1
|
Han T, Cao W, San L, Xu Z, Wang G, He Z, Liu Y, Ren Y, Wang Y, Zhang X, Hou J. Synchronously Mature Intersex Japanese Flounder ( Paralichthys olivaceus): A Rare Case. Animals (Basel) 2024; 14:2948. [PMID: 39457878 PMCID: PMC11503798 DOI: 10.3390/ani14202948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Japanese flounder is usually gonochoristic, with gonads that are either testes or ovaries. Here, we report an unusual case of hermaphroditism in Japanese flounder captured from the Bohai Sea. In the intersex flounder, the membrane of the upper ovary was closely connected to the abdominal muscles and internal organs, and the eggs filled the entire abdomen. The lower ovary was small and closely connected to the testes. The testes contained few fully mature sperm. Both eggs and sperm were capable of fertilization. The levels of several reproduction-related hormones (17β-estradiol, 11-ketotestosterone, 17α, 20β-dihydroxyprogesterone, luteinizing hormone, follicle-stimulating hormone, and testosterone) in the intersex flounder were intermediate, between those in females and males. The results showed that the heterozygosity of the intersex flounder was 0.632, and there were 28 single-nucleotide polymorphisms in the cyp21a gene. Compared with that of wild flounder, the activity of 21-hydroxylase was reduced by approximately 20.0%, and expressions of cyp19a, amh, and dmrt1 differed. We present the first report of its kind, detailing the anatomy, hormonal endocrinology, molecular biology, and physiology of the intersex Japanese flounder.
Collapse
Affiliation(s)
- Tian Han
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
- China Ocean College, Hebei Agricultural University, Qinhuangdao 066009, China
| | - Wei Cao
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Lize San
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Zixiong Xu
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Guixing Wang
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Zhongwei He
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Yufeng Liu
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Yuqin Ren
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Yufen Wang
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Xiaoyan Zhang
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| | - Jilun Hou
- China State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China; (T.H.); (W.C.); (L.S.); (Z.X.); (G.W.); (Z.H.); (Y.L.); (Y.R.); (Y.W.)
- Hebei Key Laboratory of the Bohai Sea Fish Germplasm Resources Conservation and Utilization, Beidaihe Central Experiment Station, Chinese Academy of Fishery Sciences, Qinhuangdao 066100, China
| |
Collapse
|
2
|
Lasalle A, Benech-Correa G, Brunet FG, Vizziano-Cantonnet D. hsd17b1 is a key gene for ovarian differentiation of the Siberian sturgeon. Mol Reprod Dev 2024; 91:e23729. [PMID: 38282315 DOI: 10.1002/mrd.23729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/21/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
This is the first work using gonads from undifferentiated, genetically-sexed Siberian sturgeon describing expression changes in genes related to steroid synthesis and female and male sex differentiation. One factor identified as relevant for ovarian differentiation was the gene coding for the enzyme Hsd17b1, which converts estrone into estradiol-17β. hsd17b1 was highly activated in female gonads at 2.5 months of age, around the onset of sex differentiation, preceding activation of two other genes involved in estrogen production (cyp19a1 and foxl2). hsd17b1 was also strongly repressed in males. Two known foxl2 paralogs are found in Siberian sturgeon-foxl2 and foxl2l-but only foxl2 appeared to be associated with ovarian differentiation. With regard to the male pathway, neither 11-oxygenated androgens nor classic male genes (amh, dmrt1, sox9, and dhh) were found to be involved in male sex differentiation, leaving open the question of which genes participate in early male gonad development in this ancient fish. Taken together, these results indicate an estrogen-dependence of female sex differentiation and 11-oxygenated androgen-independence of male sex differentiation.
Collapse
Affiliation(s)
- André Lasalle
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Germán Benech-Correa
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Frédéric G Brunet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard, Lyon, France
| | - Denise Vizziano-Cantonnet
- Laboratorio de Fisiología de la Reproducción y Ecología de Peces, Instituto de Biología, Facultad de Ciencias, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| |
Collapse
|
3
|
Liu F, Zhang X, Wei X, Li Y, Liu W, Gan G, Xiao L, Wang X, Luo H. Gonadal transcriptome analysis of paradise fish Macropodus opercularis to reveal sex-related genes. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101125. [PMID: 37666127 DOI: 10.1016/j.cbd.2023.101125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Macropodus opercularis is an ornamental fish species endemic to China, with obvious sexual dimorphism in phenotype. To obtain the gene expression profile of the gonads of M. opercularis and explore its sex-related genes, six cDNA libraries were constructed from the sexually mature M. opercularis, and RNA-seq analysis was performed. The sequenced clean data were assembled by de novo splicing to generate 171,415 unigenes, and differentially expressed genes (DEGs) screening revealed that there were 41,638 DEGs in the gonads of M. opercularis. By comparing those DEGS in the ovary with the testis, we found 29,870 DEGs were upregulated and 11,768 DEGs were downregulated. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis showed that GO terms related to cell cycle and gamete formation were enriched, and pathway signals related to sex differences, such as FoxO signalling pathway and PI3K-Akt signalling pathway, were also detected. Reverse transcript fluorescence quantitative PCR (RT-qPCR) validation of 14 DEGs associated with sex differences showed that the RT-qPCR results were consistent with RNA-Seq analysis, and five genes, foxl2, sox3, foxo, zar1, cyp19a1, were significantly expressed in the ovaries. dmrt1, cyp11b, amh, sf1, sox9, gdf6, dmrt3, fstl1 and hsd11b2, a total of nine genes were significantly expressed in the testis. The results of this study provide a basis for the study of gonadal differentiation, developmental mechanisms and related functional genes in M. opercularis.
Collapse
Affiliation(s)
- Fan Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China. https://twitter.com/@FanLiu_
| | - Xueling Zhang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Xiaokai Wei
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Yu Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Wei Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Guochen Gan
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Lingling Xiao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Xinyue Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China
| | - Hui Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, College of Fisheries, Southwest University, Chongqing 402460, China.
| |
Collapse
|
4
|
Wang T, Wang X, Zhao N, Liu Q, Song Z, Li J. Developmental regulation of the male urogenital papilla in the male marine teleost black rockfish, Sebastes schlegelii (Hilgendorf, 1880)†. Biol Reprod 2023; 109:461-473. [PMID: 37552063 DOI: 10.1093/biolre/ioad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/18/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023] Open
Abstract
The male external genitalia of the black rockfish (Sebastes schlegelii Hilgendorf, 1880) is a fleshy protrusion known as the urogenital papilla (UGP), which functions to deliver sperm into the female reproductive tract for internal fertilization. It is not known which genes regulate the development of the UGP. The aim of this study was to identify key genes that regulate the development of the UGP in black rockfish and to determine the distribution of androgen receptor gene (ar) in the UGP. A total of 26 adult males and 560 juvenile fish were used in the experiment, in which we divided all normally developing juveniles into normal development and androgen groups. We added methyltestosterone solution (100 μg/l) to the androgen group-treated fish tank, soaked for 2 h per day for 38 days, and sampled 5~10 samples each time every 5 days during the culture process. Gene expression changes related to UGP were analyzed with tissue specificity between control and androgen groups during sex differentiation, adult male maturation, and the copulation stage (September to December) using real-time quantitative polymerase chain reaction. The expression of ar was also localized by two-color in situ hybridization in the UGP region of juvenile fish. Androgen treatment enhanced ar expression levels and the ar signal was stronger in the UGP region of both adult breeding fish and androgen-treated juvenile fish. This study provides insights into the regulation of the external genitalia of black rockfish and presents vital information for the artificial breeding of viviparous fish.
Collapse
Affiliation(s)
- Tao Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xueying Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ning Zhao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinghua Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zongcheng Song
- Weihai Shenghang Aquatic Product Science and Technology Co. Ltd., Weihai, China
| | - Jun Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Xu Y, Zhong ZW, Feng Y, Zhang ZY, Ao LL, Liu H, Wang YL, Jiang YH. Expression pattern analysis of anti-Mullerian hormone in testis development of pearlscale angelfish (Centropyge vrolikii). JOURNAL OF FISH BIOLOGY 2023; 102:1067-1078. [PMID: 36840532 DOI: 10.1111/jfb.15358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/22/2023] [Indexed: 05/13/2023]
Abstract
In vertebrates, anti-Mullerian hormone (Amh) secreted by Sertoli cells (SC) performs a pivotal function in male sex differentiation. Compared with that of higher vertebrates, the expression pattern of Amh is more diversified in fish. In this study, the full-length complementary DNA (cDNA) of Amh in Centropyge vrolikii (Cv-Amh) was cloned and analysed, which was 2,470 bp, including a 238 bp 5'UTR, a 1,602 bp ORF and a 633 bp 3'UTR; the similarity of Amh between Cv-Amh and other fish is relatively high. The quantitative real-time PCR (qRT-PCR) results of healthy tissues and gonads at sex reversal stages in C. vrolikii showed that the expression level of Amh in the testis was significantly higher than that in other tissues (P < 0.05). Amh was weakly expressed in the vitellogenic stage ovary and perinucleolus stage ovary, but its expression significantly increased in the gonads at the hermaphroditic stage, and finally reached the highest in the pure testis after sexual reversal. The results of in situ hybridization indicated that the positive signal of Amh was strongly concentrated in SCs of testis. After Amh knockdown in the gonads, the effect on sex-related genes was tested using qRT-PCR. Among these, the expression of Dmrt1, Cyp11a, Hsd11b2, Sox8 and Sox9 significantly decreased, whereas that of Cyp19a, Sox4, Foxl2 and Sox3 increased. These results suggested that Amh could be the pivotal gene in reproductive regulation in C. vrolikii, and the data will contribute to sex-related research of C. vrolikii in the future.
Collapse
Affiliation(s)
- Yan Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Zhao-Wei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Ze-Yu Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China
| | - Lu-Lu Ao
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Hongwei Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Yi-Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| | - Yong-Hua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University, Xiamen, China
| |
Collapse
|
6
|
Amh/Amhr2 Signaling Causes Masculinization by Inhibiting Estrogen Synthesis during Gonadal Sex Differentiation in Japanese Flounder ( Paralichthys olivaceus). Int J Mol Sci 2023; 24:ijms24032480. [PMID: 36768803 PMCID: PMC9917198 DOI: 10.3390/ijms24032480] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The anti-Müllerian hormone (Amh) is a protein belonging to the TGF-β superfamily, the function of which has been considered important for male sex differentiation in vertebrates. The Japanese flounder (Paralichthys olivaceus) is a teleost fish that has an XX/XY sex determination system and temperature-dependent sex determination. In this species, amh expression is up-regulated in genetic males and in temperature-induced masculinization during the sex differentiation period. However, to the best of our knowledge, no reports on the Amh receptor (Amhr2) in flounder have been published, and the details of Amh signaling remain unclear. In this study, we produced amhr2-deficient mutants using the CRISPR/Cas9 system and analyzed the gonadal phenotypes and sex-related genes. The results revealed that the gonads of genetically male amhr2 mutants featured typical ovaries, and the sex differentiation-related genes showed a female expression pattern. Thus, the loss of Amhr2 function causes male-to-female sex reversal in Japanese flounder. Moreover, the treatment of genetically male amhr2 mutants with an aromatase inhibitor fadrozole, which inhibits estrogen synthesis, resulted in testicular formation. These results strongly suggest that Amh/Amhr2 signaling causes masculinization by inhibiting estrogen synthesis during gonadal sex differentiation in the flounder.
