulate the fates of individual dendritic spines in the nervous system. In the present work, we review the posttranslational modifications that regulate the synaptic localization of PSD-95 and describe their functional consequences. We also explore the signaling pathways that induce such changes.
Collapse
|
9
|
Brennan-Minnella AM, Won SJ, Swanson RA. NADPH oxidase-2: linking glucose, acidosis, and excitotoxicity in stroke. Antioxid Redox Signal 2015; 22:161-74. [PMID: 24628477 PMCID: PMC4281853 DOI: 10.1089/ars.2013.5767] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Neuronal superoxide production contributes to cell death in both glutamate excitotoxicity and brain ischemia (stroke). NADPH oxidase-2 (NOX2) is the major source of neuronal superoxide production in these settings, and regulation of NOX2 activity can thereby influence outcome in stroke. RECENT ADVANCES Reduced NOX2 activity can rescue cells from oxidative stress and cell death that otherwise occur in excitotoxicity and ischemia. NOX2 activity is regulated by several factors previously shown to affect outcome in stroke, including glucose availability, intracellular pH, protein kinase ζ/δ, casein kinase 2, phosphoinositide-3-kinase, Rac1/2, and phospholipase A2. The newly identified functions of these factors as regulators of NOX2 activity suggest alternative mechanisms for their effects on ischemic brain injury. CRITICAL ISSUES Key aspects of these regulatory influences remain unresolved, including the mechanisms by which rac1 and phospholipase activities are coupled to N-methyl-D-aspartate (NMDA) receptors, and whether superoxide production by NOX2 triggers subsequent superoxide production by mitochondria. FUTURE DIRECTIONS It will be important to establish whether interventions targeting the signaling pathways linking NMDA receptors to NOX2 in brain ischemia can provide a greater neuroprotective efficacy or a longer time window to treatment than provided by NMDA receptor blockade alone. It will likewise be important to determine whether dissociating superoxide production from the other signaling events initiated by NMDA receptors can mitigate the deleterious effects of NMDA receptor blockade.
Collapse
|
10
|
Chen SR, Zhou HY, Byun HS, Chen H, Pan HL. Casein kinase II regulates N-methyl-D-aspartate receptor activity in spinal cords and pain hypersensitivity induced by nerve injury. J Pharmacol Exp Ther 2014; 350:301-12. [PMID: 24898266 DOI: 10.1124/jpet.114.215855] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Increased N-methyl-d-aspartate receptor (NMDAR) activity and phosphorylation in the spinal cord are critically involved in the synaptic plasticity and central sensitization associated with neuropathic pain. However, the mechanisms underlying increased NMDAR activity in neuropathic pain conditions remain poorly understood. Here we show that peripheral nerve injury induces a large GluN2A-mediated increase in NMDAR activity in spinal lamina II, but not lamina I, neurons. However, NMDAR currents in spinal dorsal horn neurons are not significantly altered in rat models of diabetic neuropathic pain and resiniferatoxin-induced painful neuropathy (postherpedic neuralgia). Inhibition of protein tyrosine kinases or protein kinase C has little effect on NMDAR currents potentiated by nerve injury. Strikingly, casein kinase II (CK2) inhibitors normalize increased NMDAR currents of dorsal horn neurons in nerve-injured rats. In addition, inhibition of calcineurin, but not protein phosphatase 1/2A, augments NMDAR currents only in control rats. CK2 inhibition blocks the increase in spinal NMDAR activity by the calcineurin inhibitor in control rats. Furthermore, nerve injury significantly increases CK2α and CK2β protein levels in the spinal cord. In addition, inhibition of CK2 or CK2β knockdown at the spinal level substantially reverses pain hypersensitivity induced by nerve injury. Our study indicates that neuropathic pain conditions with different etiologies do not share the same mechanisms, and increased spinal NMDAR activity is distinctly associated with traumatic nerve injury. CK2 plays a prominent role in the potentiation of NMDAR activity in the spinal dorsal horn and may represent a new target for treatments of chronic pain caused by nerve injury.
