1
|
Zhu Y, Wang D, Yan F, Wang L, Wang Y, Li J, Yang X, Gao Z, Liu X, Liu Y, Wang Q. Genome-wide analysis of HD-Zip genes in Sophora alopecuroides and their role in salt stress response. THE PLANT GENOME 2024; 17:e20504. [PMID: 39198230 DOI: 10.1002/tpg2.20504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024]
Abstract
We aimed to identify HD-Zip (homologous domain leucine zipper) family genes based on the complete Sophora alopecuroides genome sequence. Eighty-six Sophora alopecuroides HD-Zip family (SaHDZ) genes were identified and categorized into four subclasses using phylogenetic analysis. Chromosome localization analysis revealed that these genes were distributed across 18 chromosomes. Gene structure and conserved motif analysis showed high similarity among members of the SaHDZ genes. Prediction analysis revealed 71 cis-acting elements in SaHDZ genes. Transcriptome and quantitative real-time polymerase chain reaction analyses showed that under salt stress, SaHDZ responded positively in S. alopecuroides, and that SaHDZ22 was significantly upregulated afterward. Functional verification experiments revealed that SaHDZ22 overexpression increased the tolerance of Arabidopsis to salt and osmotic stress. Combined with cis-acting element prediction and expression level analysis, HD-Zip family transcription factors may be involved in regulating the balance between plant growth and stress resistance under salt stress by modulating the expression of auxin and abscisic acid signaling pathway genes. The Sophora alopecuroides adenylate kinase protein (SaAKI) and S. alopecuroides tetrapeptide-like repeat protein (SaTPR; pCAMBIA1300-SaTPR-cLUC) expression levels were consistent with those of SaHDZ22, indicating that SaHDZ22 may coordinate with SaAKI and SaTPR to regulate plant salt tolerance. These results lay a foundation in understanding the salt stress response mechanisms of S. alopecuroides and provide a reference for future studies oriented toward exploring plant stress resistance.
Collapse
Affiliation(s)
- Youcheng Zhu
- College of Biological and Agricultural Engineering, Jilin University, Changchun, China
- College of Plant Science, Jilin University, Changchun, China
| | - Di Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Fan Yan
- College of Plant Science, Jilin University, Changchun, China
| | - Le Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Ying Wang
- College of Plant Science, Jilin University, Changchun, China
| | - Jingwen Li
- College of Plant Science, Jilin University, Changchun, China
| | - Xuguang Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Ziwei Gao
- College of Plant Science, Jilin University, Changchun, China
| | - Xu Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Yajing Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Qingyu Wang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
2
|
Moy A, Nkongolo K. Decrypting Molecular Mechanisms Involved in Counteracting Copper and Nickel Toxicity in Jack Pine ( Pinus banksiana) Based on Transcriptomic Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1042. [PMID: 38611570 PMCID: PMC11013723 DOI: 10.3390/plants13071042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
The remediation of copper and nickel-afflicted sites is challenged by the different physiological effects imposed by each metal on a given plant system. Pinus banksiana is resilient against copper and nickel, providing an opportunity to build a valuable resource to investigate the responding gene expression toward each metal. The objectives of this study were to (1) extend the analysis of the Pinus banksiana transcriptome exposed to nickel and copper, (2) assess the differential gene expression in nickel-resistant compared to copper-resistant genotypes, and (3) identify mechanisms specific to each metal. The Illumina platform was used to sequence RNA that was extracted from seedlings treated with each of the metals. There were 449 differentially expressed genes (DEGs) between copper-resistant genotypes (RGs) and nickel-resistant genotypes (RGs) at a high stringency cut-off, indicating a distinct pattern of gene expression toward each metal. For biological processes, 19.8% of DEGs were associated with the DNA metabolic process, followed by the response to stress (13.15%) and the response to chemicals (8.59%). For metabolic function, 27.9% of DEGs were associated with nuclease activity, followed by nucleotide binding (27.64%) and kinase activity (10.16%). Overall, 21.49% of DEGs were localized to the plasma membrane, followed by the cytosol (16.26%) and chloroplast (12.43%). Annotation of the top upregulated genes in copper RG compared to nickel RG identified genes and mechanisms that were specific to copper and not to nickel. NtPDR, AtHIPP10, and YSL1 were identified as genes associated with copper resistance. Various genes related to cell wall metabolism were identified, and they included genes encoding for HCT, CslE6, MPG, and polygalacturonase. Annotation of the top downregulated genes in copper RG compared to nickel RG revealed genes and mechanisms that were specific to nickel and not copper. Various regulatory and signaling-related genes associated with the stress response were identified. They included UGT, TIFY, ACC, dirigent protein, peroxidase, and glyoxyalase I. Additional research is needed to determine the specific functions of signaling and stress response mechanisms in nickel-resistant plants.
Collapse
Affiliation(s)
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| |
Collapse
|
3
|
Bai Y, Zhou Y, Lei Q, Wang Y, Pu G, Liu Z, Chen X, Liu Q. Analysis of the HD-Zip I transcription factor family in Salvia miltiorrhiza and functional research of SmHD-Zip12 in tanshinone synthesis. PeerJ 2023; 11:e15510. [PMID: 37397009 PMCID: PMC10312201 DOI: 10.7717/peerj.15510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/15/2023] [Indexed: 07/04/2023] Open
Abstract
Background The homeodomain-leucine zipper I (HD-Zip I) transcription factor is a plant-specific protein that plays an essential role in the abiotic stress response of plants. Research on the HD-Zip I family in Salvia miltiorrhiza is still lacking. Methods and Results In this study, a total of 25 SmHD-Zip I proteins were identified. Their characterizations, phylogenetic relationships, conserved motifs, gene structures, and cis-elements were analyzed comprehensively using bioinformatics methods. Expression profiling revealed that SmHD-Zip I genes exhibited distinctive tissue-specific patterns and divergent responses to ABA, PEG, and NaCl stresses. SmHD-Zip12 responded the most strongly to ABA, PEG, and NaCl, so it was used for transgenic experiments. The overexpression of SmHD-Zip12 significantly increased the content of cryptotanshinone, dihydrotanshinone I, tanshinone I, and tanshinone IIA by 2.89-fold, 1.85-fold, 2.14-fold, and 8.91-fold compared to the wild type, respectively. Moreover, in the tanshinone biosynthetic pathways, the overexpression of SmHD-Zip12 up-regulated the expression levels of SmAACT, SmDXS, SmIDS, SmGGPPS, SmCPS1, SmCPS2, SmCYP76AH1, SmCYP76AH3, and SmCYP76AK1 compared with the wild type. Conclusions This study provides information the possible functions of the HD-Zip I family and lays a theoretical foundation for clarifying the functional mechanism of the SmHD-Zip12 gene in regulating the synthesis of tanshinone in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yanhong Bai
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Ying Zhou
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qiaoqi Lei
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yu Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gaobin Pu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhenhua Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xue Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- LiShizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, Hubei, China
| |
Collapse
|
4
|