Collapse
|
7
|
Inaba H, Iwata Y, Suzuki T, Horiuchi M, Surugaya R, Ijiri S, Uchiyama A, Takano R, Hara S, Yazawa T, Kitano T. Soy Isoflavones Induce Feminization of Japanese Eel ( Anguilla japonica). Int J Mol Sci 2022; 24:ijms24010396. [PMID: 36613840 PMCID: PMC9820629 DOI: 10.3390/ijms24010396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/20/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Under aquaculture conditions, Japanese eels (Anguilla japonica) produce a high percentage of males. However, females gain higher body weight and have better commercial value than males, and, therefore, a high female ratio is required in eel aquaculture. In this study, we examined the effects of isoflavones, genistein, and daidzein on sex differentiation and sex-specific genes of eels. To investigate the effects of these phytoestrogens on the gonadal sex, we explored the feminizing effects of soy isoflavones, genistein, and daidzein in a dose-dependent manner. The results showed that genistein induced feminization more efficiently than daidzein. To identify the molecular mechanisms of sex-specific genes, we performed a comprehensive expression analysis by quantitative real-time PCR and RNA sequencing. Phenotypic males and females were produced by feeding elvers a normal diet or an estradiol-17β- or genistein-treated diet for 45 days. The results showed that female-specific genes were up-regulated and male-specific genes were down-regulated in the gonads, suggesting that genistein induces feminization by altering the molecular pathways responsible for eel sex differentiation.
Collapse
Affiliation(s)
- Hiroyuki Inaba
- Freshwater Resource Research Center, Aichi Fisheries Research Institute, Isshiki, Nishio 444-0425, Aichi, Japan
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
- Fisheries Administration Division, Bureau of Agriculture and Fisheries, Aichi Prefectural Governmental Office, 3-1-2 Sannomaru, Nakaku, Nagoya 460-8501, Aichi, Japan
| | - Yuzo Iwata
- Freshwater Resource Research Center, Aichi Fisheries Research Institute, Isshiki, Nishio 444-0425, Aichi, Japan
- Nishimikawa Agriculture, Forestry, and Fisheries Office of Aichi Prefectural Government, Myoudaijihonmachi, Okazaki 444-0860, Aichi, Japan
| | - Takashi Suzuki
- Freshwater Resource Research Center, Aichi Fisheries Research Institute, Isshiki, Nishio 444-0425, Aichi, Japan
- Marine Resources Research Center, Aichi Fisheries Research Institute, Toyohama, Minamichita 470-3412, Aichi, Japan
| | - Moemi Horiuchi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Ryohei Surugaya
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Shigeho Ijiri
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Hokkaido, Japan
| | - Ai Uchiyama
- Advanced Technology Development Center, Kyoritsu Seiyaku Corporation, 2-9-22 Takamihara, Tsukuba 300-1252, Ibaraki, Japan
| | - Ryoko Takano
- Advanced Technology Development Center, Kyoritsu Seiyaku Corporation, 2-9-22 Takamihara, Tsukuba 300-1252, Ibaraki, Japan
| | - Seiji Hara
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
- Fukui Prefectural Fish Farming Center, 50-1 Katsumi, Obama 917-0166, Fukui, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Kumamoto, Japan
- Correspondence: ; Tel.: +81-96-342-3031
| |
Collapse
|
8
|
Zhong Z, Wang Y, Feng Y, Xu Y, Zhao L, Jiang Y, Zhang Z. The molecular regulation mechanism of dmrt1-based on the establishment of the testis cell line derived from two-spot puffer Takifugu bimaculatus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1475-1494. [PMID: 36445491 DOI: 10.1007/s10695-022-01150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The establishment of fish cell lines can provide an important in vitro model for developmental biology, pathology, and genetics and also an effective tool to investigate the interactions and related functions of genes. Two-spot puffer Takifugu bimaculatus is a high economic and nutritional value marine fish in Fujian in recent years. Nevertheless, dmrt1 plays a key role in the male differentiation from invertebrates to vertebrates. To understand the molecular regulatory mechanisms of dmrt1 in T. bimaculatus, a testis cell line called TBTc from a juvenile testis of this organism was established with modified Leibovitz's L-15 medium supplemented with 20% FBS, fish serum, embryo extract, and other growth factors. The TBTc with a stable karyotype can be passaged continuously, which was composed of fibroblast-like cells and expressed the marker genes of male-special cells, dmrt1, and amh, and the absence of vasa expression may rule out the possibility of the presence of germ cells. Therefore, TBTc appeared to consist of the mixture of the Sertoli cell and germ cell of the testis. The dmrt1 was significantly expressed in the testes and slightly expressed in the late embryonic development, illustrating that the dmrt1 may participate in the molecular regulation of gonads development and sex differentiation. With the high transfection efficiency of TBTc by electroporation, the cell lines could be used effectively in the study for the expression of exogenous and endogenous genes. Meanwhile, after the knockdown of dmrt1, the morphological changes and survival rates of cells proved that dmrt1 could affect the growth of testicular cells. Furthermore, with the loss of dmrt1, the expression of male-bias genes amh, sox9, and cyp11a was significantly decreased, and the expression of female-bias genes foxl2, sox3, and cyp19a was increased, which suggested that dmrt1 upregulates amh, sox9, and cyp11a and downregulates foxl2, sox3, and cyp19a to participate in the testis development. As a first fish gonadal cell lines of T. bimaculatus, which can be a more convenient, efficient, and rapid model for the investigation of the expression and function of genes, the results will lay a foundation for the next study of the molecular regulation mechanism in gonadal development and sex determination of fish in the future.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yan Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yan Xu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Liping Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, 361021, China.
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Hattori RS, Kumazawa K, Nakamoto M, Nakano Y, Yamaguchi T, Kitano T, Yamamoto E, Fuji K, Sakamoto T. Y-specific amh allele, amhy, is the master sex-determining gene in Japanese flounder Paralichthys olivaceus. Front Genet 2022; 13:1007548. [PMID: 36186422 PMCID: PMC9523440 DOI: 10.3389/fgene.2022.1007548] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Japanese flounder (Paralichthys olivaceus) is an important marine fish species of both fisheries and aquaculture in Northeast Asia. The commercial interest for all-female progenies due to several sex-related traits has prompted basic research on the mechanisms of sex determination in this species. By conducting a linkage analysis of the sex-determining locus, we initially identified 12 microsatellite markers linked to sex in 11 scaffolds, whose localization was restricted to a specific region of linkage group 9. Sequence analysis of this region identified 181 genes based on the UniProt database annotations. Among them, the amh gene was considered a potential candidate for sex determination because this gene is known to have taken over the role of sex determination in many teleosts. An in-depth sequence analysis of both the coding and non-coding regions of amh in XX and XY individuals detected nine SNPs linked with maleness. However, because these substitutions were synonymous, the upstream and downstream regions of amh were also investigated and a male-specific variant with deletions in the promoter region was detected. This truncated Y-specific amh variant was named amhy, and the amh shared by both sexes was named amhx. The association analysis using both females and males of the genotypic sex inferred by the presence/absence of amhy found complete association with phenotypic sex and genotype. Gene expression analysis in larvae derived from a single-pair progeny by quantitative real-time PCR detected amhy transcripts in the larval trunks between 20 and 100 days after hatching only in XY larvae. Localization of amhy by in situ hybridization was detected in presumptive Sertoli cells of XY gonads. Expression of amhx was almost undetectable in both XX and XY genotypes. Loss of Amh function by CRISPR-Cas9 induced male-to-female sex reversal, indicating that this gene was necessary for the masculinization of XY individuals. In conclusion, the complete linkage of amhy with males, its early expression in XY gonads before testicular differentiation, and the induction of sex reversal by loss-of-function mutation support the view that amhy is the sex-determining gene in this species.
Collapse
Affiliation(s)
- Ricardo Shohei Hattori
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Keiichiro Kumazawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Masatoshi Nakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yuki Nakano
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Toshiya Yamaguchi
- Nansei Field Station, National Research and Development Agency, Japan Fisheries Research and Education Agency, Mie, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Eiichi Yamamoto
- Tottori Prefectural Fisheries Experimental Station, Tottori, Japan
| | - Kanako Fuji
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Takashi Sakamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
- *Correspondence: Takashi Sakamoto,
| |
Collapse
|
10
|
Begum S, Gnanasree SM, Anusha N, Senthilkumaran B. Germ cell markers in fishes - A review. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Dynamics of sexual development in teleosts with a note on Mugil cephalus. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Lin CJ, Jeng SR, Lei ZY, Yueh WS, Dufour S, Wu GC, Chang CF. Involvement of Transforming Growth Factor Beta Family Genes in Gonadal Differentiation in Japanese Eel, Anguilla japonica, According to Sex-Related Gene Expressions. Cells 2021; 10:cells10113007. [PMID: 34831230 PMCID: PMC8616510 DOI: 10.3390/cells10113007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2021] [Accepted: 11/01/2021] [Indexed: 11/18/2022] Open
Abstract
The gonochoristic feature with environmental sex determination that occurs during the yellow stage in the eel provides an interesting model to investigate the mechanisms of gonadal development. We previously studied various sex-related genes during gonadal sex differentiation in Japanese eels. In the present study, the members of transforming growth factor beta (TGF-β) superfamily were investigated. Transcript levels of anti-Müllerian hormone, its receptor, gonadal soma-derived factor (amh, amhr2, and gsdf, respectively) measured by real-time polymerase chain reaction (qPCR) showed a strong sexual dimorphism. Transcripts were dominantly expressed in the testis, and their levels significantly increased with testicular differentiation. In contrast, the expressions of amh, amhr2, and gsdf transcripts were low in the ovary of E2-feminized female eels. In situ hybridization detected gsdf (but not amh) transcript signals in undifferentiated gonads. amh and gsdf signals were localized to Sertoli cells and had increased significantly with testicular differentiation. Weak gsdf and no amh signals were detected in early ovaries of E2-feminized female eels. Transcript levels of amh and gsdf (not amhr2) decreased during human chorionic gonadotropin (HCG)-induced spermatogenesis in males. This study suggests that amh, amhr2, and especially gsdf might be involved in the gene pathway regulating testicular differentiation of Japanese eels.