Collapse
Affiliation(s)
- Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong-Yi Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hee Sun Byun
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
11
|
Hu YM, Chen SR, Chen H, Pan HL. Casein kinase II inhibition reverses pain hypersensitivity and potentiated spinal N-methyl-D-aspartate receptor activity caused by calcineurin inhibitor. J Pharmacol Exp Ther 2014; 349:239-47. [PMID: 24610957 DOI: 10.1124/jpet.113.212563] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Clinically used calcineurin inhibitors, including tacrolimus (FK506) and cyclosporine A, can induce calcineurin inhibitor-induced pain syndrome (CIPS), which is characterized as severe pain and pain hypersensitivity. Increased synaptic N-methyl-D-aspartate receptor (NMDAR) activity in the spinal dorsal horn plays a critical role in the development of CIPS. Casein kinase II (CK2), a serine/threonine protein kinase, can regulate synaptic NMDAR activity in the brain. In this study, we determined whether spinal CK2 is involved in increased NMDAR activity and pain hypersensitivity caused by systemic administration of FK506 in rats. FK506 treatment caused a large increase in the amplitude of NMDAR-mediated excitatory postsynaptic currents (EPSCs) evoked by primary afferent stimulation and in the frequency of miniature EPSCs of spinal dorsal horn neurons. CK2 inhibition with either 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) or 4,5,6,7-tetrabromobenzotriazole (TBB) completely normalized the amplitude of evoked NMDAR-EPSCs of dorsal horn neurons in FK506-treated rats. In addition, DRB or TBB significantly attenuated the amplitude of NMDAR currents elicited by puff application of N-methyl-D-aspartate to dorsal horn neurons in FK506-treated rats. Furthermore, treatment with DRB or TBB significantly reduced the frequency of miniature EPSCs of spinal dorsal horn neurons increased by FK506 treatment. In addition, intrathecal injection of DRB or TBB dose-dependently reversed tactile allodynia and mechanical hyperalgesia in FK506-treated rats. Collectively, our findings indicate that CK2 inhibition abrogates pain hypersensitivity and increased pre- and postsynaptic NMDAR activity in the spinal cord caused by calcineurin inhibitors. CK2 inhibitors may represent a new therapeutic option for the treatment of CIPS.
Collapse
Affiliation(s)
- Yi-Min Hu
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine (Y.-M.H., S.-R.C., H.C., H.-L.P.), The University of Texas MD Anderson Cancer Center, Houston, Texas; and Department of Anesthesiology (Y.-M.H.), Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, Peoples Republic of China
| | | | | | | |
Collapse
|
12
|
Cui BP, Li P, Sun HJ, Ding L, Zhou YB, Wang JJ, Kang YM, Zhu GQ. Ionotropic glutamate receptors in paraventricular nucleus mediate adipose afferent reflex and regulate sympathetic outflow in rats. Acta Physiol (Oxf) 2013; 209:45-54. [PMID: 23782804 DOI: 10.1111/apha.12125] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 12/27/2022]
Abstract
AIM Chemical stimulation of white adipose tissue (WAT) induces adipose afferent reflex (AAR) and results in increases in renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP). The enhanced AAR contributes to sympathetic activation and hypertension in obesity rats. This study was designed to investigate whether N-methyl-D-aspartate receptors (NMDAR) and non-NMDAR in paraventricular nucleus (PVN) modulate AAR and sympathetic outflow. METHODS Renal sympathetic nerve activity and MAP were recorded in anesthetized rats. AAR was evaluated by the RSNA and MAP responses to the injection of capsaicin into the four sites of right inguinal WAT (8.0 nmol for each site). RESULTS Bilateral PVN microinjection of NMDAR antagonist AP5 or MK-801, or non-NMDAR antagonist CNQX attenuated AAR, RSNA and MAP. AP5 + CNQX caused greater effects than AP5 or CNQX alone and almost abolished AAR. NMDAR agonist NMDA or non-NMDAR agonist AMPA enhanced the AAR, and increased RSNA and MAP, which were prevented by AP5 or CNQX pre-treatment respectively. Casein kinase 2 inhibitor DRB, NR2A antagonist NVP-AAM077 or NR2B antagonist CP-101,606 attenuated AAR, RSNA and MAP. NVP-AAM077 + CP-101,606 caused greater effects than NVP-AAM077 or CP-101,606 alone. Bilateral baroreceptor denervation and vagotomy enhanced AAR, which was abolished by PVN pre-treatment with AP5 + CNQX. Furthermore, AP5 + CNQX abolished the AAR induced by leptin in iWAT. CONCLUSION Both NMDAR and non-NMDAR in the PVN mediate AAR and contribute to the tonic control of sympathetic outflow and blood pressure. CK2, NR2A and NR2B subunits of NMDAR in the PVN are involved in the NMDAR-mediated tonic control of AAR, RSNA and MAP.