Liu X, Li A, Wang S, Lan C, Wang Y, Li J, Zhu J. Overexpression of Pyrus sinkiangensis HAT5 enhances drought and salt tolerance, and low-temperature sensitivity in transgenic tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:1036254. [PMID: 36420018 PMCID: PMC9676457 DOI: 10.3389/fpls.2022.1036254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The homeodomain-leucine zipper protein HAT belongs to the homeodomain leucine zipper subfamily (HD-Zip) and is important for regulating plant growth and development and stress tolerance. To investigate the role of HAT5 in tolerance to drought, salt, and low temperature stress, we selected a HAT gene from Pyrus sinkiangensis Yü (Pyrus sinkiangensis T.T. Yu). The sequences were analyzed using ioinformatics, and the overexpressed tomato lines were obtained using molecular biology techniques. The phenotypes, physiological, and biochemical indexes of the wild-type and transgenic tomato lines were observed under different stress conditions. We found that the gene had the highest homology with PbrHAT5. Under drought and NaCl stress, osmotic regulatory substances (especially proline) were significantly accumulated, and antioxidant enzyme activities were enhanced. The malondialdehyde level and relative electrical conductivity of transgenic tomatoes under low temperature (freezing) stress were significantly higher than those of wild-type tomatoes. The reactive oxygen species scavenging system was unbalanced. This study found that PsHAT5 improved the tolerance of tomatoes to drought and salt stress by regulating proline metabolism and oxidative stress ability, reducing the production of reactive oxygen species, and maintaining normal cell metabolism. In conclusion, the PsHAT5 transcription factor has great potential in crop resistance breeding, which lays a theoretical foundation for future excavation of effective resistance genes of the HD-Zip family and experimental field studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Li
- *Correspondence: Jianbo Zhu, ; Jin Li,
| | | |
Collapse
|
5
|
Li Y, Yang Z, Zhang Y, Guo J, Liu L, Wang C, Wang B, Han G. The roles of HD-ZIP proteins in plant abiotic stress tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1027071. [PMID: 36311122 PMCID: PMC9598875 DOI: 10.3389/fpls.2022.1027071] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/26/2022] [Indexed: 05/31/2023]
Abstract
Homeodomain leucine zipper (HD-ZIP) proteins are plant-specific transcription factors that contain a homeodomain (HD) and a leucine zipper (LZ) domain. The highly conserved HD binds specifically to DNA and the LZ mediates homodimer or heterodimer formation. HD-ZIP transcription factors control plant growth, development, and responses to abiotic stress by regulating downstream target genes and hormone regulatory pathways. HD-ZIP proteins are divided into four subclasses (I-IV) according to their sequence conservation and function. The genome-wide identification and expression profile analysis of HD-ZIP proteins in model plants such as Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have improved our understanding of the functions of the different subclasses. In this review, we mainly summarize and discuss the roles of HD-ZIP proteins in plant response to abiotic stresses such as drought, salinity, low temperature, and harmful metals. HD-ZIP proteins mainly mediate plant stress tolerance by regulating the expression of downstream stress-related genes through abscisic acid (ABA) mediated signaling pathways, and also by regulating plant growth and development. This review provides a basis for understanding the roles of HD-ZIP proteins and potential targets for breeding abiotic stress tolerance in plants.
Collapse
|
6
|
Medina CA, Samac DA, Yu LX. Pan-transcriptome identifying master genes and regulation network in response to drought and salt stresses in Alfalfa (Medicago sativa L.). Sci Rep 2021; 11:17203. [PMID: 34446782 PMCID: PMC8390513 DOI: 10.1038/s41598-021-96712-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Alfalfa is an important legume forage grown worldwide and its productivity is affected by environmental stresses such as drought and high salinity. In this work, three alfalfa germplasms with contrasting tolerances to drought and high salinity were used for unraveling the transcriptomic responses to drought and salt stresses. Twenty-one different RNA samples from different germplasm, stress conditions or tissue sources (leaf, stem and root) were extracted and sequenced using the PacBio (Iso-Seq) and the Illumina platforms to obtain full-length transcriptomic profiles. A total of 1,124,275 and 91,378 unique isoforms and genes were obtained, respectively. Comparative analysis of transcriptomes identified differentially expressed genes and isoforms as well as transcriptional and post-transcriptional modifications such as alternative splicing events, fusion genes and nonsense-mediated mRNA decay events and non-coding RNA such as circRNA and lncRNA. This is the first time to identify the diversity of circRNA and lncRNA in response to drought and high salinity in alfalfa. The analysis of weighted gene co-expression network allowed to identify master genes and isoforms that may play important roles on drought and salt stress tolerance in alfalfa. This work provides insight for understanding the mechanisms by which drought and salt stresses affect alfalfa growth at the whole genome level.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA
| | - Deborah A Samac
- United States Department of Agriculture-Agricultural Research Service, Plant Science Research Unit, 1991 Upper Buford Circle, 495 Borlaug Hall St, Paul, MN, 55108, USA
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA, 99350, USA.
| |
Collapse
|
7
|
Basso MF, Costa JA, Ribeiro TP, Arraes FBM, Lourenço-Tessutti IT, Macedo AF, Neves MRD, Nardeli SM, Arge LW, Perez CEA, Silva PLR, de Macedo LLP, Lisei-de-Sa ME, Santos Amorim RM, Pinto ERDC, Silva MCM, Morgante CV, Floh EIS, Alves-Ferreira M, Grossi-de-Sa MF. Overexpression of the CaHB12 transcription factor in cotton (Gossypium hirsutum) improves drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:80-93. [PMID: 34034163 DOI: 10.1016/j.plaphy.2021.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The Coffea arabica HB12 gene (CaHB12), which encodes a transcription factor belonging to the HD-Zip I subfamily, is upregulated under drought, and its constitutive overexpression (35S:CaHB12OX) improves the Arabidopsis thaliana tolerance to drought and salinity stresses. Herein, we generated transgenic cotton events constitutively overexpressing the CaHB12 gene, characterized these events based on their increased tolerance to water deficit, and exploited the gene expression level from the CaHB12 network. The segregating events Ev8.29.1, Ev8.90.1, and Ev23.36.1 showed higher photosynthetic yield and higher water use efficiency under severe water deficit and permanent wilting point conditions compared to wild-type plants. Under well-irrigated conditions, these three promising transformed events showed an equivalent level of Abscisic acid (ABA) and decreased Indole-3-acetic acid (IAA) accumulation, and a higher putrescine/(spermidine + spermine) ratio in leaf tissues was found in the progenies of at least two transgenic cotton events compared to non-transgenic plants. In addition, genes that are considered as modulated in the A. thaliana 35S:CaHB12OX line were also shown to be modulated in several transgenic cotton events maintained under field capacity conditions. The upregulation of GhPP2C and GhSnRK2 in transgenic cotton events maintained under permanent wilting point conditions suggested that CaHB12 might act enhancing the ABA-dependent pathway. All these data confirmed that CaHB12 overexpression improved the tolerance to water deficit, and the transcriptional modulation of genes related to the ABA signaling pathway or downstream genes might enhance the defense responses to drought. The observed decrease in IAA levels indicates that CaHB12 overexpression can prevent leaf abscission in plants under or after stress. Thus, our findings provide new insights on CaHB12 gene and identify several promising cotton events for conducting field trials on water deficit tolerance and agronomic performance.