Collapse
Affiliation(s)
- Chien-Ju Lin
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Shan-Ru Jeng
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Zhen-Yuan Lei
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Wen-Shiun Yueh
- Department of Aquaculture, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan; (Z.-Y.L.); (W.-S.Y.)
| | - Sylvie Dufour
- Laboratory Biology of Aquatic Organisms and Ecosystems (BOREA), Muséum National d’Histoire Naturelle, CNRS, IRD, Sorbonne Université, CEDEX 05, 75231 Paris, France;
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Guan-Chung Wu
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| | - Ching-Fong Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Correspondence: (S.-R.J.); (G.-C.W.); (C.-F.C.)
| |
Collapse
|
13
|
Zhong Z, Ao L, Wang Y, Wang S, Zhao L, Ma S, Jiang Y. Comparison of differential expression genes in ovaries and testes of Pearlscale angelfish Centropyge vrolikii based on RNA-Seq analysis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1565-1583. [PMID: 34415453 DOI: 10.1007/s10695-021-00977-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Pearlscale angelfish Centropyge vrolikii is a kind of protogynous hermaphrodite fish with a natural sexual reversion. Under appropriate social conditions, a female fish can transform into a male fish spontaneously. It is an important prerequisite for artificial breeding to understand the process of its gonadal development and sexual reversion. Gonadal development is regulated by many sex-related genes. In this study, we used unreferenced RNA-Seq technology to sequence the ovary at the perinucleolus stage (OII), ovary at the yolk vesicle stage (OIV),IV and testis (T), respectively; screened the gonadal differential expression genes (DEGs); and analyzed the expression of these genes in different developmental stages of ovary and different sex gonads. The results showed that a total of 142,589 all-unigene samples were assembled, and gene annotation was performed by COG, GO, KEGG, KOG, Pfam, Swissprot, eggNOG, and NR functional database. Comparative analysis revealed that there were 1919 genes that were up-regulated and 1289 genes were down-regulated in comparison to OIV vs OII, while there were 3653 genes that were up-regulated and 2874 genes were down-regulated in comparison of OIV vs T, there were 3345 genes that were up-regulated and 2995 genes were down-regulated in comparison of the OII vs the T. At the same time, the results verified by RT-qPCR were consistent with the variation trend of transcriptome data. Among the results, amh, sox9b, dmrt1, dmrt2, cyp11a, cyp17a, and cyp19a were significantly expressed in the testes, while sox3, sox4, sox11, sox17, and hsd3b7 were significantly expressed in the ovaries. And, the expression of the amh, sox9b, dmrt2, and dmrt1 were low in the OII and OIV, while significantly increased during the ovotestis in the hermaphroditic period (OT), and finally reached the highest level in pure testis after sex reversal. The expression of sox3, sox4, hsd3b7, sox11, and sox17 was significantly reduced during the hermaphroditic period (OT). These results suggested that these genes may play an important role in the process of sex reversal. This study is helpful to further understand the molecular regulation mechanism of gonadal development and sexual reversion in Pearlscale angelfish and also provide important clues for future studies.
Collapse
Affiliation(s)
- Zhaowei Zhong
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Lulu Ao
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yilei Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Shuhong Wang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China
| | - Liping Zhao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Senwei Ma
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China
| | - Yonghua Jiang
- Key Laboratory of Healthy Mariculture for East China Sea, Ministry of Agriculture, Fisheries College, Jimei University, Xiamen, 361021, China.
- National Demonstration Center for Experimental Aquatic Science and Technology Education, Jimei University), Xiamen, 361021, China.
| |
Collapse
|
14
|
Functional Activity of Recombinant Forms of Amh and Synergistic Action with Fsh in European Sea Bass Ovary. Int J Mol Sci 2021; 22:ijms221810092. [PMID: 34576257 PMCID: PMC8467395 DOI: 10.3390/ijms221810092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 01/21/2023] Open
Abstract
Although anti-Müllerian hormone (AMH) has classically been correlated with the regression of Müllerian ducts in male mammals, involvement of this growth factor in other reproductive processes only recently come to light. Teleost is the only gnathostomes that lack Müllerian ducts despite having amh orthologous genes. In adult teleost gonads, Amh exerts a role in the early stages of germ cell development in both males and females. Mechanisms involving the interaction of Amh with gonadotropin- and growth factor-induced functions have been proposed, but our overall knowledge regarding Amh function in fish gonads remains modest. In this study, we report on Amh actions in the European sea bass ovary. Amh and type 2 Amh receptor (Amhr2) are present in granulosa and theca cells of both early and late-vitellogenic follicles and cannot be detected in previtellogenic ovaries. Using the Pichia pastoris system a recombinant sea bass Amh has been produced that is endogenously processed to generate a 12–15 kDa bioactive mature protein. Contrary to previous evidence in lower vertebrates, in explants of previtellogenic sea bass ovaries, mature Amh has a synergistic effect on steroidogenesis induced by the follicle-stimulating hormone (Fsh), increasing E2 and cyp19a1a levels.
Collapse
|
15
|
Song W, Xie Y, Sun M, Li X, Fitzpatrick CK, Vaux F, O'Malley KG, Zhang Q, Qi J, He Y. A duplicated amh is the master sex-determining gene for Sebastes rockfish in the Northwest Pacific. Open Biol 2021; 11:210063. [PMID: 34255977 PMCID: PMC8277470 DOI: 10.1098/rsob.210063] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Teleost fish are the most diverse group of vertebrates and provide opportunities to study the evolution of sex determination (SD) systems. Using genomic and functional analyses, we identified a male-specific duplication of anti-Müllerian hormone (amh) gene as the male master sex-determining (MSD) gene in Sebastes schlegelii. By resequencing 10 males and 10 females, we characterized a 5 kb-long fragment in HiC_Scaffold_12 as a male-specific region, which contained an amh gene (named amhy). We then demonstrated that amhy is a duplication of autosomal amh that was later translocated to the ancestral Y chromosome. amha and amhy shared high-nucleotide identity with the most significant difference being two insertions in intron 4 of amhy. Furthermore, amhy overexpression triggered female-to-male sex reversal in S. schlegelii, displaying its fundamental role in driving testis differentiation. We developed a PCR assay which successfully identified sexes in two species of northwest Pacific rockfish related to S. schlegelii. However, the PCR assay failed to distinguish the sexes in a separate clade of northeast Pacific rockfish. Our study provides new examples of amh as the MSD in fish and sheds light on the convergent evolution of amh duplication as the driving force of sex determination in different fish taxa.
Collapse
Affiliation(s)
- Weihao Song
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yuheng Xie
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Minmin Sun
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Xuemei Li
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Cristín K Fitzpatrick
- State Fisheries Genomics Lab, Coastal Oregon Marine Experiment Station, Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - Felix Vaux
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Kathleen G O'Malley
- State Fisheries Genomics Lab, Coastal Oregon Marine Experiment Station, Department of Fisheries and Wildlife, Hatfield Marine Science Center, Oregon State University, Newport, OR, USA
| | - Quanqi Zhang
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Jie Qi
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| | - Yan He
- MOE Key Laboratory of Molecular Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
16
|
Oliveira MA, Martinez ERM, Butzge AJ, Doretto LB, Ricci JMB, Rodrigues MS, Vigoya AAA, Gómez-González NE, Stewart AB, Nóbrega RH. Molecular characterization and expression analysis of anti-Müllerian hormone in common carp (Cyprinus carpio) adult testes. Gene Expr Patterns 2021; 40:119169. [PMID: 33667682 DOI: 10.1016/j.gep.2021.119169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022]
Abstract
Anti-Müllerian hormone (Amh) is a member of the transforming growth factor-β (Tgf-β) superfamily required in the regression of Müllerian ducts during gonadal sex differentiation of higher vertebrates. Teleost fish lack Müllerian ducts, but identified Amh orthologs have been shown to exert crucial functions during sex determination and differentiation of several species of teleosts. However, the function of Amh during gametogenesis in adult fish remains poorly investigated. Therefore, to expand present knowledge on the role of Amh in teleosts, the present study aimed to isolate and clone full-length amh cDNA in the common carp, Cyprinus carpio, and examine its expression levels throughout the male reproductive cycle and in response to different hormone treatments of testicular explants. Molecular cloning and characterization showed that the common carp Amh precursor amino acid sequence shared common features to other fish Amh precursors, including a conserved C-terminus (Tgf-β domain) and a double proteolytic cleavage site (R-X-X-R-X-X-R) upstream to the Tgf-β domain. Expression analysis showed amh dimorphic expression in the adult gonads with higher expression in the testes than ovaries. In testes, amh mRNA was detected in Sertoli cells contacting different types of germ cells, although the expression was greatest in Sertoli cells associated with type A undifferentiated spermatogonia. Expression analysis during the reproductive cycle showed that amh transcripts were down-regulated during the developing phase, which is characterized by an increased proliferation of type A undifferentiated spermatogonia and Sertoli cells and appearance of spermatocytes (meiosis) in the testes. Furthermore, ex vivo experiments showed that a 7 day exposure to Fsh or estrogens was required to decrease amh mRNA levels in common carp testicular explants. In summary, this study provided information on the molecular characterization and transcript abundance of amh in common carp adult testes. Altogether, these data will be useful for further investigations on sex determination and differentiation in this species, and also to improved strategies for improved carp aquaculture, such as inhibiting precocious maturation of males.
Collapse
Affiliation(s)
- Marcos A Oliveira
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Emanuel R M Martinez
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Arno J Butzge
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Lucas B Doretto
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Juliana M B Ricci
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Maira S Rodrigues
- Aquaculture Program (CAUNESP), São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil; Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Angel A A Vigoya
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Faculty of Veterinary Medicine and Animal Science, San Martín University Foundation (FUSM), Bogotá, Colombia
| | - Núria E Gómez-González
- Department of Cell Biology and Histology, Faculty of Biology, Universidad de Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Amanda B Stewart
- Department of Orthopaedics Muscle skeletal Research, West Virginia University, USA
| | - Rafael H Nóbrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil.
| |
Collapse
|
17
|
Lin G, Gao D, Lu J, Sun X. Transcriptome Profiling Reveals the Sexual Dimorphism of Gene Expression Patterns during Gonad Differentiation in the Half-Smooth Tongue Sole (Cynoglossus semilaevis). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:18-30. [PMID: 32996005 DOI: 10.1007/s10126-020-09996-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The half-smooth tongue sole (Cynoglossus semilaevis), one of the most economically-important fish species in China, exhibits sexually dimorphic growth. An understanding of sex-related gene expression patterns in the tongue sole may inform sex regulation and breeding processes that increase fish production. However, the gene expression patterns during gonad development in the tongue sole remain unknown. In this study, transcriptome sequencing analyses were performed during gonad differentiation in the tongue sole, namely, at 62 days post-hatching (dph), 100 dph, 120 dph, and 150 dph. Differentially expressed genes associated with sex differentiation and gonad development were identified at each time point. Trend analysis showed that gene expression patterns varied over time. These expression patterns either explained common, non-sexually-dimorphic features or indicated significant sexual dimorphism. Transcript structure analyses identified both sex and time differences among samples. This study investigated the time-dependent expression patterns of several sex-related genes, including Dmrt1, Amh, Foxl2, aromatase encoding gene, Esr, and the Sox gene family, during gonad differentiation in the tongue sole. These results might clarify the significant sexual differences during early development in the tongue sole and might provide insight into the mechanisms controlling sex differentiation and development.