Collapse
Affiliation(s)
- B.-P. Cui
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - P. Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - H.-J. Sun
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - L. Ding
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - Y.-B. Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - J.-J. Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| | - Y.-M. Kang
- Department of Physiology and Pathophysiology; Cardiovascular Research Center; Xi'an Jiaotong University School of Medicine; Xi'an; China
| | - G.-Q. Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention; Department of Physiology; Nanjing Medical University; Nanjing; Jiangsu; China
| |
Collapse
|
13
|
Zhou HY, Chen SR, Pan HL. Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain. Expert Rev Clin Pharmacol 2012; 4:379-88. [PMID: 21686074 DOI: 10.1586/ecp.11.17] [Citation(s) in RCA: 136] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neuropathic pain remains a major clinical problem and a therapeutic challenge because existing analgesics are often ineffective and can cause serious side effects. Increased N-methyl-d-aspartate receptor (NMDAR) activity contributes to central sensitization in certain types of neuropathic pain. NMDAR antagonists can reduce hyperalgesia and allodynia in animal models of neuropathic pain induced by nerve injury and diabetic neuropathy. Clinically used NMDAR antagonists, such as ketamine and dextromethorphan, are generally effective in patients with neuropathic pain, such as complex regional pain syndrome and painful diabetic neuropathy. However, patients with postherpetic neuralgia respond poorly to NMDAR antagonists. Recent studies on identifying NMDAR-interacting proteins and molecular mechanisms of increased NMDAR activity in neuropathic pain could facilitate the development of new drugs to attenuate abnormal NMDAR activity with minimal impairment of the physiological function of NMDARs. Combining NMDAR antagonists with other analgesics could also lead to better management of neuropathic pain without causing serious side effects.
Collapse
Affiliation(s)
- Hong-Yi Zhou
- Department of Anesthesiology and Perioperative Medicine, Unit 110, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | |
Collapse
|
14
|
Synaptic localization of acylpeptide hydrolase in adult rat telencephalon. Neurosci Lett 2012; 520:98-103. [PMID: 22640895 DOI: 10.1016/j.neulet.2012.05.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 01/04/2023]
Abstract
Acylpeptide hydrolase (ACPH), a serine protease present in the central nervous system (CNS), is believed to have a function in modulating synaptic plasticity, cleavage of beta amyloid peptide and degradation of aggregated oxidized proteins. In this report, we demonstrate for the first time the presence of ACPH in the synapse and its preferential localization at the pre-synaptic side. We isolated subcellular fractions from the rat telencephalon enriched in pre- versus post-synaptic components by using differential centrifugation steps to evaluate ACPH catalytic activity and expression level. Relative ACPH levels were determined by Western blot techniques while antibodies against synaptophysin and PSD-95 were used as positive pre- and post-synaptic markers, respectively. Our results show that ACPH protein levels are significantly increased at the synapse, which correlates with a 56% increase in ACPH activity. Furthermore, Western blot experiments show that ACPH is preferentially located at the pre-synaptic side and this is consistent with the increase of its enzymatic activity in fractions enriched in pre-synaptic components. These results give new insights regarding the localization and a putative role of ACPH in the CNS.