Collapse
Affiliation(s)
- Marcos Fernando Basso
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Julia Almeida Costa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; Catholic University of Brasília, Brasília, DF, 71966-700, Brazil
| | - Thuanne Pires Ribeiro
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; Federal University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Fabricio Barbosa Monteiro Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; Federal University of Rio Grande do Sul, Porto Alegre, RS, 90040-060, Brazil
| | | | | | | | | | - Luis Willian Arge
- Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-901, Brazil
| | | | - Paolo Lucas Rodrigues Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; Catholic University of Brasília, Brasília, DF, 71966-700, Brazil
| | | | - Maria Eugênia Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil; EPAMIG, Uberaba, MG, 31170-495, Brazil
| | | | | | - Maria Cristina Mattar Silva
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil
| | - Carolina Vianna Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil; Embrapa Semi-Arid, Petrolina, PE, 56302-970, Brazil
| | | | - Marcio Alves-Ferreira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil; Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-901, Brazil
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, 70297-400, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, 70297-400, Brazil; Catholic University of Brasília, Brasília, DF, 71966-700, Brazil.
| |
Collapse
|
8
|
Zhan J, Diao Y, Yin G, Sajjad M, Wei X, Lu Z, Wang Y. Integration of mRNA and miRNA Analysis Reveals the Molecular Mechanism of Cotton Response to Salt Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:767984. [PMID: 34956267 PMCID: PMC8695560 DOI: 10.3389/fpls.2021.767984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/09/2021] [Indexed: 05/13/2023]
Abstract
To identify the regulatory network of known and novel microRNAs (miRNAs) and their targets responding to salt stress, a combined analysis of mRNA libraries, small RNA libraries, and degradome libraries were performed. In this study, we used unique molecular identifiers (UMIs), which are more sensitive, accurate, and reproducible than traditional methods of sequencing, to quantify the number of molecules and correct for amplification bias. We identified a total of 312 cotton miRNAs using seedlings at 0, 1, 3, and 6 h after NaCl treatment, including 80 known ghr-miRNAs and 232 novel miRNAs and found 155 miRNAs that displayed significant differential expression under salt stress. Among them, fifty-nine differentially expressed miRNAs were simultaneously induced in two or three tissues, while 66, 11, and 19 were specifically expressed in the roots, leaves, and stems, respectively. It is indicated there were different populations of miRNAs against salt stress in roots, leaves and stems. 399 candidate targets of salt-induced miRNAs showed significant differential expression before and after salt treatment, and 72 targets of 25 miRNAs were verified by degradome sequencing data. Furthermore, the regulatory relationship of miRNA-target gene was validated experimentally via 5'RLM-RACE, proving our data reliability. Gene ontology and KEGG pathway analysis found that salt-responsive miRNA targets among the differentially expressed genes were significantly enriched, and mainly involved in response to the stimulus process and the plant hormone signal transduction pathway. Furthermore, the expression levels of newly identified miRNA mir1 and known miRNAs miR390 and miR393 gradually decreased when subjected to continuous salt stress, while overexpression of these miRNAs both increased sensitivity to salt stress. Those newly identified miRNAs and mRNA pairs were conducive to genetic engineering and better understanding the mechanisms responding to salt stress in cotton.
Collapse
Affiliation(s)
- Jingjing Zhan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yangyang Diao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guo Yin
- Handan Academy of Agricultural Sciences, Handan, China
| | - Muhammad Sajjad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xi Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhengying Lu
- Handan Academy of Agricultural Sciences, Handan, China
- *Correspondence: Zhengying Lu,
| | - Ye Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
- Ye Wang,
| |
Collapse
|
9
|
Zhang RX, Zhu WC, Cheng GX, Yu YN, Li QH, Haq SU, Said F, Gong ZH. A novel gene, CaATHB-12, negatively regulates fruit carotenoid content under cold stress in Capsicum annuum. Food Nutr Res 2020; 64:3729. [PMID: 33447178 PMCID: PMC7778427 DOI: 10.29219/fnr.v64.3729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 05/20/2020] [Accepted: 09/10/2020] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Carotenoids, the secondary metabolites terpenoids, are the largest factors that form the fruit color. Similar to flavonoids, they are not only safe and natural colorants of fruits but also play a role as stress response biomolecules. METHODS To study the contribution of the key genes in carotenoids biosynthesis, fruit-color formation, and in response to cold stress, we characterized the key regulatory factor CaATHB-12 from the HD-ZIP I sub-gene family members in pepper. RESULTS Cold stress enhanced carotenoid accumulation as compared with the normal condition. CaATHB-12 silencing through virus-induced gene silencing changed the fruit color by regulating the carotenoid contents. CaATHB-12 silencing increased the antioxidant enzyme activities in the fruits of pepper, exposed to cold stress, whereas CaATHB-12 overexpression decreased the activities of antioxidant enzymes in the transgenic Arabidopsis lines, exposed to cold stress, suggesting that CaATHB-12 is involved in the regulation of cold stress in the pepper fruits. CONCLUSION Our research will provide insights into the formation of fruit color in pepper and contribution of CaATHB-12 in response to cold stress. Further study should be focused on the interaction between CaATHB-12 and its target gene.
Collapse
Affiliation(s)
- Rui-Xing Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wen-Chao Zhu
- Guizhou Institute of Pepper, Guiyang, P.R. China
| | - Guo-Xin Cheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Quan-Hui Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Fazal Said
- Department of Agriculture, Abdul Wali Khan University, Mardan, Paksitan
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
| |
Collapse
|
10
|
SsPsaH, a H subunit of the photosystem I reaction center of Suaeda salsa, confers the capacity of osmotic adjustment in tobacco. Genes Genomics 2020; 42:1455-1465. [PMID: 33155109 DOI: 10.1007/s13258-020-00970-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Abiotic stress effects agricultural production, so research on improving stress tolerance of crop is important. Suaeda salsa is a halophyte with high salt and drought tolerance and ability to desalinate saline soil and improve soil quality. OBJECTIVE To discover and utilize of salt and drought tolerance-related genes, we further investigated the mechanisms of salt and drought tolerance. METHODS Through screening a salt treated Suaeda salsa cDNA library and further cloning a H subunit of the photosystem I reaction center SsPsaH cDNA, and then the protein domain and phylogenetic analyses of PSI genes was conducted with the NCBI Blast, DNAMAN, and MotifScan programs. The S. salsa seedlings were subjected to various stress treatments and analyze expression of SsPsaH under these treatments by real-time RT-PCR. SsPsaH expression construct was introduced into S. pombe cells by electroporation and transformed into N. tabacum plants by the leaf disc transformation method. RESULTS A member of the H subunit of the Photosystem I reaction center (defined as SsPsaH) was obtained. The expression of SsPsaH was up-regulated by abscisic acid (ABA), salt, and drought stress treatments. Over-expressing SsPsaH in recombinant yeasts enhanced high salinity tolerance and increased tolerance to sorbitol during seed germination and seedling root development in tobacco, respectively. Some stress-related mark genes such as a LEA family gene of NtLEA, a binding protein of a drought response element of NtDREB, the ascorbate peroxidase gene (NtAPX) were also up-regulated in SsPsaH overexpressing transgenic tobacco lines. CONCLUSIONS These results show that SsPsaH may contribute to the salt and osmotic stress response of plants.
Collapse
|
11
|
Zhou Y, Tang Q, Wu M, Mou D, Liu H, Wang S, Zhang C, Ding L, Luo J. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Sci Rep 2018; 8:2789. [PMID: 29434336 PMCID: PMC5809607 DOI: 10.1038/s41598-018-21268-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 01/31/2018] [Indexed: 12/18/2022] Open
Abstract
Selenium (Se) is an essential mineral element for animals and humans. Cardamine hupingshanensis (Brassicaceae), found in the Wuling mountain area of China, has been identified as a novel Se hyperaccumulator plant. However, the mechanism for selenium tolerance in Cardamine plants remains unknown. In this study, two cDNA libraries were constructed from seedlings of C. hupingshanensis treated with selenite. Approximately 100 million clean sequencing reads were de novo assembled into 48,989 unigenes, of which 39,579 and 33,510 were expressed in the roots and leaves, respectively. Biological pathways and candidate genes involved in selenium tolerance mechanisms were identified. Differential expression analysis identified 25 genes located in four pathways that were significantly responsive to selenite in C. hupingshanensis seedlings. The results of RNA sequencing (RNA-Seq) and quantitative real-time PCR (RT-qPCR) confirmed that storage function, oxidation, transamination and selenation play very important roles in the selenium tolerance in C. hupingshanensis. Furthermore, a different degradation pathway synthesizing malformed or deformed selenoproteins increased selenium tolerance at different selenite concentrations. This study provides novel insights into the mechanisms of selenium tolerance in a hyperaccumulator plant, and should serve as a rich gene resource for C. hupingshanensis.