Collapse
Affiliation(s)
- Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
18
|
Zhang Z, Zhu B, Chen W, Ge W. Anti-Müllerian hormone (Amh/amh) plays dual roles in maintaining gonadal homeostasis and gametogenesis in zebrafish. Mol Cell Endocrinol 2020; 517:110963. [PMID: 32745576 DOI: 10.1016/j.mce.2020.110963] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 11/21/2022]
Abstract
Anti-Müllerian hormone (AMH/Amh) plays a role in gonadal differentiation and function across vertebrates. In zebrafish we demonstrated that Amh deficiency caused severe gonadal dysgenesis and dysfunction. The mutant gonads showed extreme hypertrophy with accumulation of early germ cells in both sexes, namely spermatogonia in the testis and primary growth oocytes in the ovary. In amh mutant females, the folliculogenesis was normal in young fish but receded progressively in adults, which was accompanied by progressive decrease in follicle-stimulating hormone (fshb) expression. Interestingly the expression of fshb increased in the pituitary of juvenile amh mutant males but decreased in adults. The upregulation of fshb in mutant male juveniles was likely one of the mechanisms for triggering gonadal hypergrowth, whereas the downregulation of fshb in adults might involve a negative feedback by gonadal inhibin. Further analysis using mutants of fshb and growth differentiation factor 9 (gdf9) provided evidence for a role of FSH in triggering ovarian hypertrophy in young female amh mutant as well. In summary, the present study provided comprehensive genetic evidence for dual roles of Amh in controlling zebrafish gonadal homeostasis and gametogenesis in both sexes. Amh suppresses proliferation or accumulation of early germ cells (spermatogonia in testis and primary growth oocytes in ovary) while promoting their exit to advanced stages, and its action may involve both endocrine and paracrine pathways.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Bo Zhu
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Weiting Chen
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau
| | - Wei Ge
- Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau.
| |
Collapse
|
19
|
Wang W, Liang S, Zou Y, Wu Z, Wang L, Liu Y, You F. Amh dominant expression in Sertoli cells during the testicular differentiation and development stages in the olive flounder Paralichthys olivaceus. Gene 2020; 755:144906. [PMID: 32554048 DOI: 10.1016/j.gene.2020.144906] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022]
Abstract
The olive flounder Paralichthys olivaceus, an important marine fish, shows gender differences in growth. The mechanism on its gonadal differentiation direction affected with exogenous factors still needs to be clarified. The anti-Müllerian hormone (amh) gene is involved in fish testicular differentiation and maintenance. The aim of this study was to investigate the expression of the flounder amh in tissues and the gonads. The quantitative expression analysis results showed that it was highly expressed in the testis, especially in the testis at stages I - IV (P < 0.05). Also, amh was detected in Sertoli cells surrounding spermatogonia and peripheral seminiferous lobule of the testis with in situ hybridization (ISH) and immunohistochemistry (IHC). During the differentiation period, the amh expression in the testis of the tamoxifen treatment group (100 ppm) was higher than that in the ovary of the 17β-estradiol (E2, 5 ppm) group, and the expression levels of amh during process of the male differentiation in the tamoxifen group were higher than those in the 17ɑ-methyltestosterone (MT, 5 ppm) group (P < 0.05). ISH results also exhibited that amh was expressed in the somatic cells that surrounded the germ cells of juvenile flounder similar to adult ones. Furthermore, the flounder gonads in the tamoxifen group maintained more germ cells and somatic cells than those in the MT group from 20 to 80 mm total length (TL). Especially, at 60 and 80 mm TL, the numbers of germ and somatic cells in the tamoxifen group were significantly higher than those in the MT group (P < 0.05). In summary, amh might initiate the process of testicular differentiation, and is involved in the early development and maintenance of testis.
Collapse
Affiliation(s)
- Wenxiang Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaoshuai Liang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Yan Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, PR China.
| |
Collapse
|
20
|
Expression profile and estrogenic regulation of Amh during gonadal sex differentiation in northern snakehead (Channa argus). Genes Genomics 2020; 42:827-835. [PMID: 32462521 DOI: 10.1007/s13258-020-00943-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Anti-Müllerian hormone (Amh) plays a critical role in both early sex determination and later gonad development in vertebrate species. However, it remains unknown in northern snakehead (Channa argus), which is economically important freshwater fish with sexual dimorphism. OBJECTIVE This study aimed to identify the expression profiles and estrogenic regulation of CaAmh during gonadal sex differentiation in C. argus. METHODS The cDNA and genomic DNA sequences of CaAmh were identified by PCR and RACE techniques. The expression patterns of CaAmh were detected by qRT-PCR during the gonadal sex differentiation and after 17α-ethinyloestradiol (EE2) treatments. RESULTS CaAmh is composed of seven exons and six introns, and its full-length cDNA is 2413 bp in length, with 1635 bp open reading frame (ORF) that encodes a 544 amino acid protein. Tissues expression patterns revealed that CaAmh display the highest expression in testis of XY males (40.36 folds, p < 0.01). The spatio-temporal expression patterns during gonadal sex differentiation indicated that CaAmh expression differed between XX females and XY males at 30 day after hatching (dah), and reached to the peak (36.03 folds, p < 0.01) at 90 dah in XY gonads. However, CaAmh expression in XX gonads remained low throughout the sampling period. Furthermore, CaAmh expression in the gonads (ovaries) of the sex-reversed XY fish (XY-F) by the administration of estrogen EE2 was downregulated to low level, similar to that in ovaries of normal XX females (XX-F). CONCLUSIONS These results show that Amh plays a critical role in testicular differentiation of C. argus and it is apparently modulated by estrogens in this species.
Collapse
|
21
|
Gao D, Zheng M, Lin G, Fang W, Huang J, Lu J, Sun X. Construction of High-Density Genetic Map and Mapping of Sex-Related Loci in the Yellow Catfish (Pelteobagrus fulvidraco). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:31-40. [PMID: 31897745 DOI: 10.1007/s10126-019-09928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/23/2019] [Indexed: 06/10/2023]
Abstract
The yellow catfish (Pelteobagrus fulvidraco) is a very important aquaculture species distributed in freshwater area of China. All-male yellow catfish is very popular in aquaculture because of their significant sex dimorphism phenomena. The males grow much faster than females in full-sibling family. However, the sex dimorphism mechanism is still unclear in yellow catfish. In order to better understand the genetic basis of yellow catfish sexual dimorphism, it is vital to map the sex-related traits and localize the candidate genes across yellow catfish whole genome. Here, we constructed a high-density linkage map of yellow catfish using genotyping-by-sequencing (GBS) strategy. A total of 5705 single-nucleotide polymorphism (SNP) markers were mapped to 26 different linkage groups (LGs) using 184 F1 offspring. The total genetic map length was 3071.59 cM, with an average interlocus distance of 0.54 cM. Eleven significant sex-related QTLs in yellow catfish were identified. Six sex-related genes were identified from the region of reference genome near these QTLs including amh, gnrhr, vasa, lnnr1, foxl2, and bmp15. The high-density genetic linkage map provides valuable resources for yellow catfish molecular assistant breeding and elucidating sex differentiation process. Moreover, the comparative genomic study was analyzed among yellow catfish, channel catfish, and zebrafish. It revealed highly conserved chromosomal distribution between yellow catfish and channel catfish.
Collapse
Affiliation(s)
- Dong Gao
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Min Zheng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Genmei Lin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenyu Fang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Huang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo Lu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China.
| | - Xiaowen Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| |
Collapse
|
22
|
Peach K, Liu JW, Klitgaard KN, Mazer SJ. Sex-specific floral attraction traits in a sequentially hermaphroditic species. Ecol Evol 2020; 10:1856-1875. [PMID: 32128121 PMCID: PMC7042773 DOI: 10.1002/ece3.5987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
●Many angiosperms are hermaphroditic and produce bisexual flowers in which male (pollen export) and female (stigma receptivity) functions are separated temporally. This sequential hermaphroditism may be associated with variation in flower size, color, or pattern, all of which may influence pollinator attraction. In this study, we describe variation in these traits across discrete functional sex stages within and between 225 greenhouse-grown individuals of Clarkia unguiculata (Onagraceae). In addition, to identify the effects of floral phenotype on pollinator attraction in this species, we examine the effects of these floral traits on pollen receipt in ~180 individuals in an experimental field array.●Petal area, ultraviolet (UV)-absorbing nectar guide area, and blue and green mean petal reflectance differ significantly across the functional sex stages of C. unguiculata. Male- and female-phase flowers display significantly different pollinator attraction traits. Petal and UV nectar guide area increase as flowers progress from male phase to female phase, while blue reflectance and green reflectance peak during anther maturation.●In field arrays of C. unguiculata, female-phase flowers with large UV nectar guides receive more pollen than those with small nectar guides, and female-phase flowers with high mean blue reflectance values are more likely to receive pollen than those with low blue reflectance. Female-phase flowers with green mean reflectance values that differ most from background foliage also receive more pollen than those that are more similar to foliage. These findings indicate that components of flower color and pattern influence pollen receipt, independent of other plant attributes that may covary with floral traits. We discuss these results in the context of hypotheses that have been proposed to explain sex-specific floral attraction traits, and we suggest future research that could improve our understanding of sexual dimorphism in sequentially hermaphroditic species and the evolution of features that promote outcrossing.
Collapse
Affiliation(s)
- Kristen Peach
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - Jasen W. Liu
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - Kristen N. Klitgaard
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| | - Susan J. Mazer
- Department of Ecology, Evolution and Marine BiologyUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
23
|
Rojo-Bartolomé I, Santana de Souza JE, Diaz de Cerio O, Cancio I. Duplication and subfunctionalisation of the general transcription factor IIIA (gtf3a) gene in teleost genomes, with ovarian specific transcription of gtf3ab. PLoS One 2020; 15:e0227690. [PMID: 31999691 PMCID: PMC6991959 DOI: 10.1371/journal.pone.0227690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/25/2019] [Indexed: 01/02/2023] Open
Abstract
Fish oogenesis is characterised by a massive growth of oocytes each reproductive season. This growth requires the stockpiling of certain molecules, such as ribosomal RNAs to assist the rapid ribosomal assembly and protein synthesis required to allow developmental processes in the newly formed embryo. Massive 5S rRNA expression in oocytes, facilitated by transcription factor 3A (Gtf3a), serves as marker of intersex condition in fish exposed to xenoestrogens. Our present work on Gtf3a gene evolution has been analysed in silico in teleost genomes and functionally in the case of the zebrafish Danio rerio. Synteny-analysis of fish genomes has allowed the identification of two gtf3a paralog genes, probably emerged from the teleost specific genome duplication event. Functional analyses demonstrated that gtf3ab has evolved as a gene specially transcribed in oocytes as observed in Danio rerio, and also in Oreochromis niloticus. Instead, gtf3aa was observed to be ubiquitously expressed. In addition, in zebrafish embryos gtf3aa transcription began with the activation of the zygotic genome (~8 hpf), while gtf3ab transcription began only at the onset of oogenesis. Under exposure to 100 ng/L 17β-estradiol, fully feminised 61 dpf zebrafish showed transcription of ovarian gtf3ab, while masculinised (100 ng/L 17α-methyltestosterone treated) zebrafish only transcribed gtf3aa. Sex related transcription of gtf3ab coincided with that of cyp19a1a being opposite to that of amh and dmrt1. Such sex dimorphic pattern of gtf3ab transcription was not observed earlier in larvae that had not yet shown any signs of gonad formation after 26 days of oestradiol exposure. Thus, gtf3ab transcription is a consequence of oocyte differentiation and not a direct result of estrogen exposure, and could constitute a useful marker of gonad feminisation and intersex condition.