Collapse
|
15
|
Ye ZY, Li L, Li DP, Pan HL. Casein kinase 2-mediated synaptic GluN2A up-regulation increases N-methyl-D-aspartate receptor activity and excitability of hypothalamic neurons in hypertension. J Biol Chem 2012; 287:17438-17446. [PMID: 22474321 DOI: 10.1074/jbc.m111.331165] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Increased glutamatergic input, particularly N-methyl-D-aspartate receptor (NMDAR) activity, in the paraventricular nucleus (PVN) of the hypothalamus is closely associated with high sympathetic outflow in essential hypertension. The molecular mechanisms underlying augmented NMDAR activity in hypertension are unclear. GluN2 subunit composition at the synaptic site critically determines NMDAR functional properties. Here, we found that evoked NMDAR-excitatory postsynaptic currents (EPSCs) of retrogradely labeled spinally projecting PVN neurons displayed a larger amplitude and shorter decay time in spontaneously hypertensive rats (SHRs) than in Wistar-Kyoto (WKY) rats. Blocking GluN2B caused a smaller decrease in NMDAR-EPSCs of PVN neurons in SHRs than in WKY rats. In contrast, GluN2A blockade resulted in a larger reduction in evoked NMDAR-EPSCs and puff NMDA-elicited currents of PVN neurons in SHRs than in WKY rats. Blocking presynaptic GluN2A, but not GluN2B, significantly reduced the frequency of miniature EPSCs and the firing activity of PVN neurons in SHRs. The mRNA and total protein levels of GluN2A and GluN2B in the PVN were greater in SHRs than in WKY rats. Furthermore, the GluN2B Ser(1480) phosphorylation level and the synaptosomal GluN2A protein level in the PVN were significantly higher in SHRs than in WKY rats. Inhibition of protein kinase CK2 normalized the GluN2B Ser(1480) phosphorylation level and the contribution of GluN2A to NMDAR-EPSCs and miniature EPSCs of PVN neurons in SHRs. Collectively, our findings suggest that CK2-mediated GluN2B phosphorylation contributes to increased synaptic GluN2A, which potentiates pre- and postsynaptic NMDAR activity and the excitability of PVN presympathetic neurons in hypertension.
Collapse
Affiliation(s)
- Zeng-You Ye
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - Li Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030
| | - De-Pei Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Department of Critical Care, the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030 and
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, the University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030; Graduate Programs in Neuroscience and Experimental Therapeutics, the University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77225.
| |
Collapse
|
16
|
Ye ZY, Li DP, Li L, Pan HL. Protein kinase CK2 increases glutamatergic input in the hypothalamus and sympathetic vasomotor tone in hypertension. J Neurosci 2011; 31:8271-9. [PMID: 21632948 PMCID: PMC3123887 DOI: 10.1523/jneurosci.1147-11.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 04/06/2011] [Accepted: 04/20/2011] [Indexed: 11/21/2022] Open
Abstract
Increased glutamatergic input in the paraventricular nucleus (PVN) is important for high sympathetic outflow in hypertension, but the associated molecular mechanisms remain unclear. Here, we determined the role of protein kinase CK2 (formerly casein kinase II) in increased N-methyl-d-aspartate receptor (NMDAR) activity in spinally projecting PVN neurons and sympathetic vasomotor tone in spontaneously hypertensive rats (SHRs). The selective CK2 inhibitors 5,6-dichloro-1-β-d-ribofuranosylbenzimidazole (DRB) or 4,5,6,7-tetrabromobenzotriazole (TBB) significantly decreased the frequency of miniature EPSCs (mEPSCs) of labeled PVN neurons in SHRs but not in Wistar-Kyoto (WKY) normotensive rats. Also, DRB abolished the inhibitory effect of the NMDAR antagonist AP5 on the frequency of mEPSCs in SHRs. Treatment with DRB or TBB significantly reduced the amplitude of evoked NMDA-EPSCs but not AMPA-EPSCs in SHRs. Furthermore, DRB significantly decreased the firing activity of PVN neurons in SHRs but not in WKY rats. The membrane protein level of CK2α in the PVN, but not brainstem and prefrontal cortex, was significantly higher in SHRs than in WKY rats. Lowering blood pressure with celiac ganglionectomy in SHRs did not alter the increased CK2α level and the effects of DRB on mEPSCs and NMDA-EPSCs. In addition, intracerebroventricular injection of DRB not only significantly reduced blood pressure and lumbar sympathetic nerve discharges but also eliminated the inhibitory effect of AP5 microinjected into the PVN on sympathetic nerve activity in SHRs. Our findings suggest that augmented CK2 activity critically contributes to increased presynaptic and postsynaptic NMDAR activity in the PVN and elevated sympathetic vasomotor tone in essential hypertension.