Collapse
Affiliation(s)
- Yifeng Zhou
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China.,Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Qiaoyu Tang
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Meiru Wu
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Di Mou
- Key Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei University for Nationalities, Enshi, 44500, China
| | - Hui Liu
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Shouchuang Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chi Zhang
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Li Ding
- Collage of Biological Science and Technology, Hubei University for Nationalities, Enshi, 44500, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Li Z, Zhang C, Guo Y, Niu W, Wang Y, Xu Y. Evolution and expression analysis reveal the potential role of the HD-Zip gene family in regulation of embryo abortion in grapes (Vitis vinifera L.). BMC Genomics 2017; 18:744. [PMID: 28934927 PMCID: PMC5609062 DOI: 10.1186/s12864-017-4110-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The HD-Zip family has a diversity of functions during plant development. In this study, we identify 33 HD-Zip transcription factors in grape and detect their expressions in ovules and somatic embryos, as well as in various vegetative organs. RESULTS A genome-wide survey for HD-Zip transcription factors in Vitis was conducted based on the 12 X grape genome (V. vinifera L.). A total of 33 members were identified and classified into four subfamilies (I-IV) based on phylogeny analysis with Arabidopsis, rice and maize. VvHDZs in the same subfamily have similar protein motifs and intron/exon structures. An evaluation of duplication events suggests several HD-Zip genes arose before the divergence of the grape and Arabidopsis lineages. The 33 members of HD-Zip were differentially expressed in ovules of the stenospermic grape, Thompson Seedless and of the seeded grape, Pinot noir. Most have higher expressions during ovule abortion in Thompson Seedless. In addition, transcripts of the HD-Zip family were also detected in somatic embryogenesis of Thompson Seedless and in different vegetative organs of Thompson Seedless at varying levels. Additionally, VvHDZ28 is located in the nucleus and had transcriptional activity consistent with the typical features of the HD-Zip family. Our results provide a foundation for future grape HD-Zip gene function research. CONCLUSIONS The identification and expression profiles of the HD-Zip transcription factors in grape, reveal their diverse roles during ovule abortion and organ development. Our results lay a foundation for functional analysis of grape HDZ genes.
Collapse
Affiliation(s)
- Zhiqian Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Chen Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yurui Guo
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Weili Niu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi People’s Republic of China
| |
Collapse
|
13
|
Soda N, Sharan A, Gupta BK, Singla-Pareek SL, Pareek A. Evidence for nuclear interaction of a cytoskeleton protein (OsIFL) with metallothionein and its role in salinity stress tolerance. Sci Rep 2016; 6:34762. [PMID: 27708383 PMCID: PMC5052524 DOI: 10.1038/srep34762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/19/2016] [Indexed: 02/05/2023] Open
Abstract
Soil salinity is being perceived as a major threat to agriculture. Plant breeders and molecular biologist are putting their best efforts to raise salt-tolerant crops. The discovery of the Saltol QTL, a major QTL localized on chromosome I, responsible for salt tolerance at seedling stage in rice has given new hopes for raising salinity tolerant rice genotypes. In the present study, we have functionally characterized a Saltol QTL localized cytoskeletal protein, intermediate filament like protein (OsIFL), of rice. Studies related to intermediate filaments are emerging in plants, especially with respect to their involvement in abiotic stress response. Our investigations clearly establish that the heterologous expression of OsIFL in three diverse organisms (bacteria, yeast and tobacco) provides survival advantage towards diverse abiotic stresses. Screening of rice cDNA library revealed OsIFL to be strongly interacting with metallothionein protein. Bimolecular fluorescence complementation assay further confirmed this interaction to be occurring inside the nucleus. Overexpression of OsIFL in transgenic tobacco plants conferred salinity stress tolerance by maintaining favourable K+/Na+ ratio and thus showed protection from salinity stress induced ion toxicity. This study provides the first evidence for the involvement of a cytoskeletal protein in salinity stress tolerance in diverse organisms.
Collapse
Affiliation(s)
- Neelam Soda
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashutosh Sharan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Brijesh K Gupta
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
14
|
Gharat SA, Parmar S, Tambat S, Vasudevan M, Shaw BP. Transcriptome Analysis of the Response to NaCl in Suaeda maritima Provides an Insight into Salt Tolerance Mechanisms in Halophytes. PLoS One 2016; 11:e0163485. [PMID: 27682829 PMCID: PMC5040429 DOI: 10.1371/journal.pone.0163485] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/10/2016] [Indexed: 01/02/2023] Open
Abstract
Although salt tolerance is a feature representative of halophytes, most studies on this topic in plants have been conducted on glycophytes. Transcriptome profiles are also available for only a limited number of halophytes. Hence, the present study was conducted to understand the molecular basis of salt tolerance through the transcriptome profiling of the halophyte Suaeda maritima, which is an emerging plant model for research on salt tolerance. Illumina sequencing revealed 72,588 clustered transcripts, including 27,434 that were annotated using BLASTX. Salt application resulted in the 2-fold or greater upregulation of 647 genes and downregulation of 735 genes. Of these, 391 proteins were homologous to proteins in the COGs (cluster of orthologous groups) database, and the majorities were grouped into the poorly characterized category. Approximately 50% of the genes assigned to MapMan pathways showed homology to S. maritima. The majority of such genes represented transcription factors. Several genes also contributed to cell wall and carbohydrate metabolism, ion relation, redox responses and G protein, phosphoinositide and hormone signaling. Real-time PCR was used to validate the results of the deep sequencing for the most of the genes. This study demonstrates the expression of protein kinase C, the target of diacylglycerol in phosphoinositide signaling, for the first time in plants. This study further reveals that the biochemical and molecular responses occurring at several levels are associated with salt tolerance in S. maritima. At the structural level, adaptations to high salinity levels include the remodeling of cell walls and the modification of membrane lipids. At the cellular level, the accumulation of glycinebetaine and the sequestration and exclusion of Na+ appear to be important. Moreover, this study also shows that the processes related to salt tolerance might be highly complex, as reflected by the salt-induced enhancement of transcription factor expression, including hormone-responsive factors, and that this process might be initially triggered by G protein and phosphoinositide signaling.