Collapse
Affiliation(s)
- Iratxe Rojo-Bartolomé
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Dept. of Zoology and Cell Biology (Fac. Science and Technology), University of the Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
| | - Jorge Estefano Santana de Souza
- Bioinformatics Multidisciplinary Environment – BioME, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Oihane Diaz de Cerio
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Dept. of Zoology and Cell Biology (Fac. Science and Technology), University of the Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU) and Dept. of Zoology and Cell Biology (Fac. Science and Technology), University of the Basque Country (UPV/EHU), Bilbao, Basque Country, Spain
- * E-mail:
| |
Collapse
|
24
|
Zhou Y, Sun W, Cai H, Bao H, Zhang Y, Qian G, Ge C. The Role of Anti-Müllerian Hormone in Testis Differentiation Reveals the Significance of the TGF-β Pathway in Reptilian Sex Determination. Genetics 2019; 213:1317-1327. [PMID: 31645361 PMCID: PMC6893390 DOI: 10.1534/genetics.119.302527] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
Abstract
Anti-Müllerian hormone (Amh, or Müllerian-inhibiting substance, Mis), a member of TGF-β superfamily, has been well documented in some vertebrates as initiator or key regulator in sexual development, and particularly in fish. However, its functional role has not yet been identified in reptiles. Here, we characterized the Amh gene in the Chinese soft-shelled turtle Pelodiscus sinensis, a typical reptilian species exhibiting ZZ/ZW sex chromosomes. The messenger RNA of Amh was initially expressed in male embryonic gonads by stage 15, preceding gonadal sex differentiation, and exhibited a male-specific expression pattern throughout embryogenesis. Moreover, Amh was rapidly upregulated during female-to-male sex reversal induced by aromatase inhibitor letrozole. Most importantly, Amh loss of function by RNA interference led to complete feminization of genetic male (ZZ) gonads, suppression of the testicular marker Sox9, and upregulation of the ovarian regulator Cyp19a1 Conversely, overexpression of Amh in ZW embryos resulted in female-to-male sex reversal, characterized by the formation of a testis structure, ectopic activation of Sox9, and a remarkable decline in Cyp19a1 Collectively, these findings provide the first solid evidence that Amh is both necessary and sufficient to drive testicular development in a reptilian species, P. sinensis, highlighting the significance of the TGF-β pathway in reptilian sex determination.
Collapse
Affiliation(s)
- Yingjie Zhou
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Sun
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Han Cai
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Haisheng Bao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yu Zhang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Guoying Qian
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Chutian Ge
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
25
|
Han Y, Peng C, Wang L, Guo J, Lu M, Chen J, Liu Y, Li S, Zhao M, Zhang Y, Lin H. Female-to-male sex reversal in orange-spotted grouper (Epinephelus coioides) caused by overexpressing of Amh in vivo. Biol Reprod 2019; 99:1205-1215. [PMID: 30010724 DOI: 10.1093/biolre/ioy157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 07/11/2018] [Indexed: 12/28/2022] Open
Abstract
A variety of mechanisms are involved in sex determination in vertebrates. The orange-spotted grouper (Epinephelus coioides), a teleost fish, functions first as females and later as a male and is an ideal model to investigate the regulation of sexual fate. Here, we report female-to-male sex reversal in juvenile orange-spotted groupers caused by overexpressing anti-Müllerian hormone (Amh). Tissue distribution analyses showed that amh and amhrII primarily expressed in the gonad, and expression level in the testis was much higher than that in the ovary. In gonads, the expression of amh was located in the Sertoli cells around spermatogonia of the testis and in the zona pellucida of the mature ovary, and the expression of amhrII was located in the Sertoli cells of the testis and in the oocytes of the ovary. Decrease in female-related genes and serum 17β-estradiol level, increase in male-related genes and serum 11-ketotestosterone, ovarian regression, and spermatogonia proliferation were observed during plasmid feeding experiment. These results illustrate that amh overexpression plasmid feeding can induce a female-to-male transition in grouper.
Collapse
Affiliation(s)
- Yulong Han
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Cheng Peng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Le Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jiani Guo
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Mingwei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan
| | - Jiaxin Chen
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Marine Fisheries Development Center of Guangdong Province, Huizhou, People's Republic of China.,College of Ocean, Hainan University, Haikou, People's Republic of China
| |
Collapse
|
26
|
Cáceres G, López ME, Cádiz MI, Yoshida GM, Jedlicki A, Palma-Véjares R, Travisany D, Díaz-Domínguez D, Maass A, Lhorente JP, Soto J, Salas D, Yáñez JM. Fine Mapping Using Whole-Genome Sequencing Confirms Anti-Müllerian Hormone as a Major Gene for Sex Determination in Farmed Nile Tilapia ( Oreochromis niloticus L.). G3 (BETHESDA, MD.) 2019; 9:3213-3223. [PMID: 31416805 PMCID: PMC6778786 DOI: 10.1534/g3.119.400297] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
Abstract
Nile tilapia (Oreochromis niloticus) is one of the most cultivated and economically important species in world aquaculture. Intensive production promotes the use of monosex animals, due to an important dimorphism that favors male growth. Currently, the main mechanism to obtain all-male populations is the use of hormones in feeding during larval and fry phases. Identifying genomic regions associated with sex determination in Nile tilapia is a research topic of great interest. The objective of this study was to identify genomic variants associated with sex determination in three commercial populations of Nile tilapia. Whole-genome sequencing of 326 individuals was performed, and a total of 2.4 million high-quality bi-allelic single nucleotide polymorphisms (SNPs) were identified after quality control. A genome-wide association study (GWAS) was conducted to identify markers associated with the binary sex trait (males = 1; females = 0). A mixed logistic regression GWAS model was fitted and a genome-wide significant signal comprising 36 SNPs, spanning a genomic region of 536 kb in chromosome 23 was identified. Ten out of these 36 genetic variants intercept the anti-Müllerian (Amh) hormone gene. Other significant SNPs were located in the neighboring Amh gene region. This gene has been strongly associated with sex determination in several vertebrate species, playing an essential role in the differentiation of male and female reproductive tissue in early stages of development. This finding provides useful information to better understand the genetic mechanisms underlying sex determination in Nile tilapia.
Collapse
Affiliation(s)
- Giovanna Cáceres
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - María E López
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - María I Cádiz
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur, Universidad de Chile, Santa Rosa 11315, La Pintana, Santiago, Chile
| | - Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Benchmark Genetics Chile, Puerto Montt, Chile
| | - Ana Jedlicki
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Ricardo Palma-Véjares
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Dante Travisany
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Diego Díaz-Domínguez
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | - Alejandro Maass
- Centro para la Regulación del Genoma, and
- Centro de Modelamiento Matemático UMI CNRS 2807, Universidad de Chile, Santiago, Chile
| | | | - Jose Soto
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - Diego Salas
- Grupo Acuacorporación Internacional (GACI), Cañas, Costa Rica, and
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile,
- Núcleo Milenio INVASAL, Concepción, Chile
| |
Collapse
|
27
|
Characterization of the Long Terminal Repeat of the Endogenous Retrovirus-derived microRNAs in the Olive Flounder. Sci Rep 2019; 9:14007. [PMID: 31570746 PMCID: PMC6768988 DOI: 10.1038/s41598-019-50492-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/12/2019] [Indexed: 12/11/2022] Open
Abstract
Endogenous retroviruses (ERVs) have been identified at different copy numbers in various organisms. The long terminal repeat (LTR) element of an ERV has the capacity to exert regulatory influence as both a promoter and enhancer of cellular genes. Here, we describe olive flounder (OF)-ERV9, derived from chromosome 9 of the olive flounder. OF-ERV9-LTR provide binding sites for various transcription factors and showed enhancer activity. The OF-ERV9-LTR demonstrates high sequence similarity with the 3' untranslated region (UTR) of various genes that also contain seed sequences (TGTTTTG) that bind the LTR-derived microRNA(miRNA), OF-miRNA-307. Additionally, OF-miRNA-307 collaborates with transcription factors located in OF-ERV9-LTR to regulate gene expression. Taken together, our data facilitates a greater understanding of the molecular function of OF-ERV families and suggests that OF-miRNA-307 may act as a super-enhancer miRNA regulating gene activity.
Collapse
|
28
|
Yu H, Wang Y, Li X, Ni F, Sun M, Zhang Q, Yu H, Wang X. The evolution and possible role of two Sox8 genes during sex differentiation in Japanese flounder (Paralichthys olivaceus). Mol Reprod Dev 2019; 86:592-607. [PMID: 30811727 DOI: 10.1002/mrd.23136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 01/02/2023]
Abstract
Sox8 genes, as members of the Sox family, have been studied widely in mammals. However, regulation of sox8 genes in teleosts has rarely been studied, and functional analysis of these genes in teleosts has rarely been performed. Here, two duplicates of sox8 genes were identified in Japanese flounder, Posox8a and Posox8b. The analysis of expression showed that Posox8a and Posox8b were expressed in Sertoli cells of the testis, indicating that they play important roles in development and functional maintenance of the testis. Positive selection and phylogenetic analysis found that both Posox8a and Posox8b underwent the purification selection during evolutionary and that sox8 was most likely to be the ancestor sox8a. These results suggested that both Posox8a and Posox8b had important biological functions after generation from three rounds of whole-genome duplication in Japanese flounder. The functional differentiation of Posox8a and Posox8b was verified using cell transfection and dual-luciferase reporter assays; Posox8a overexpression-promoted 3β-hydroxysteroid dehydrogenase expression and Posox8b overexpression-promoted cytochrome P450 aromatase (cyp19a1; P450arom) expression. Finally, combined with Posox8a and Posox8b expression analysis from 30 to 100 days after hatch, we speculated that Posox8a and Posox8b might participate in the process of sex differentiation and gonadogenesis by regulating sex hormone biosynthesis in the Japanese flounder. Our study is the first to demonstrate the possible mechanism of Posox8a and Posox8b in Japanese flounder sex differentiation and gonadogenesis, laying a solid foundation for functional studies of sox8 genes in teleosts.
Collapse
Affiliation(s)
- Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xiaojing Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Feifei Ni
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Minmin Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong, China
| |
Collapse
|
29
|
Xiao J, Cao K, Zou Y, Xiao S, Wang Z, Cai M. Sex-biased gene discovery from the gonadal transcriptomes of the large yellow croaker (Larimichthys crocea). AQUACULTURE AND FISHERIES 2019. [DOI: 10.1016/j.aaf.2019.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Han Y, Zhao M, Wang L, Yu Z, Wang J, Yu Q, Xiao L, Lu M, Li S, Zhang Y, Lin H. Overexpression of Anti-müllerian Hormone Gene in vivo Affects Gonad Sex Differentiation in Undifferentiated Orange-Spotted Groupers ( Epinephelus coioides). Front Endocrinol (Lausanne) 2019; 10:210. [PMID: 31024449 PMCID: PMC6459890 DOI: 10.3389/fendo.2019.00210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/15/2019] [Indexed: 12/17/2022] Open
Abstract
Sex differentiation in teleost fishes occurs in response to sex determination signals, which induce the gonad to develop as either an ovary or testis. However, sex differentiation mechanisms in fishes are diverse, and information on gonad differentiation in sex changing fishes remains limited. The orange-spotted grouper (Epinephelus coioides) is a protogynous hermaphroditic fish that provides an ideal model for investigating gonad differentiation in vertebrates. In this study, Transcriptome data showed that expression levels of amh and amhrII in gonads were increased during sex differentiation. Then we investigated the effect of overexpression anti-Müllerian hormone (Amh) on gonad development in juvenile orange-spotted groupers. Expression levels of female-related genes and serum 17β-estradiol levels were decreased, while expression of male-related genes and serum 11-ketotestosterone levels were increased in fish fed with amh-plasmid. Overexpression of Amh was also promoted the spermatogonia proliferation and induced the development of male gonads in undifferentiated orange-spotted groupers, but that this male tendency was preceded by female differentiation. In summary, these results illustrated that Amh overexpression by amh-plasmid feeding induced male gonad development in undifferentiated groupers.