Collapse
Affiliation(s)
- Zeng-You Ye
- Departments of Anesthesiology and Perioperative Medicine and
| | - De-Pei Li
- Critical Care, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, and
| | - Li Li
- Departments of Anesthesiology and Perioperative Medicine and
| | - Hui-Lin Pan
- Departments of Anesthesiology and Perioperative Medicine and
- Programs in Neuroscience and Experimental Therapeutics, University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77225
| |
Collapse
|
17
|
Yang H, Courtney MJ, Martinsson P, Manahan-Vaughan D. Hippocampal long-term depression is enhanced, depotentiation is inhibited and long-term potentiation is unaffected by the application of a selective c-Jun N-terminal kinase inhibitor to freely behaving rats. Eur J Neurosci 2011; 33:1647-55. [PMID: 21453290 DOI: 10.1111/j.1460-9568.2011.07661.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptic plasticity is regarded as the major candidate mechanism for synaptic information storage and memory formation in the hippocampus. Mitogen-activated protein kinases have recently emerged as an important regulatory factor in many forms of synaptic plasticity and memory. As one of the subfamilies of mitogen-activated protein kinases, extracellular-regulated kinase is involved in the in vitro induction of long-term potentiation (LTP), whereas p38 mediates metabotropic glutamate receptor-dependent long-term depression (LTD) in vitro. Although c-Jun N-terminal kinase (JNK) has also been implicated in synaptic plasticity, the in vivo relevance of JNK activity to different forms of synaptic plasticity remains to be further explored. We investigated the effect of inhibition of JNK on different forms of synaptic plasticity in the dentate gyrus of freely behaving adult rats. Intracereboventricular application of c-Jun N-terminal protein kinase-inhibiting peptide (D-JNKI) (96 ng), a highly selective JNK inhibitor peptide, did not affect basal synaptic transmission but reduced neuronal excitability with a higher dose (192 ng). Application of D-JNKI, at a concentration that did not affect basal synaptic transmission, resulted in reduced specific phosphorylation of the JNK substrates postsynaptic density 95kD protein (PSD 95) and c-Jun, a significant enhancement of LTD and a facilitation of short-term depression into LTD. Both LTP and short-term potentiation were unaffected. An inhibition of depotentiation (recovery of LTP) occurred. These data suggest that suppression of JNK-dependent signalling may serve to enhance synaptic depression, and indirectly promote LTP through impairment of depotentiation.
Collapse
Affiliation(s)
- Honghong Yang
- Department of Neurophysiology, Medical Faculty, Ruhr University Bochum MA 4/149, Universitaetsstrasse 150, 44780 Bochum, Germany
| | | | | | | |
Collapse
|
18
|
Expression of the IgSF protein Kirre in the rat central nervous system. Life Sci 2011; 88:590-7. [DOI: 10.1016/j.lfs.2011.01.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 12/17/2010] [Accepted: 01/14/2011] [Indexed: 11/23/2022]
|
19
|
Sanz-Clemente A, Matta JA, Isaac JTR, Roche KW. Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 2010; 67:984-96. [PMID: 20869595 DOI: 10.1016/j.neuron.2010.08.011] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
Abstract
N-methyl-D-aspartate (NMDA) receptors (NMDARs) play a central role in development, synaptic plasticity, and neurological disease. NMDAR subunit composition defines their biophysical properties and downstream signaling. Casein kinase 2 (CK2) phosphorylates the NR2B subunit within its PDZ-binding domain; however, the consequences for NMDAR localization and function are unclear. Here we show that CK2 phosphorylation of NR2B regulates synaptic NR2B and NR2A in response to activity. We find that CK2 phosphorylates NR2B, but not NR2A, to drive NR2B-endocytosis and remove NR2B from synapses resulting in an increase in synaptic NR2A expression. During development there is an activity-dependent switch from NR2B to NR2A at cortical synapses. We observe an increase in CK2 expression and NR2B phosphorylation over this same critical period and show that the acute activity-dependent switch in NR2 subunit composition at developing hippocampal synapses requires CK2 activity. Thus, CK2 plays a central role in determining the NR2 subunit content of synaptic NMDARs.