Collapse
Affiliation(s)
- Sachin Ashruba Gharat
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Shaifaly Parmar
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| | - Subodh Tambat
- Bionivid Technology Private Limited, 3rd Floor, 4C-209, 4th Cross, Near New Horizon College, Kasturi Nagar, Bangalore, 560043, Karnataka, India
| | - Madavan Vasudevan
- Bionivid Technology Private Limited, 3rd Floor, 4C-209, 4th Cross, Near New Horizon College, Kasturi Nagar, Bangalore, 560043, Karnataka, India
| | - Birendra Prasad Shaw
- Environmental Biotechnology Laboratory, Institute of Life Sciences, Bhubaneswar, 751023, Odisha, India
| |
Collapse
|
15
|
Chen Y, Yin H, Gao M, Zhu H, Zhang Q, Wang Y. Comparative Transcriptomics Atlases Reveals Different Gene Expression Pattern Related to Fusarium Wilt Disease Resistance and Susceptibility in Two Vernicia Species. FRONTIERS IN PLANT SCIENCE 2016; 7:1974. [PMID: 28083008 PMCID: PMC5186792 DOI: 10.3389/fpls.2016.01974] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/13/2016] [Indexed: 05/12/2023]
Abstract
Vernicia fordii (tung oil tree) is a promising industrial crop. Unfortunately, the devastating Fusarium wilt disease has caused its great losses, while its sister species (Vernicia montana) is remarkably resistant to this pathogen. However, the genetic mechanisms underlying this difference remain largely unknown. We here generated comparative transcriptomic atlases for different stages of Fusarium oxysporum infected Vernicia root. The transcriptomes of V. fordii and V. montana were assembled de novo and contained 258,430 and 245,240 non-redundant transcripts with N50 values of 1776 and 2452, respectively. A total of 44,310 pairs of putative one-to-one orthologous genes were identified in Vernicia species. Overall, the vast majority of orthologous genes shared a remarkably similar expression mode. The expression patterns of a small set of genes were further validated by quantitative real-time PCR. Moreover, 157 unigenes whose expression significantly correlated between the two species were defined, and gene set enrichment analysis indicated roles in increased defense response and in jasmonic and salicylic acid signaling responses during pathogen attack. Co-expression network analysis further identified the 17 hub unigenes, such as the serine/threonine protein kinase D6PK, leucine-rich repeat receptor-like kinase (LRR-RLK), and EREBP transcription factor, which play essential roles in plant pathogen resistance. Intriguingly, the expression of most hub genes differed significantly between V. montana and V. fordii. Based on our results, we propose a model to describe the major molecular reactions that underlie the defense responses of resistant V. montana to F. oxysporum. These data represent a crucial step toward breeding more pathogen-resistant V. fordii.
Collapse
|
16
|
Proteomic analysis of seedling roots of two maize inbred lines that differ significantly in the salt stress response. PLoS One 2015; 10:e0116697. [PMID: 25659111 PMCID: PMC4320067 DOI: 10.1371/journal.pone.0116697] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 12/14/2014] [Indexed: 11/19/2022] Open
Abstract
Salinity is a major abiotic stress that limits plant productivity and quality throughout the world. Roots are the sites of salt uptake. To better understand salt stress responses in maize, we performed a comparative proteomic analysis of seedling roots from the salt-tolerant genotype F63 and the salt-sensitive genotype F35 under 160 mM NaCl treatment for 2 days. Under salinity conditions, the shoot fresh weight and relative water content were significantly higher in F63 than in F35, while the osmotic potential was significantly lower and the reduction of the K+/Na+ ratio was significantly less pronounced in F63 than in F35. Using an iTRAQ approach, twenty-eight proteins showed more than 2.0- fold changes in abundance and were regarded as salt-responsive proteins. Among them, twenty-two were specifically regulated in F63 but remained constant in F35. These proteins were mainly involved in signal processing, water conservation, protein synthesis and biotic cross-tolerance, and could be the major contributors to the tolerant genotype of F63. Functional analysis of a salt-responsive protein was performed in yeast as a case study to confirm the salt-related functions of detected proteins. Taken together, the results of this study may be helpful for further elucidating salt tolerance mechanisms in maize.
Collapse
|
17
|
Wang Z, Hu H, Goertzen LR, McElroy JS, Dane F. Analysis of the Citrullus colocynthis transcriptome during water deficit stress. PLoS One 2014; 9:e104657. [PMID: 25118696 PMCID: PMC4132101 DOI: 10.1371/journal.pone.0104657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/06/2014] [Indexed: 12/27/2022] Open
Abstract
Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress.
Collapse
Affiliation(s)
- Zhuoyu Wang
- Department of Horticulture, Auburn University, Alabama, United States of America
| | - Hongtao Hu
- Department of Biological Sciences, Auburn University, Alabama, United States of America
| | - Leslie R. Goertzen
- Department of Biological Sciences, Auburn University, Alabama, United States of America
| | - J. Scott McElroy
- Department of Crop, Soil and Environmental Sciences, Auburn University, Alabama, United States of America
| | - Fenny Dane
- Department of Horticulture, Auburn University, Alabama, United States of America
| |
Collapse
|
18
|
Zhang S, Wang Y, Li K, Zou Y, Chen L, Li X. Identification of Cold-Responsive miRNAs and Their Target Genes in Nitrogen-Fixing Nodules of Soybean. Int J Mol Sci 2014; 15:13596-614. [PMID: 25100171 PMCID: PMC4159813 DOI: 10.3390/ijms150813596] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
As a warm climate species, soybean is highly sensitive to chilling temperatures. Exposure to chilling temperatures causes a significant reduction in the nitrogen fixation rate in soybean plants and subsequent yield loss. However, the molecular basis for the sensitivity of soybean to chilling is poorly understood. In this study, we identified cold-responsive miRNAs in nitrogen-fixing nodules of soybean. Upon chilling, the expression of gma-miR397a, gma-miR166u and gma-miR171p was greatly upregulated, whereas the expression of gma-miR169c, gma-miR159b, gma-miR319a/b and gma-miR5559 was significantly decreased. The target genes of these miRNAs were predicted and validated using 5' complementary DNA ends (5'-RACE) experiments, and qPCR analysis identified putative genes targeted by the cold-responsive miRNAs in response to chilling temperatures. Taken together, our results reveal that miRNAs may be involved in the protective mechanism against chilling injury in mature nodules of soybean.
Collapse
Affiliation(s)
- Senlei Zhang
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Youning Wang
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Kexue Li
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Yanmin Zou
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Liang Chen
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| | - Xia Li
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Research Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, China.
| |
Collapse
|
19
|
OsSLI1, a homeodomain containing transcription activator, involves abscisic acid related stress response in rice (Oryza sativa L.). ScientificWorldJournal 2014; 2014:809353. [PMID: 25089296 PMCID: PMC4095735 DOI: 10.1155/2014/809353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/27/2014] [Indexed: 12/18/2022] Open
Abstract
Homeodomain-leucine zipper type I (HD-Zip I) proteins are involved in the regulation of plant development and response to environmental stresses. In this study, OsSLI1 (Oryza sativa stress largely induced 1), encoding a member of the HD-Zip I subfamily, was isolated from rice. The expression of OsSLI1 was dramatically induced by multiple abiotic stresses and exogenous abscisic acid (ABA). In silico sequence analysis discovered several cis-acting elements including multiple ABREs (ABA-responsive element binding factors) in the upstream promoter region of OsSLI1. The OsSLI1-GFP fusion protein was localized in the nucleus of rice protoplast cells and the transcriptional activity of OsSLI1 was confirmed by the yeast hybrid system. Further, it was found that OsSLI1 expression was enhanced in an ABI5-Like1 (ABL1) deficiency rice mutant abl1 under stress conditions, suggesting that ABL1 probably negatively regulates OsSLI1 gene expression. Moreover, it was found that OsSLI1 was regulated in panicle development. Taken together, OsSLI1 may be a transcriptional activator regulating stress-responsive gene expression and panicle development in rice.