Collapse
Affiliation(s)
- Yulong Han
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- *Correspondence: Mi Zhao
| | - Le Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zeshu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jing Wang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Qi Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mingwei Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Yong Zhang
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
- College of Ocean, Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| |
Collapse
|
31
|
Chen W, Liu L, Ge W. Expression analysis of growth differentiation factor 9 (Gdf9/gdf9), anti-müllerian hormone (Amh/amh) and aromatase (Cyp19a1a/cyp19a1a) during gonadal differentiation of the zebrafish, Danio rerio. Biol Reprod 2018; 96:401-413. [PMID: 28203731 DOI: 10.1095/biolreprod.116.144964] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 11/01/2022] Open
Abstract
In the zebrafish, no sex-determining gene has been identified, while some sex-related genes, such as cyp19a1a and amh, show sexually dimorphic expression. Interestingly, most of these genes are expressed in the somatic cells. With increasing evidence suggesting roles of germ cells in gonadal differentiation, there is an increasing interest in the factors released by the germ cells for the bidirectional communication between the two compartments. We have reported that Gdf9/gdf9 is an oocyte-specific factor in the zebrafish, similar to that of mammals. Whether and how Gdf9 is involved in gonadal differentiation is unknown. In this study, we compared the expression levels of gdf9, cyp19a1a, and amh among several other sex-related genes in the gonads before, during, and after sex differentiation. The expression of gdf9 started in the gonads before sex differentiation, and its level surged in the differentiated ovary. Its expression pattern was similar to that of cyp19a1a, but reciprocal to amh expression. Using recombinant zebrafish Gdf9 (rzfGdf9), we further showed that Gdf9 significantly suppressed the expression of amh while increased that of activin beta subunits (inhbaa and inhbb) in vitro. Although gdf9 and cyp19a1a showed co-expression during gonadal differentiation, we only observed a slight but not significant response of cyp19a1a to rzfGdf9. Knocking down the expression of gdf9 and cyp19a1a with vivo-morpholinos caused a male-skewed sex ratio. Our data suggested that Gdf9 is likely involved in promoting oocyte/ovary differentiation in the zebrafish and it may act by suppressing amh expression, at least partly, in the somatic cells.
Collapse
Affiliation(s)
- Weiting Chen
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Lin Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.,School of Life Science, South China Normal University, Guangzhou, China
| | - Wei Ge
- Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Taipa, Macau, China.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
32
|
Zhao J, Wang B, Yu H, Wang Y, Liu X, Zhang Q. tdrd1 is a germline-specific and sexually dimorphically expressed gene in Paralichthys olivaceus. Gene 2018; 673:61-69. [PMID: 29920365 DOI: 10.1016/j.gene.2018.06.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 02/05/2023]
Abstract
Tudor domain containing protein 1 (tdrd1) is a member of the Tudor family and has shown essential functions during embryogenesis and gametogenesis. In this study, we cloned the full length cDNA of Paralichthys olivaceus tdrd1 (Potdrd1). PoTDRD1 is a multidomain protein with an N-terminal MYND zinc finger domain, followed by four tandem extended Tudor domains. Sequence comparison, genomic structure, phylogenetic analyses and synteny analyses showed that Potdrd1 was homologous to those of other teleosts. In adult individuals, the expression of Potdrd1 was higher in testis than in ovary, demonstrating a sexually dimorphic gene expression pattern. In situ hybridization (ISH) showed that Potdrd1 mRNA was detected in oogonia and oocytes of ovary as well as in spermatogonia and spermatocytes of testis. In juveniles during gonad differentiation its expression level increased rapidly from 30 dph to 100 dph and showed obvious sexual dimorphism that was in accordance with the expression of anti-Mullerian hormone (amh). Potdrd1 mRNA was consistently detected during embryogenesis, and its level was higher from unfertilzed eggs to the blastula stage and subsequently decreased until hatching. When chimeric RNA containing green fluorescent protein (GFP) and 3' untranslated regions (UTR) of Potdrd1 was microinjected into zebrafish fertilized eggs, the green fluorescence could be visualized only in putative PGCs. These results indicated that Potdrd1 is a germline specific and sexually dimorphic factor that potentially functionate in germline development and gametogenesis in Japanese flounder.
Collapse
Affiliation(s)
- Jun Zhao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Bo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Haiyang Yu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Yujue Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
33
|
Tsakogiannis A, Manousaki T, Lagnel J, Sterioti A, Pavlidis M, Papandroulakis N, Mylonas CC, Tsigenopoulos CS. The transcriptomic signature of different sexes in two protogynous hermaphrodites: Insights into the molecular network underlying sex phenotype in fish. Sci Rep 2018; 8:3564. [PMID: 29476120 PMCID: PMC5824801 DOI: 10.1038/s41598-018-21992-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/14/2018] [Indexed: 01/22/2023] Open
Abstract
Sex differentiation is a puzzling problem in fish due to the variety of reproductive systems and the flexibility of their sex determination mechanisms. The Sparidae, a teleost family, reflects this remarkable diversity of sexual mechanisms found in fish. Our aim was to capture the transcriptomic signature of different sexes in two protogynous hermaphrodite sparids, the common pandora Pagellus erythrinus and the red porgy Pagrus pagrus in order to shed light on the molecular network contributing to either the female or the male phenotype in these organisms. Through RNA sequencing, we investigated sex-specific differences in gene expression in both species' brains and gonads. The analysis revealed common male and female specific genes/pathways between these protogynous fish. Whereas limited sex differences found in the brain indicate a sexually plastic tissue, in contrast, the great amount of sex-biased genes observed in gonads reflects the functional divergence of the transformed tissue to either its male or female character. Α common "crew" of well-known molecular players is acting to preserve either sex identity of the gonad in these fish. Lastly, this study lays the ground for a deeper understanding of the complex process of sex differentiation in two species with an evolutionary significant reproductive system.
Collapse
Affiliation(s)
- A Tsakogiannis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
- Department of Biology, University of Crete, Heraklion, Greece
| | - T Manousaki
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - J Lagnel
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - A Sterioti
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - M Pavlidis
- Department of Biology, University of Crete, Heraklion, Greece
| | - N Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C C Mylonas
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece
| | - C S Tsigenopoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (H.C.M.R.), Heraklion, Greece.
| |
Collapse
|
34
|
Expression profiles of amh and foxl2 in Schizothorax kozlovi, and their response to temperature during the early developmental stage. J Genet 2018. [DOI: 10.1007/s12041-018-0889-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Roles of Two Sox9 Genes during Gonadal Development in Japanese Flounder: Sex Differentiation, Spermatogenesis and Gonadal Function Maintenance. Int J Mol Sci 2018; 19:ijms19020512. [PMID: 29419762 PMCID: PMC5855734 DOI: 10.3390/ijms19020512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 01/11/2018] [Accepted: 01/22/2018] [Indexed: 12/14/2022] Open
Abstract
The transcription factor sox9 has been implicated in cartilage formation and testis determination in mammals. Here, two duplicates of sox9 were found in Japanese flounder (Paralichthys olivaceus) named Posox9a and Posox9b, respectively. Phylogenetic and gene structure analyses revealed that Posox9a and Posox9b were homologous to that of teleosts and tetrapods. Quantitative real-time polymerase chain reaction (qRT-PCR) showed that both Posox9a and Posox9b expressed higher in testis than in ovary of adult tissues. The in situ hybridization (ISH) analysis of gonads showed that Posox9a and Posox9b mRNA were both detected in oocytes, Sertoli cells and spermatocytes. During sex differentiation, the expression of Posox9a exhibited obvious sexual dimorphic expression from 60 days after hatch (dah) with higher expression in male preferred individuals than female preferred individuals and increased gradually from 30 to 100 dah. A similar pattern was detected in Posox9b expression. After injection of androgen (17α-methyltestosterone) of different concentrations, the expression level of Posox9b increased significantly, whereas Posox9a did not change obviously. These results indicated that the two sox9 genes of Japanese flounder had converse functions in sex differentiation, whereas their differences in 17α-methyltestosterone administration were obvious and worthwhile for exploring evolutionary and adaptive significance. This study provided a foundation for further exploration of the roles of Posox9 genes during the sex determination and differentiation, spermatogenesis and gonadal function maintenance of Japanese flounder.
Collapse
|
36
|
Horiguchi R, Nozu R, Hirai T, Kobayashi Y, Nakamura M. Expression patterns of sex differentiation-related genes during gonadal sex change in the protogynous wrasse, Halichoeres trimaculatus. Gen Comp Endocrinol 2018; 257:67-73. [PMID: 28663108 DOI: 10.1016/j.ygcen.2017.06.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/21/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023]
Abstract
The three-spot wrasse, Halichoeres trimaculatus, can change sex from female to male (i.e. protogyny) due to sharp decrease in endogenous estrogen. During the sex change, ovarian tissue degenerates and testicular tissue arises newly. Finally, ovarian tissue disappears completely and replaces into mature testis. In order to predict the molecular mechanisms controlling the processes of sex change, we investigated the expression patterns of four genes (rspo1, figla, sox9b and amh), which have been thought to be associated with ovarian/testicular differentiation in vertebrates. Expression levels of rspo1 and figla, which play important roles for ovarian differentiation in vertebrates, were stable until the middle stage of the sex change, and subsequently down-regulated. Therefore, it was indicated that decrease in rspo1 and figla could result from ovarian degeneration. On the other hand, basis on the expression pattern, it was indicated that sox9b and amh, which are involved in testicular differentiation in vertebrates, were implicated in testicular formation and spermatogenesis during the sex change as well. The present results could be fundamental information for investigating the relationship between these factors and E2 depletion, which is crucial trigger for sex change.
Collapse
Affiliation(s)
- Ryo Horiguchi
- Advanced Research Facilities and Services, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Ryo Nozu
- Zoological Laboratory, Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa 905-0206, Japan.
| | - Toshiaki Hirai
- Department of Food Production & Environmental Management, Faculty Agriculture/Sanriku Fisheries Research Center, Iwate University, Iwate 026-0001, Japan
| | - Yasuhisa Kobayashi
- Laboratory for Aquatic Biology, Department of Fisheries, Graduate School of Agriculture, Kindai University, Nara 631-0052, Japan
| | - Masaru Nakamura
- Zoological Laboratory, Okinawa Churashima Research Center, Okinawa Churashima Foundation, Okinawa 905-0206, Japan; Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 905-0227, Japan
| |
Collapse
|
37
|
Goikoetxea A, Todd EV, Gemmell NJ. Stress and sex: does cortisol mediate sex change in fish? Reproduction 2017; 154:R149-R160. [PMID: 28890443 DOI: 10.1530/rep-17-0408] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/24/2017] [Accepted: 09/08/2017] [Indexed: 12/30/2022]
Abstract
Cortisol is the main glucocorticoid (GC) in fish and the hormone most directly associated with stress. Recent research suggests that this hormone may act as a key factor linking social environmental stimuli and the onset of sex change by initiating a shift in steroidogenesis from estrogens to androgens. For many teleost fish, sex change occurs as a usual part of the life cycle. Changing sex is known to enhance the lifetime reproductive success of these fish and the modifications involved (behavioral, gonadal and morphological) are well studied. However, the exact mechanism behind the transduction of the environmental signals into the molecular cascade that underlies this singular process remains largely unknown. We here synthesize current knowledge regarding the role of cortisol in teleost sex change with a focus on two well-described transformations: temperature-induced masculinization and socially regulated sex change. Three non-mutually exclusive pathways are considered when describing the potential role of cortisol in mediating teleost sex change: cross-talk between GC and androgen pathways, inhibition of aromatase expression and upregulation of amh (the gene encoding anti-Müllerian hormone). We anticipate that understanding the role of cortisol in the initial stages of sex change will further improve our understanding of sex determination and differentiation across vertebrates, and may lead to new tools to control fish sex ratios in aquaculture.