Collapse
Affiliation(s)
- Antonio Sanz-Clemente
- Receptor Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
20
|
Kimura R, Matsuki N. Protein kinase CK2 modulates synaptic plasticity by modification of synaptic NMDA receptors in the hippocampus. J Physiol 2008; 586:3195-206. [PMID: 18483072 DOI: 10.1113/jphysiol.2008.151894] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Synaptic plasticity is the foundation of learning and memory. The protein kinase CK2 phosphorylates many proteins related to synaptic plasticity, but whether it is directly involved in it has not been clarified. Here, we examined the role of CK2 in synaptic plasticity in hippocampal slices using the CK2 selective inhibitors 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) and 4,5,6,7-tetrabromobenzotriazole (TBB). These significantly inhibited N-methyl-D-aspartate (NMDA) receptor-dependent long-term potentiation (LTP). DRB also inhibited NMDA receptor-mediated synaptic transmission, while leaving NMDA receptor-independent LTP unaffected. NMDA receptors thus appear to be the primary targets of CK2. Although both long-term depression (LTD) and LTP are induced by the influx of Ca(2+) through NMDA receptors, surprisingly, LTD was not affected by CK2 inhibitors. We postulated that the LTP-selective modulation by CK2 is due to selective modulation of NMDA receptors, and tested two hypotheses concerning the modulation of NMDA receptors: (i) CK2 selectively modulates NR2A subunits possibly related to LTP, but not NR2B subunits possibly related to LTD; and (ii) CK2 selectively affects synaptic but not extrasynaptic NMDA receptors whose activation is sufficient to induce LTD. DRB decreased NMDA receptor-mediated synaptic transmission in the presence of selective NR2A subunit antagonist. The former hypothesis thus appears unlikely to be correct. However, DRB decreased synaptic NMDA receptor responses in cultured hippocampal neurons without affecting extrasynaptic NMDA receptor current. These findings support the latter hypothesis, that CK2 selectively affects LTP by selective modification of synaptic NMDA receptors in a receptor-location-specific manner.
Collapse
Affiliation(s)
- Rie Kimura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
21
|
Fan MMY, Zhang H, Hayden MR, Pelech SL, Raymond LA. Protective up-regulation of CK2 by mutant huntingtin in cells co-expressing NMDA receptors. J Neurochem 2007; 104:790-805. [PMID: 17971125 DOI: 10.1111/j.1471-4159.2007.05016.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Huntington's disease is caused by a polyglutamine expansion in the huntingtin (htt) protein, and previous data indicate that over-activation of NMDA receptors (NMDARs) may be involved in the selective degeneration of cells expressing NR1/NR2B NMDARs. We used Kinetworkstrade mark multi-immunoblotting screens to examine expression of 76 protein kinases, 18 protein phosphatases, 25 heat shock/stress proteins, and 27 apoptosis proteins in human embryonic kidney 293 cells transfected with NR1/NR2B and htt containing 15 (htt-15Q; wild-type) or 138 (htt-138Q; mutant) glutamine repeats. Follow-up experiments revealed several proteins involved in the heat-shock response pathway to be up-regulated in the soluble fraction from cells expressing htt-138Q, including protein phosphatase 5 and cyclin-dependent kinase 5. Increased expression in the soluble fraction of htt-138Q-expressing cells was also noted for the stress- and calcium-activated protein-serine/threonine kinase casein kinase 2, a change which was confirmed in striatal tissue of yeast artificial chromosome transgenic mice expressing full-length mutant htt. Inhibition of casein kinase 2 activity in cultured striatal neurons from these mice significantly exacerbated NMDAR-mediated toxicity, as assessed by labeling of apoptotic nuclei. Our findings are consistent with up-regulation of components of the stress response pathway in the presence of polyglutamine-expanded htt and NR1/NR2B which may reflect an attempt at the cellular level to ameliorate the detrimental effects of mutant htt expression.