Collapse
|
20
|
Ré DA, Capella M, Bonaventure G, Chan RL. Arabidopsis AtHB7 and AtHB12 evolved divergently to fine tune processes associated with growth and responses to water stress. BMC PLANT BIOLOGY 2014; 14:150. [PMID: 24884528 PMCID: PMC4064807 DOI: 10.1186/1471-2229-14-150] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/22/2014] [Indexed: 05/03/2023]
Abstract
BACKGROUND Arabidopsis AtHB7 and AtHB12 transcription factors (TFs) belong to the homeodomain-leucine zipper subfamily I (HD-Zip I) and present 62% amino acid identity. These TFs have been associated with the control of plant development and abiotic stress responses; however, at present it is not completely understood how AtHB7 and AtHB12 regulate these processes. RESULTS By using different expression analysis approaches, we found that AtHB12 is expressed at higher levels during early Arabidopsis thaliana development whereas AtHB7 during later developmental stages. Moreover, by analysing gene expression in single and double Arabidopsis mutants and in transgenic plants ectopically expressing these TFs, we discovered a complex mechanism dependent on the plant developmental stage and in which AtHB7 and AtHB12 affect the expression of each other. Phenotypic analysis of transgenic plants revealed that AtHB12 induces root elongation and leaf development in young plants under standard growth conditions, and seed production in water-stressed plants. In contrast, AtHB7 promotes leaf development, chlorophyll levels and photosynthesis and reduces stomatal conductance in mature plants. Moreover AtHB7 delays senescence processes in standard growth conditions. CONCLUSIONS We demonstrate that AtHB7 and AtHB12 have overlapping yet specific roles in several processes related to development and water stress responses. The analysis of mutant and transgenic plants indicated that the expression of AtHB7 and AtHB12 is regulated in a coordinated manner, depending on the plant developmental stage and the environmental conditions. The results suggested that AtHB7 and AtHB12 evolved divergently to fine tune processes associated with development and responses to mild water stress.
Collapse
Affiliation(s)
- Delfina A Ré
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000 Santa Fe, Argentina
| | | | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000 Santa Fe, Argentina
| |
Collapse
|
21
|
Chang X, Donnelly L, Sun D, Rao J, Reid MS, Jiang CZ. A Petunia homeodomain-leucine zipper protein, PhHD-Zip, plays an important role in flower senescence. PLoS One 2014; 9:e88320. [PMID: 24551088 PMCID: PMC3925126 DOI: 10.1371/journal.pone.0088320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/07/2014] [Indexed: 01/07/2023] Open
Abstract
Flower senescence is initiated by developmental and environmental signals, and regulated by gene transcription. A homeodomain-leucine zipper transcription factor, PhHD-Zip, is up-regulated during petunia flower senescence. Virus-induced gene silencing of PhHD-Zip extended flower life by 20% both in unpollinated and pollinated flowers. Silencing PhHD-Zip also dramatically reduced ethylene production and the abundance of transcripts of genes involved in ethylene (ACS, ACO), and ABA (NCED) biosynthesis. Abundance of transcripts of senescence-related genes (SAG12, SAG29) was also dramatically reduced in the silenced flowers. Over-expression of PhHD-Zip accelerated petunia flower senescence. Furthermore, PhHD-Zip transcript abundance in petunia flowers was increased by application of hormones (ethylene, ABA) and abiotic stresses (dehydration, NaCl and cold). Our results suggest that PhHD-Zip plays an important role in regulating petunia flower senescence.
Collapse
Affiliation(s)
- Xiaoxiao Chang
- Department of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Linda Donnelly
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, United States of America
| | - Daoyang Sun
- Department of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
| | - Jingping Rao
- Department of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail: (JR); (MSR); (CZJ)
| | - Michael S. Reid
- Department of Plant Sciences, University of California Davis, Davis, California, United States of America
- * E-mail: (JR); (MSR); (CZJ)
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, California, United States of America
- * E-mail: (JR); (MSR); (CZJ)
| |
Collapse
|
22
|
Moon SJ, Shin DJ, Kim BG, Byun MO. Putative fructose-1,6-bisphosphate aldolase 1 (AtFBA1) affects stress tolerance in yeast and Arabidopsis. ACTA ACUST UNITED AC 2012. [DOI: 10.5010/jpb.2012.39.2.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Ectopic expression of a LEA protein gene TsLEA1 from Thellungiella salsuginea confers salt-tolerance in yeast and Arabidopsis. Mol Biol Rep 2011; 39:4627-33. [PMID: 21947846 DOI: 10.1007/s11033-011-1254-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Thellungiella salsuginea is a valuable halophytic genetic model plant in the Brassicaceae family. Based on previous construction of a salt treated Thellungiella cDNA library carried by pGAD-GH shuttle vector which could directly express in Saccharomyces cerevisiae, a putative salt-tolerance gene TsLEA1 was identified by large-scale stress-tolerance screen in salt sensitive yeast strain G19. The longest 483 bp ORF of TsLEA1 cDNA coding a 160 amino acids protein with a predicted conserved pfam domain shared an 89% amino acid sequence similarity to Arabidopsis LEA group 4 proteins. The transcription level of TsLEA1 gene in T. salsuginea seedlings increased upon salt treatment and its transcript accumulated more in roots than in aerial parts. The ability of the TsLEA1 to facilitate salinity tolerance was analyzed in yeast and transgenic Arabidopsis. It was confirmed that TsLEA1 exhibits conserved salt tolerance in plant as well as in yeast. The results suggested that the TsLEA1 may participate in response to stresses in over expressed circumstance, protecting yeast and plant cells under stress conditions.
Collapse
|
24
|
Park J, Lee HJ, Cheon CI, Kim SH, Hur YS, Auh CK, Im KH, Yun DJ, Lee S, Davis KR. The Arabidopsis thaliana homeobox gene ATHB12 is involved in symptom development caused by geminivirus infection. PLoS One 2011; 6:e20054. [PMID: 21625602 PMCID: PMC3097238 DOI: 10.1371/journal.pone.0020054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/12/2011] [Indexed: 11/18/2022] Open
Abstract
Background Geminiviruses are single-stranded DNA viruses that infect a number of monocotyledonous and dicotyledonous plants. Arabidopsis is susceptible to infection with the Curtovirus, Beet severe curly top virus (BSCTV). Infection of Arabidopsis with BSCTV causes severe symptoms characterized by stunting, leaf curling, and the development of abnormal inflorescence and root structures. BSCTV-induced symptom development requires the virus-encoded C4 protein which is thought to interact with specific plant-host proteins and disrupt signaling pathways important for controlling cell division and development. Very little is known about the specific plant regulatory factors that participate in BSCTV-induced symptom development. This study was conducted to identify specific transcription factors that are induced by BSCTV infection. Methodology/Principal Findings Arabidopsis plants were inoculated with BSCTV and the induction of specific transcription factors was monitored using quantitative real-time polymerase chain reaction assays. We found that the ATHB12 and ATHB7 genes, members of the homeodomain-leucine zipper family of transcription factors previously shown to be induced by abscisic acid and water stress, are induced in symptomatic tissues of Arabidopsis inoculated with BSCTV. ATHB12 expression is correlated with an array of morphological abnormalities including leaf curling, stunting, and callus-like structures in infected Arabidopsis. Inoculation of plants with a BSCTV mutant with a defective c4 gene failed to induce ATHB12. Transgenic plants expressing the BSCTV C4 gene exhibited increased ATHB12 expression whereas BSCTV-infected ATHB12 knock-down plants developed milder symptoms and had lower ATHB12 expression compared to the wild-type plants. Reporter gene studies demonstrated that the ATHB12 promoter was responsive to BSCTV infection and the highest expression levels were observed in symptomatic tissues where cell cycle genes also were induced. Conclusions/Significance These results suggest that ATHB7 and ATHB12 may play an important role in the activation of the abnormal cell division associated with symptom development during geminivirus infection.