Collapse
Affiliation(s)
| | - Erica V Todd
- Department of AnatomyUniversity of Otago, Dunedin, New Zealand
| | - Neil J Gemmell
- Department of AnatomyUniversity of Otago, Dunedin, New Zealand
| |
Collapse
|
38
|
Liu Y, Zhang W, Du X, Zhao J, Liu X, Li X, Zhang Q, Wang X. Sexually dimorphic expression in developing and adult gonads shows an important role of gonadal soma-derived factor during sex differentiation in olive flounder (Paralichthys olivaceus). Comp Biochem Physiol B Biochem Mol Biol 2017; 210:1-8. [PMID: 28502832 DOI: 10.1016/j.cbpb.2017.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/24/2017] [Accepted: 05/09/2017] [Indexed: 11/30/2022]
Abstract
Gonadal soma-derived factor (gsdf) is a new member of transforming growth factor beta (TGF-β) superfamily. As a teleost- and gonad-specific growth factor, gsdf has been indicated to play an important role in early germ cell development. However, little is known about its significance in germ cell development of olive flounder (Paralichthys olivaceus). In the present study, a 1338 bp gsdf gene was isolated from P. olivaceus for the first time. Bioinformatic analysis revealed that the genomic structure and synteny relationship of gsdf in teleosts were conserved. Quantitative real-time PCR (qRT-PCR) showed that gsdf expressed before sex gonadal differentiation, and the expression level increased rapidly after initiation of sex differentiation in males. In adult individuals, the expression of gsdf was higher in testis than that in ovary (P<0.01). In situ hybridization (ISH) indicated that gsdf mRNA was detected in the somatic cells of both males and females, and also in the cytoplasm of oocytes. These results suggested that gsdf might play an important role as initial switches to promote testis differentiation and participate in early germ cell development, such as proliferation and differentiation of spermatogonia and oogonia in P. olivaceus.
Collapse
Affiliation(s)
- Yuezhong Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Qingdao National Laboratory for Marine Science and Technology, China
| | - Wei Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Qingdao National Laboratory for Marine Science and Technology, China
| | - Xinxin Du
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Qingdao National Laboratory for Marine Science and Technology, China
| | - Jun Zhao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Qingdao National Laboratory for Marine Science and Technology, China
| | - Xiaobing Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Qingdao National Laboratory for Marine Science and Technology, China
| | - Xiaojing Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Qingdao National Laboratory for Marine Science and Technology, China
| | - Quanqi Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Qingdao National Laboratory for Marine Science and Technology, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, 266003 Qingdao, Shandong, China; Qingdao National Laboratory for Marine Science and Technology, China.
| |
Collapse
|
39
|
Weng S, You F, Fan Z, Wang L, Wu Z, Zou Y. Molecular cloning and sexually dimorphic expression of wnt4 in olive flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:1167-1176. [PMID: 26920537 DOI: 10.1007/s10695-016-0206-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 02/11/2016] [Indexed: 06/05/2023]
Abstract
WNT4 (wingless-type MMTV integration site family, member 4) is regarded as a key regulator of gonad differentiation in mammalians. However, the potential role of wnt4 in teleosts during gonad differentiation and development is still unclear. The full-length cDNA sequence of wnt4 in olive flounder (Paralichthys olivaceus) was obtained using RACE (rapid amplification of cDNA ends) technique. The wnt4 ORF contains 1059 nucleotides, encoding a protein with a signal peptide domain and a wnt family domain. Expression in tissues of adult flounders was analyzed by real-time RT-PCR. The results showed that wnt4 was widely expressed in multiple tissues of flounders, and the expression level was significantly higher in ovary than in testis. Then wnt4 expression pattern was investigated during gonadal differentiation period and at gonadal development stages (I-V). The results showed the expression levels were significantly higher in testis than in ovary during gonadal differentiation. Notably, wnt4 expression had a very significant increase before testis differentiation. At gonad different developmental stages, there was no expression signal at stage I or stage II, and the expression of wnt4 was much stronger in ovary than in testis at stage III and stage IV, followed by a faint expression in stage V in both sexes. Our results imply that cloned wnt4 could be wnt4a. It is a sex-related gene and its expression pattern in gonadal differentiation period of flounder is different from that in mammalians or other teleosts. Flounder wnt4 might play more important role in testis than in ovary during gonadal differentiation.
Collapse
Affiliation(s)
- Shenda Weng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10049, People's Republic of China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
| | - Zhaofei Fan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10049, People's Republic of China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10049, People's Republic of China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China
| | - Yuxia Zou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
40
|
Nam GH, Gim JA, Lee HE, Kim WJ, Jung H, Kim W, Kim HS. Expression and promoter activity of endogenous retroviruses in the Olive flounder (Paralichthys olivaceus). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
41
|
Zhang X, Yuan L, Li L, Jiang H, Chen J. Conservation, sex-biased expression and functional annotation of microRNAs in the gonad of Amur sturgeon (Acipenser schrenckii). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 18:54-61. [DOI: 10.1016/j.cbd.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 03/15/2016] [Accepted: 04/03/2016] [Indexed: 11/16/2022]
|
42
|
Zhu Y, Wang C, Chen X, Guan G. Identification of gonadal soma-derived factor involvement in Monopterus albus (protogynous rice field eel) sex change. Mol Biol Rep 2016; 43:629-37. [PMID: 27230579 DOI: 10.1007/s11033-016-3997-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 05/04/2016] [Indexed: 11/25/2022]
Abstract
We studied molecular events and potential mechanisms underlying the process of female-to-male sex transformation in the rice field eel (Monopterus albus), a protogynous hermaphrodite fish in which the gonad is initially a female ovary and transforms into male testes. We cloned and identified a novel gonadal soma derived factor (GSDF), which encodes a member of the transforming growth factor-beta superfamily. gsdf expression was measured in gonads of female, intersex and male with reverse transcription-PCR and gsdf's role in sex transformation was studied with qPCR, histological analysis and dual-color in situ hybridization assays and compared to other sex-related genes. gsdf was correlated to Sertoli cell differentiation, indicating involvement in testicular differentiation and sex transformation from female to male in this species. A unique expression pattern reveals a potential role of gsdf essential for the sex transformation of rice field eels.
Collapse
Affiliation(s)
- Yefei Zhu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China
| | - Chunlei Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China
| | - Xiaowu Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China
| | - Guijun Guan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, HuchengHuan Road 999, Shanghai, 201306, China.
| |
Collapse
|
43
|
Caruso CC, Breton TS, Berlinsky DL. The effects of temperature on ovarian aromatase (cyp19a1a) expression and sex differentiation in summer flounder (Paralichthys dentatus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:795-805. [PMID: 26643906 DOI: 10.1007/s10695-015-0176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/25/2015] [Indexed: 06/05/2023]
Abstract
Female summer flounder grow considerably faster and larger than males, and a tremendous increase in performance can therefore be realized through production of monosex female populations. Rearing temperature has been shown to affect sex differentiation in other teleost species by influencing expression of genes encoding transcription factors or enzymes involved in endocrine function. Cyp19a1a is a well-studied gene that had been shown to play a role in ovarian development, and exhibits sexually dimorphic expression in other species. In the present study, summer flounder (37 days post-hatch; DPH) were raised at 13, 16 or 19 °C. Fish from all three treatments were sampled throughout development and analyzed in qPCR to determine cyp19a1a gene expression levels. Sex ratios of additional fish grown to ≥150 mm at each temperature treatment were determined. Low female production was achieved overall (26.9, 17.6 and 0% at 13, 16 and 19 °C, respectively). Cyp19a1a expression was significantly lower at 52 DPH (~15 mm total length) at the male-producing temperature (19 °C) and increased to similar levels as other treatments at 66 DPH. Expression levels later in juvenile development (66-191 DPH) largely decreased with fish size. The period of sex differentiation in summer flounder remains unknown, but cyp19a1a expression patterns suggest that it may occur earlier in development than that of congenerics. Further research is necessary to understand the sex-determining mechanisms in this species before sexually dimorphic growth can be used to achieve economic advantages in commercial production.
Collapse
Affiliation(s)
- Catherine C Caruso
- Department of Biological Sciences, University of New Hampshire, 38 College Road, Durham, NH, 03824, USA
| | - Timothy S Breton
- Department of Biological Sciences, University of New Hampshire, 38 College Road, Durham, NH, 03824, USA
- Division of Natural Sciences, University of Maine at Farmington, 173 High Street, Farmington, ME, 04938, USA
| | - David L Berlinsky
- Department of Biological Sciences, University of New Hampshire, 38 College Road, Durham, NH, 03824, USA.
| |
Collapse
|
44
|
Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, Jiang D, Zhou L, Sun L, Tao W, Nagahama Y, Kocher TD, Wang D. A Tandem Duplicate of Anti-Müllerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet 2015; 11:e1005678. [PMID: 26588702 PMCID: PMC4654491 DOI: 10.1371/journal.pgen.1005678] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 10/26/2015] [Indexed: 12/20/2022] Open
Abstract
Variation in the TGF-β signaling pathway is emerging as an important mechanism by which gonadal sex determination is controlled in teleosts. Here we show that amhy, a Y-specific duplicate of the anti-Müllerian hormone (amh) gene, induces male sex determination in Nile tilapia. amhy is a tandem duplicate located immediately downstream of amhΔ-y on the Y chromosome. The coding sequence of amhy was identical to the X-linked amh (amh) except a missense SNP (C/T) which changes an amino acid (Ser/Leu92) in the N-terminal region. amhy lacks 5608 bp of promoter sequence that is found in the X-linked amh homolog. The amhΔ-y contains several insertions and deletions in the promoter region, and even a 5 bp insertion in exonVI that results in a premature stop codon and thus a truncated protein product lacking the TGF-β binding domain. Both amhy and amhΔ-y expression is restricted to XY gonads from 5 days after hatching (dah) onwards. CRISPR/Cas9 knockout of amhy in XY fish resulted in male to female sex reversal, while mutation of amhΔ-y alone could not. In contrast, overexpression of Amhy in XX fish, using a fosmid transgene that carries the amhy/amhΔ-y haplotype or a vector containing amhy ORF under the control of CMV promoter, resulted in female to male sex reversal, while overexpression of AmhΔ-y alone in XX fish could not. Knockout of the anti-Müllerian hormone receptor type II (amhrII) in XY fish also resulted in 100% complete male to female sex reversal. Taken together, these results strongly suggest that the duplicated amhy with a missense SNP is the candidate sex determining gene and amhy/amhrII signal is essential for male sex determination in Nile tilapia. These findings highlight the conserved roles of TGF-β signaling pathway in fish sex determination. Unlike mammals, the identity of the master sex-determining gene varies among fish species, and it is not yet clear if there is a common molecular pathway regulating gonadal sex determination across teleosts. Here we show that a Y-linked duplicate of the anti-Mullerian hormone (amhy) is essential for male sex determination in tilapia. Mutation of amhy resulted in male to female sex reversal, while overexpression of it resulted in female to male sex reversal. A missense single nucleotide polymorphisms (SNP) (C/T) in the open reading frame (ORF) of amhy might contribute to male sex determination in tilapia. Knockout of the anti-Müllerian hormone receptor type II (amhrII) also resulted in male to female sex reversal. Taken the amhy in Patagonian pejerrey, amhrII in Takifugu rubripes, gsdfY in Oryzias luzonensis into consideration, these data highlight an important role for TGF-β signaling in teleost sex determination.