Collapse
Affiliation(s)
- Mannie M Y Fan
- Graduate Program in Neuroscience, University of British Columbia, British Columbia, Canada
| | | | | | | | | |
Collapse
|
22
|
Wyneken U, Sandoval M, Sandoval S, Jorquera F, González I, Vargas F, Falcon R, Monari M, Orrego F. Clinically relevant doses of fluoxetine and reboxetine induce changes in the TrkB content of central excitatory synapses. Neuropsychopharmacology 2006; 31:2415-23. [PMID: 16554746 DOI: 10.1038/sj.npp.1301052] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have studied the effect of low doses of two widely used antidepressants, fluoxetine (Flx) and reboxetine (Rbx), on excitatory synapses of rat brain cortex and hippocampus. After 15 days of Flx treatment (0.67 mg/kg/day), its plasma level was 20.7+/-5.6 ng/ml. Analysis of postsynaptic densities (PSDs) by immunoblotting revealed no changes in the glutamate receptor subunits GluR1, NR1, NR2A/B, mGluR1alpha nor in the neurotrophin receptor p75(NTR). However, the brain-derived neurotrophic factor (BDNF) receptor TrkB decreased by 42.8+/-6%, and remained decreased after 6 weeks of treatment. The BDNF and TrkB content in homogenates of cortex and hippocampus began to rise at 9 and 15 days, respectively, and remained high for up to 6 weeks. Similar results were obtained following chronic Rbx administration at 0.128 mg/kg/day. We propose that BDNF, whose synthesis is increased by antidepressants, and which is in part released at synaptic sites, binds to TrkB in PSDs, leading to the internalization of the BDNF-TrkB complex and, thus, to a decrease of TrkB in the PSDs. This was paralleled by greater levels of phosphorylated (ie activated) TrkB in the light membrane fraction, that contains signaling endosomes. The retrograde transport of endocyted BDNF/TrkB complexes from spines to cell bodies, where it activates the synthesis of more BDNF, is a protracted process, potentially requiring several cycles of TrkB/BDNF complex endocytosis and transport. This positive feedback mechanism may help explain the time-lag between drug administration and its therapeutic effect, that is, the antidepressant drug paradox.
Collapse
Affiliation(s)
- Ursula Wyneken
- Neuroscience Laboratory, Faculty of Medicine, Universidad de los Andes, Casilla, Santiago, Chile
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Gardoni F, Polli F, Cattabeni F, Di Luca M. Calcium-calmodulin-dependent protein kinase II phosphorylation modulates PSD-95 binding to NMDA receptors. Eur J Neurosci 2006; 24:2694-704. [PMID: 17156196 DOI: 10.1111/j.1460-9568.2006.05140.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At the postsynaptic membrane of excitatory synapses, NMDA-type receptors are bound to scaffolding and signalling proteins that regulate the strength of synaptic transmission. The cytosolic tails of the NR2A and NR2B subunits of NMDA receptor bind to calcium-calmodulin-dependent protein kinase II (CaMKII) and to members of the MAGUK family such as PSD-95. In particular, although NR2A and NR2B subunits are highly homologous, the sites of their interaction with CaMKII as well as the regulation of this binding differ. We identified PSD-95 phosphorylation as a molecular mechanism responsible for the dynamic regulation of the interaction of both PSD-95 and CaMKII with the NR2A subunit. CaMKII-dependent phosphorylation of PSD-95 occurs both in vitro, in GST-PSD-95 fusion proteins phosphorylated by purified active CaMKII, and in vivo, in transfected COS-7 as well as in cultured hippocampal neurons. We identified Ser73 as major phosphorylation site within the PDZ1 domain of PSD-95, as confirmed by point mutagenesis experiments and by using a phospho-specific antibody. PSD-95 Ser73 phosphorylation causes NR2A dissociation from PSD-95, while it does not interfere with NR2B binding to PSD-95. These results identify CaMKII-dependent phosphorylation of the PDZ1 domain of PSD-95 as a mechanism regulating the signalling transduction pathway downstream NMDA receptor.