Collapse
Affiliation(s)
- Jungan Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Arce AL, Raineri J, Capella M, Cabello JV, Chan RL. Uncharacterized conserved motifs outside the HD-Zip domain in HD-Zip subfamily I transcription factors; a potential source of functional diversity. BMC PLANT BIOLOGY 2011; 11:42. [PMID: 21371298 PMCID: PMC3060862 DOI: 10.1186/1471-2229-11-42] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/03/2011] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plant HD-Zip transcription factors are modular proteins in which a homeodomain is associated to a leucine zipper. Of the four subfamilies in which they are divided, the tested members from subfamily I bind in vitro the same pseudopalindromic sequence CAAT(A/T)ATTG and among them, several exhibit similar expression patterns. However, most experiments in which HD-Zip I proteins were over or ectopically expressed under the control of the constitutive promoter 35S CaMV resulted in transgenic plants with clearly different phenotypes. Aiming to elucidate the structural mechanisms underlying such observation and taking advantage of the increasing information in databases of sequences from diverse plant species, an in silico analysis was performed. In addition, some of the results were also experimentally supported. RESULTS A phylogenetic tree of 178 HD-Zip I proteins together with the sequence conservation presented outside the HD-Zip domains allowed the distinction of six groups of proteins. A motif-discovery approach enabled the recognition of an activation domain in the carboxy-terminal regions (CTRs) and some putative regulatory mechanisms acting in the amino-terminal regions (NTRs) and CTRs involving sumoylation and phosphorylation. A yeast one-hybrid experiment demonstrated that the activation activity of ATHB1, a member of one of the groups, is located in its CTR. Chimerical constructs were performed combining the HD-Zip domain of one member with the CTR of another and transgenic plants were obtained with these constructs. The phenotype of the chimerical transgenic plants was similar to the observed in transgenic plants bearing the CTR of the donor protein, revealing the importance of this module inside the whole protein. CONCLUSIONS The bioinformatical results and the experiments conducted in yeast and transgenic plants strongly suggest that the previously poorly analyzed NTRs and CTRs of HD-Zip I proteins play an important role in their function, hence potentially constituting a major source of functional diversity among members of this subfamily.
Collapse
Affiliation(s)
- Agustín L Arce
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Jesica Raineri
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Matías Capella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Julieta V Cabello
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| | - Raquel L Chan
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, CC 242 Ciudad Universitaria, 3000, Santa Fe, Argentina
| |
Collapse
|
26
|
Yang J, Liu X, Yang X, Zhang M. Mitochondrially-targeted expression of a cytoplasmic male sterility-associated orf220 gene causes male sterility in Brassica juncea. BMC PLANT BIOLOGY 2010; 10:231. [PMID: 20974011 PMCID: PMC3017852 DOI: 10.1186/1471-2229-10-231] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/26/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND The novel chimeric open reading frame (orf) resulting from the rearrangement of a mitochondrial genome is generally thought to be a causal factor in the occurrence of cytoplasmic male sterility (CMS). Both positive and negative correlations have been found between CMS-associated orfs and the occurrence of CMS when CMS-associated orfs were expressed and targeted at mitochondria. Some orfs cause male sterility or semi-sterility, while some do not. Little is currently known about how mitochondrial factor regulates the expression of the nuclear genes involved in male sterility. The purpose of this study was to investigate the biological function of a candidate CMS-associated orf220 gene, newly isolated from cytoplasmic male-sterile stem mustard, and show how mitochondrial retrograde regulated nuclear gene expression is related to male sterility. RESULTS It was shown that the ORF220 protein can be guided to the mitochondria using the mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic stem mustard plants expressed the chimeric gene containing the orf220 gene and a mitochondrial-targeting sequence of the β subunit of F1-ATPase (atp2-1). Transgenic plants were male-sterile, most being unable to produce pollen while some could only produce non-vigorous pollen. The transgenic stem mustard plants also showed aberrant floral development identical to that observed in the CMS stem mustard phenotype. Results obtained from oligooarray analysis showed that some genes related to mitochondrial energy metabolism were down-regulated, indicating a weakening of mitochondrial function in transgenic stem mustard. Some genes related to pollen development were shown to be down-regulated in transgenic stem mustard and the expression of some transcription factor genes was also altered. CONCLUSION The work presented furthers our understanding of how the mitochondrially-targeted expression of CMS-associated orf220 gene causes male sterility through retrograde regulation of nuclear gene expression in Brassica juncea.
Collapse
Affiliation(s)
- Jinghua Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Xunyan Liu
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Xiaodong Yang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| | - Mingfang Zhang
- Laboratory of Genetic Resources & Functional Improvement for Horticultural Plants, Department of Horticulture, Zhejiang University, Hangzhou, 310029, P. R. China
- Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Ministry of Agriculture, Hangzhou, 310029, P. R. China
| |
Collapse
|
27
|
Son O, Hur YS, Kim YK, Lee HJ, Kim S, Kim MR, Nam KH, Lee MS, Kim BY, Park J, Park J, Lee SC, Hanada A, Yamaguchi S, Lee IJ, Kim SK, Yun DJ, Söderman E, Cheon CI. ATHB12, an ABA-Inducible Homeodomain-Leucine Zipper (HD-Zip) Protein of Arabidopsis, Negatively Regulates the Growth of the Inflorescence Stem by Decreasing the Expression of a Gibberellin 20-Oxidase Gene. ACTA ACUST UNITED AC 2010; 51:1537-47. [DOI: 10.1093/pcp/pcq108] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
28
|
Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y. Differential expression of miRNAs in response to salt stress in maize roots. ANNALS OF BOTANY 2009; 103:29-38. [PMID: 18952624 PMCID: PMC2707283 DOI: 10.1093/aob/mcn205] [Citation(s) in RCA: 283] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/22/2008] [Accepted: 09/15/2008] [Indexed: 05/18/2023]
Abstract
BACKGROUND AND AIMS Corn (Zea mays) responds to salt stress via changes in gene expression, metabolism and physiology. This adaptation is achieved through the regulation of gene expression at the transcriptional and post-transcriptional levels. MicroRNAs (miRNAs) have been found to act as key regulating factors of post-transcriptional gene expression. However, little is known about the role of miRNAs in plants' responses to abiotic stresses. METHODS A custom microparaflo microfluidic array containing release version 10.1 plant miRNA probes (http://microrna.sanger.ac.uk/) was used to discover salt stress-responsive miRNAs using the differences in miRNA expression between the salt-tolerant maize inbred line 'NC286' and the salt-sensitive maize line 'Huangzao4'. Key Results miRNA microarray hybridization revealed that a total of 98 miRNAs, from 27 plant miRNA families, had significantly altered expression after salt treatment. These miRNAs displayed different activities in the salt response, and miRNAs belonging to the same miRNA family showed the same behaviour. Interestingly, 18 miRNAs were found which were only expressed in the salt-tolerant maize line, and 25 miRNAs that showed a delayed regulation pattern in the salt-sensitive line. A gene model was proposed that showed how miRNAs could regulate the abiotic stress-associated process and the gene networks coping with the stress. CONCLUSIONS Salt-responsive miRNAs are involved in the regulation of metabolic, morphological and physiological adaptations of maize seedlings at the post-transcriptional level. The miRNA genotype-specific expression model might explain the distinct salt sensitivities between maize lines.