Collapse
Affiliation(s)
- Minghui Li
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Yunlv Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Jiue Zhao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Hongjuan Shi
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Sheng Zeng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Kai Ye
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Dongneng Jiang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Linyan Zhou
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Lina Sun
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
| | - Yoshitaka Nagahama
- Solution-Oriented Research for Science and Technology (SORST), Laboratory of Reproductive Biology, National Institute for Basic Biology, Okazaki, Japan; South Ehime Fisheries Research Center, Ehime University, Matsuyama, Japan
| | - Thomas D. Kocher
- Department of Biology, University of Maryland, College Park, Maryland, United States of America
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Science, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
45
|
Hu Q, Guo W, Gao Y, Tang R, Li D. Molecular cloning and characterization of amh and dax1 genes and their expression during sex inversion in rice-field eel Monopterus albus. Sci Rep 2015; 5:16667. [PMID: 26578091 PMCID: PMC4649613 DOI: 10.1038/srep16667] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022] Open
Abstract
The full-length cDNAs of amh and dax1 in the hermaphrodite, rice-field eel (Monopterus albus), were cloned and characterized in this study. Multiple sequence alignment revealed Dax1 was well conserved among vertebrates, whereas Amh had a low degree of similarity between different vertebrates. Their expression profiles in gonads during the course of sex inversion and tissues were investigated. The tissue distribution indicated amh was expressed mostly in gonads and was scarcely detectable in other tissues, whereas the expression of dax1 was widespread among the different tissues, especially liver and gonads. amh was scarcely detectable in ovaries whereas it was abundantly expressed in both ovotestis and testis. By contrast, dax1 was highly expressed in ovaries, especially in ♀IV (ovaries in IV stage), but it was decreased significantly in ♀/♂I (ovotestis in I stage). Its expression was increased again in ♀/♂III (ovotestis in III stage), and then decreased to a low level in testis. These significant different expression patterns of amh and dax1 suggest the increase of amh expression and the decline of dax1 expression are important for the activation of testis development, and the high level of amh and a low level of dax1 expression are necessary for maintenance of testis function.
Collapse
Affiliation(s)
- Qing Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Wei Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Yu Gao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Life Science College, Hunan University of Arts and Science, Changde 415000, China.,Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.,Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
46
|
Adeyemo OK, Kroll KJ, Denslow ND. Developmental abnormalities and differential expression of genes induced in oil and dispersant exposed Menidia beryllina embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 168:60-71. [PMID: 26448268 DOI: 10.1016/j.aquatox.2015.09.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/19/2015] [Accepted: 09/21/2015] [Indexed: 06/05/2023]
Abstract
Exposure of fish embryos to relatively low concentrations of oil has been implicated in sub-lethal toxicity. The objective of this study was to determine the effects of the exposure of Menidia beryllina embryos at 30-48h post-fertilization to the water accommodated fractions of oil (WAF, 200ppm, v/v), dispersants (20ppm, v/v, Corexit 9500 or 9527), and mixtures of oil and each of the dispersants to produce chemically enhanced water accommodated fractions (CEWAFs) over a 72-hour period. The polyaromatic hydrocarbon (PAH) and benzene, toluene, ethylene and xylene (BTEX) constituents of the 5X concentrated exposure solutions (control, WAF, dispersants and CEWAFs) were determined and those of the 1× exposures were derived using a dilution factor. PAH, BTEX and low molecular weight PAH constituents greater than 1ppb were observed in WAF and the dispersants, but at much higher levels in CEWAFs. The WAF and CEWAFs post-weathering were diluted at 1:5 (200ml WAF/CEWAF: 800ml 25ppt saltwater) for embryo exposures. Mortality, heartbeat, embryo normalcy, abnormality types and severities were recorded. The qPCR assay was used to quantify abundances of transcripts of target genes for sexual differentiation and sex determination (StAR, dmrt-1, amh, cyp19b, vtg and chg-L,), growth regulation (ghr) and stress response (cyp1a and Hsp90); and gapdh served as the housekeeping gene. Temperature was 21±1.5°C throughout the experimental period, while mortality was low and not significantly different (p=0.68) among treatments. Heartbeat was significantly different (0.0034) with the lowest heartbeats recorded in Corexit 9500 (67.5beats/min) and 9527 (67.1beats/min) exposed embryos compared with controls (82.7beats/min). Significantly more treated embryos were in a state of deterioration, with significantly more embryos presenting arrested tissue differentiation compared with controls (p=0.021). Exposure to WAF, dispersants and CEWAF induced aberrant expression of all the genes, with star, dmrt-1, ghr and hsp90 being significantly down-regulated in CEWAF and cyp19b in Corexit 9527. The cyp1a and cyp19b were significantly up-regulated in CEWAFs and WAF, respectively. The molecular endpoints were most sensitive, especially the expression of star, cyp19b, cyp1a, hsp90 and could therefore be used as early indicators of long term effects of Corexit 9500 and 9527 usage in oil spill management on M. beryllina, a valid sentinel for oil pollution events.
Collapse
Affiliation(s)
- Olanike K Adeyemo
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Kevin J Kroll
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
47
|
Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish--Multiple functions not restricted to the gonads. Gen Comp Endocrinol 2015; 223:87-107. [PMID: 26428616 DOI: 10.1016/j.ygcen.2015.09.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022]
Abstract
This review summarizes the important role of Anti-Müllerian hormone (Amh) during gonad development in fishes. This Tgfβ-domain bearing hormone was named after one of its known functions, the induction of the regression of Müllerian ducts in male mammalian embryos. Later in development it is involved in male and female gonad differentiation and extragonadal expression has been reported in mammals as well. Teleosts lack Müllerian ducts, but they have amh orthologous genes. amh expression is reported from 21 fish species and possible regulatory interactions with further factors like sex steroids and gonadotropic hormones are discussed. The gonadotropin Fsh inhibits amh expression in all fish species studied. Sex steroids show no consistent influence on amh expression. Amh is produced in male Sertoli cells and female granulosa cells and inhibits germ cell proliferation and differentiation as well as steroidogenesis in both sexes. Therefore, Amh might be a central player in gonad development and a target of gonadotropic Fsh. Furthermore, there is evidence that an Amh-type II receptor is involved in germ cell regulation. Amh and its corresponding type II receptor are also present in brain and pituitary, at least in some teleosts, indicating additional roles of Amh effects in the brain-pituitary-gonadal axis. Unraveling Amh signaling is important in stem cell research and for reproduction as well as for aquaculture and in environmental science.
Collapse
Affiliation(s)
- Frank Pfennig
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany.
| | - Andrea Standke
- Institut für Zoologie, TU Dresden, D-01062 Dresden, Germany
| | | |
Collapse
|
48
|
Vizziano-Cantonnet D, Di Landro S, Lasalle A, Martínez A, Mazzoni TS, Quagio-Grassiotto I. Identification of the molecular sex-differentiation period in the siberian sturgeon. Mol Reprod Dev 2015; 83:19-36. [DOI: 10.1002/mrd.22589] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/30/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Denise Vizziano-Cantonnet
- Facultad de Ciencias; Laboratorio de Fisiología de la Reproducción y Ecología de Peces; Iguá Montevideo Uruguay
| | - Santiago Di Landro
- Facultad de Ciencias; Laboratorio de Fisiología de la Reproducción y Ecología de Peces; Iguá Montevideo Uruguay
| | - André Lasalle
- Facultad de Ciencias; Laboratorio de Fisiología de la Reproducción y Ecología de Peces; Iguá Montevideo Uruguay
| | - Anabel Martínez
- Facultad de Ciencias; Laboratorio de Fisiología de la Reproducción y Ecología de Peces; Iguá Montevideo Uruguay
| | - Talita Sarah Mazzoni
- Departamento de Morfologia; Instituto de Biociências de Botucatu, UNESP; Botucatu São Paulo Brazil
| | - Irani Quagio-Grassiotto
- Departamento de Morfologia; Instituto de Biociências de Botucatu, UNESP; Botucatu São Paulo Brazil
| |
Collapse
|
49
|
Sequencing and De Novo Assembly of the Gonadal Transcriptome of the Endangered Chinese Sturgeon (Acipenser sinensis). PLoS One 2015; 10:e0127332. [PMID: 26030930 PMCID: PMC4452307 DOI: 10.1371/journal.pone.0127332] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/14/2015] [Indexed: 11/22/2022] Open
Abstract
Background The Chinese sturgeon (Acipenser sinensis) is endangered through anthropogenic activities including over-fishing, damming, shipping, and pollution. Controlled reproduction has been adopted and successfully conducted for conservation. However, little information is available on the reproductive regulation of the species. In this study, we conducted de novo transcriptome assembly of the gonad tissue to create a comprehensive dataset for A. sinensis. Results The Illumina sequencing platform was adopted to obtain 47,333,701 and 47,229,705 high quality reads from testis and ovary cDNA libraries generated from three-year-old A. sinensis. We identified 86,027 unigenes of which 30,268 were annotated in the NCBI non-redundant protein database and 28,281 were annotated in the Swiss-prot database. Among the annotated unigenes, 26,152 and 7,734 unigenes, respectively, were assigned to gene ontology categories and clusters of orthologous groups. In addition, 12,557 unigenes were mapped to 231 pathways in the Kyoto Encyclopedia of Genes and Genomes Pathway database. A total of 1,896 unigenes, potentially differentially expressed between the two gonad types, were found, with 1,894 predicted to be up-regulated in ovary and only two in testis. Fifty-five potential gametogenesis-related genes were screened in the transcriptome and 34 genes with significant matches were found. Besides, more paralogs of 11 genes in three gene families (sox, apolipoprotein and cyclin) were found in A. sinensis compared to their orthologs in the diploid Danio rerio. In addition, 12,151 putative simple sequence repeats (SSRs) were detected. Conclusions This study provides the first de novo transcriptome analysis currently available for A. sinensis. The transcriptomic data represents the fundamental resource for future research on the mechanism of early gametogenesis in sturgeons. The SSRs identified in this work will be valuable for assessment of genetic diversity of wild fish and genealogy management of cultured fish.
Collapse
|
50
|
Wang L, You F, Weng S, Wen A, Wu Z, Zou Y, Xin M, Zhang P. Molecular cloning and sexually dimorphic expression patterns of nr0b1 and nr5a2 in olive flounder, Paralichthys olivaceus. Dev Genes Evol 2015; 225:95-104. [DOI: 10.1007/s00427-015-0495-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 03/03/2015] [Indexed: 01/25/2023]
|