Collapse
Affiliation(s)
- Fabrizio Gardoni
- Center of Excellence on Neurodegenerative Diseases and Department of Pharmacological Sciences, University of Milan, via Balzaretti 9, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
24
|
Kristiansen LV, Beneyto M, Haroutunian V, Meador-Woodruff JH. Changes in NMDA receptor subunits and interacting PSD proteins in dorsolateral prefrontal and anterior cingulate cortex indicate abnormal regional expression in schizophrenia. Mol Psychiatry 2006; 11:737-47, 705. [PMID: 16702973 DOI: 10.1038/sj.mp.4001844] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Abnormal expression of the N-methyl-D-Aspartate (NMDA) receptor and its interacting molecules of the postsynaptic density (PSD) are thought to be involved in the pathophysiology of schizophrenia. Frontal regions of neocortex including dorsolateral prefrontal (DLPFC) and anterior cingulate cortex (ACC) are essential for cognitive and behavioral functions that are affected in schizophrenia. In this study, we have measured protein expression of two alternatively spliced isoforms of the NR1 subunit (NR1C2 and NR1C2') as well as expression of the NR2A-D subunits of the NMDA receptor in DLPFC and ACC in post-mortem samples from elderly schizophrenic patients and a comparison group. We found significantly increased expression of NR1C2' but not of NR1C2 in ACC, suggesting altered NMDA receptor cell membrane expression in this cortical area. We did not find significant changes in the expression of either of the NR1 isoforms in DLPFC. We did not detect changes of any of the NR2 subunits studied in either cortical area. In addition, we studied expression of the NMDA-interacting PSD molecules NF-L, SAP102, PSD-95 and PSD-93 in ACC and DLPFC at both transcriptional and translational levels. We found significant changes in the expression of NF-L in DLPFC, and PSD-95 and PSD-93 in ACC; increased transcript expression was associated with decreased protein expression, suggesting abnormal translation and/or accelerated protein degradation of these molecules in schizophrenia. Our findings suggest abnormal regional processing of the NMDA receptor and its associated PSD molecules, possibly involving transcription, translation, trafficking and protein stability in cortical areas in schizophrenia.
Collapse
Affiliation(s)
- L V Kristiansen
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA.
| | | | | | | |
Collapse
|
25
|
Li X, Shi X, Liang DY, Clark JD. Spinal CK2 regulates nociceptive signaling in models of inflammatory pain. Pain 2005; 115:182-90. [PMID: 15836981 DOI: 10.1016/j.pain.2005.02.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 02/15/2005] [Accepted: 02/22/2005] [Indexed: 11/21/2022]
Abstract
Casein kinase 2 (CK2) is a widely expressed protein kinase. Over the last several years a long list of protein substrates has evolved, many of which have proven or hypothesized roles in nociceptive signal transmission. However, CK2 has not itself been demonstrated to participate in nociception prior to this time. We set out to test the hypothesis that spinal CK2 regulates nociception using several pain models. Our first studies focused on the ability of the selective CK2 inhibitors 4,5,6,7-tetrabromobenzotriazole (TBBT) and 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) to reduce formalin-stimulated pain behaviors in mice. Both phases of the response to subcutaneous formalin were strongly inhibited by intrathecal administration of TBBT or DRB in dose-dependent fashion. Likewise, using the complete Freund's adjuvant (CFA) model of chronic inflammatory pain, TBBT was observed to strongly reduce mechanical allodynia. The inhibition of spinal CK2 with either inhibitor did not, however, alter withdrawal latencies in the hotplate thermal pain model while intrathecal morphine was very effective. Immunohistochemical studies demonstrated all three known CK2 subunits, alpha, alpha' and beta to be expressed in spinal cord tissue as did real-time PCR experiments. While mRNA levels for each of the subunits was transiently enhanced after formalin or CFA hindpaw injection, overall spinal cord protein levels were not elevated in a sustained fashion. Our results indicate that CK2 participates in inflammatory nociception both in the acute and chronic phases. Simple changes in the abundance of spinal CK2 subunits do not likely underlie these phenomena, however.
Collapse
Affiliation(s)
- Xiangqi Li
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, Anesthesiology, 112A, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|