Collapse
Affiliation(s)
- Dong Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Lifang Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Hang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zhijie Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zuxin Zhang
- College of Agronomy, Hebei Agricultural University, Baoding 071001, P.R. China
| | - Yonglian Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, P.R. China
- For correspondence. E-mail
| |
Collapse
|
29
|
Monroy AF, Dryanova A, Malette B, Oren DH, Ridha Farajalla M, Liu W, Danyluk J, Ubayasena LWC, Kane K, Scoles GJ, Sarhan F, Gulick PJ. Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. PLANT MOLECULAR BIOLOGY 2007; 64:409-23. [PMID: 17437064 DOI: 10.1007/s11103-007-9161-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 03/04/2007] [Indexed: 05/08/2023]
Abstract
Freezing tolerance in plants develops through acclimation to cold by growth at low, above-freezing temperatures. Wheat is one of the most freezing-tolerant plants among major crop species and the wide range of freezing tolerance among wheat cultivars makes it an excellent model for investigation of the genetic basis of cold tolerance. Large numbers of genes are known to have altered levels of expression during the period of cold acclimation and there is keen interest in deciphering the signaling and regulatory pathways that control the changes in gene expression associated with acquired freezing tolerance. A 5740 feature cDNA amplicon microarray that was enriched for signal transduction and regulatory genes was constructed to compare changes in gene expression in a highly cold-tolerant winter wheat cultivar CDC Clair and a less tolerant spring cultivar, Quantum. Changes in gene expression over a time course of 14 days detected over 450 genes that were regulated by cold treatment and were differentially regulated between spring and winter cultivars, of these 130 are signaling or regulatory gene candidates, including: transcription factors, protein kinases, ubiquitin ligases and GTP, RNA and calcium binding proteins. Dynamic changes in transcript levels were seen at all periods of cold acclimation in both cultivars. There was an initial burst of gene activity detectable during the first day of CA, during which 90% of all genes with increases in transcript levels became clearly detectable and early expression differential between the two cultivars became more disparate with each successive period of cold acclimation.
Collapse
Affiliation(s)
- Antonio F Monroy
- Department of Biology and Centre for Structural and Functional Genomics, Concordia University, 7141 Sherbrooke West, Montreal, QC, Canada, H4B 1R6
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen AP, Wang GL, Qu ZL, Lu CX, Liu N, Wang F, Xia GX. Ectopic expression of ThCYP1, a stress-responsive cyclophilin gene from Thellungiella halophila, confers salt tolerance in fission yeast and tobacco cells. PLANT CELL REPORTS 2007; 26:237-45. [PMID: 16972091 DOI: 10.1007/s00299-006-0238-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2006] [Revised: 08/19/2006] [Accepted: 08/24/2006] [Indexed: 05/11/2023]
Abstract
The halophyte Thellungiella halophila (salt cress) is an ideal model system for studying the molecular mechanisms of salinity tolerance in plants. Herein, we report the identification of a stress-responsive cyclophilin gene (ThCYP1) from T. halophila, using fission yeast as a functional system. The expression of ThCYP1 is highly inducible by salt, abscisic acid (ABA), H(2)O(2) and heat shock. Ectopic overexpression of the ThCYP1 gene enhance the salt tolerance capacity of fission yeast and tobacco (Nicotiana tabacum L.) cv. Bright Yellow 2 (BY-2) cells significantly. ThCYP1 is expressed constitutively in roots, stems, leaves and flowers, with higher expression occurring in the roots and flowers. The ThCYP1 proteins are distributed widely within the cell, but are enriched significantly in the nucleus. The present results suggest that ThCYP1 may participate in response to stresses in the salt cress, perhaps by regulating appropriate folding of certain stress-related proteins, or in the signal transduction processes.
Collapse
Affiliation(s)
- An-Ping Chen
- National Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Wang Y, Chu Y, Liu G, Wang MH, Jiang J, Hou Y, Qu G, Yang C. Identification of expressed sequence tags in an alkali grass (Puccinellia tenuiflora) cDNA library. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:78-89. [PMID: 16545489 DOI: 10.1016/j.jplph.2005.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Accepted: 12/16/2005] [Indexed: 05/03/2023]
Abstract
Alkali grass (Puccinellia tenuiflora), a monocotyledonous halophyte, can serve as a model of salt tolerance in monocotyledon crops. To elucidate the molecular events associated with salt tolerance in alkali grass, we generated a directional cDNA library from leaves treated with the alkali salt, NaHCO3. Large-scale sequencing of the cDNA library identified 2942 ESTs representing 2366 non-redundant transcripts. These have been deposited in the dbEST division of GenBank. BLASTX evaluation indicated that 1274 of the ESTs were homologous to various known genes/proteins in a broad range of organisms, especially gramineae species. The other 1092 ESTs, which showed little if any homology to known sequences, were considered novel. Based on the encoded proteins, the 1274 identified ESTs fell into 12 functional categories, of which four were abundant, namely metabolism (18.84%), transcription (12.48%), unclassified (11.22%) and cell rescue/defense (9.66%). The 162 unique transcripts corresponding to possible salt-related genes were also identified. This study provides an overview of gene expression in NaHCO3-stressed alkali grass, as well as useful information for further investigation of salt resistance in plants.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Forest Tree Genetics and Breeding, School of Forestry, Northeast Forestry University, Harbin 150040, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lee HE, Shin D, Park SR, Han SE, Jeong MJ, Kwon TR, Lee SK, Park SC, Yi BY, Kwon HB, Byun MO. Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochem Biophys Res Commun 2006; 353:863-8. [PMID: 17207469 DOI: 10.1016/j.bbrc.2006.12.095] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 12/11/2006] [Indexed: 11/21/2022]
Abstract
To identify components of the plant stress signal transduction cascade and response mechanisms, we screened plant genes using reverse Northern blot analysis, and chose the ethylene responsive element binding protein 1 (StEREBP1) for further characterization. To investigate its biological function in the potato, we performed Northern blot analysis and observed enhanced levels of transcription in response to several environmental stresses including low temperature. In vivo targeting experiments using a green fluorescent protein (GFP) reporter indicated that StEREBP1 localized to the nucleus of onion epidermal cells. StEREBP1 was found to bind to GCC and DRE/CRT cis-elements and both microarray and RT-PCR analyses indicated that overexpression of StEREBP1 induced expression of several GCC box-containing stress response genes. In addition, overexpression of StEREBP1 enhanced tolerance to cold and salt stress in transgenic potato plants. The results of this study suggest that StEREBP1 is a functional transcription factor that may be involved in abiotic stress responses in plants.
Collapse
Affiliation(s)
- Hye Eun Lee
- Postharvest Technology Division, National Horticulture Research Institute, RDA, Suwon 440-706, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Cramer GR, Ergül A, Grimplet J, Tillett RL, Tattersall EAR, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 2006; 7:111-34. [PMID: 17136344 DOI: 10.1007/s10142-006-0039-y] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 09/30/2006] [Accepted: 09/30/2006] [Indexed: 10/23/2022]
Abstract
Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.
Collapse
Affiliation(s)
- Grant R Cramer
- Department of Biochemistry and Molecular Biology, MS200, University of Nevada, Reno, NV, 89557-0014, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|