1
|
Liu HN, Nakamura M, Kawashima H. New Role of the Serotonin as a Biomarker of Gut-Brain Interaction. Life (Basel) 2024; 14:1280. [PMID: 39459580 PMCID: PMC11509611 DOI: 10.3390/life14101280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/23/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonin (5-hydroxytryptamine: 5-HT), a neurotransmitter that regulates mood in the brain and signaling in the gut, has receptors throughout the body that serve various functions, especially in the gut and brain. Selective serotonin reuptake inhibitors (SSRIs) are used to treat depression, but their efficacy is uncertain. Depression is often associated with early gastrointestinal symptoms. Gut disorders such as functional dyspepsia (FD), irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), including ulcerative colitis (UC) and Crohn's disease (CD), are linked to elevated serotonin levels. In this review, we would like to discuss the approach of using serotonin as a biomarker for gut-brain, and body-wide organ communication may lead to the development of preventive and innovative treatments for gut-brain disorders, offering improved visibility and therapeutic monitoring. It could also be used to gauge stress intensity for self-care and mental health improvement.
Collapse
Affiliation(s)
- Hong Nian Liu
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (M.N.)
| | | | | |
Collapse
|
2
|
Sanders KM, Drumm BT, Cobine CA, Baker SA. Ca 2+ dynamics in interstitial cells: foundational mechanisms for the motor patterns in the gastrointestinal tract. Physiol Rev 2024; 104:329-398. [PMID: 37561138 PMCID: PMC11281822 DOI: 10.1152/physrev.00036.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 06/29/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023] Open
Abstract
The gastrointestinal (GI) tract displays multiple motor patterns that move nutrients and wastes through the body. Smooth muscle cells (SMCs) provide the forces necessary for GI motility, but interstitial cells, electrically coupled to SMCs, tune SMC excitability, transduce inputs from enteric motor neurons, and generate pacemaker activity that underlies major motor patterns, such as peristalsis and segmentation. The interstitial cells regulating SMCs are interstitial cells of Cajal (ICC) and PDGF receptor (PDGFR)α+ cells. Together these cells form the SIP syncytium. ICC and PDGFRα+ cells express signature Ca2+-dependent conductances: ICC express Ca2+-activated Cl- channels, encoded by Ano1, that generate inward current, and PDGFRα+ cells express Ca2+-activated K+ channels, encoded by Kcnn3, that generate outward current. The open probabilities of interstitial cell conductances are controlled by Ca2+ release from the endoplasmic reticulum. The resulting Ca2+ transients occur spontaneously in a stochastic manner. Ca2+ transients in ICC induce spontaneous transient inward currents and spontaneous transient depolarizations (STDs). Neurotransmission increases or decreases Ca2+ transients, and the resulting depolarizing or hyperpolarizing responses conduct to other cells in the SIP syncytium. In pacemaker ICC, STDs activate voltage-dependent Ca2+ influx, which initiates a cluster of Ca2+ transients and sustains activation of ANO1 channels and depolarization during slow waves. Regulation of GI motility has traditionally been described as neurogenic and myogenic. Recent advances in understanding Ca2+ handling mechanisms in interstitial cells and how these mechanisms influence motor patterns of the GI tract suggest that the term "myogenic" should be replaced by the term "SIPgenic," as this review discusses.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| | - Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caroline A Cobine
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada-Reno, Reno, Nevada, United States
| |
Collapse
|
3
|
Zawieja SD, Pea GA, Broyhill SE, Patro A, Bromert KH, Li M, Norton CE, Castorena-Gonzalez JA, Hancock EJ, Bertram CD, Davis MJ. IP3R1 underlies diastolic ANO1 activation and pressure-dependent chronotropy in lymphatic collecting vessels. J Gen Physiol 2023; 155:e202313358. [PMID: 37851027 PMCID: PMC10585095 DOI: 10.1085/jgp.202313358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/11/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023] Open
Abstract
Pressure-dependent chronotropy of murine lymphatic collecting vessels relies on the activation of the Ca2+-activated chloride channel encoded by Anoctamin 1 (Ano1) in lymphatic muscle cells. Genetic ablation or pharmacological inhibition of ANO1 results in a significant reduction in basal contraction frequency and essentially complete loss of pressure-dependent frequency modulation by decreasing the rate of the diastolic depolarization phase of the ionic pacemaker in lymphatic muscle cells (LMCs). Oscillating Ca2+ release from sarcoendoplasmic reticulum Ca2+ channels has been hypothesized to drive ANO1 activity during diastole, but the source of Ca2+ for ANO1 activation in smooth muscle remains unclear. Here, we investigated the role of the inositol triphosphate receptor 1 (Itpr1; Ip3r1) in this process using pressure myography, Ca2+ imaging, and membrane potential recordings in LMCs of ex vivo pressurized inguinal-axillary lymphatic vessels from control or Myh11CreERT2;Ip3r1fl/fl (Ip3r1ismKO) mice. Ip3r1ismKO vessels had significant reductions in contraction frequency and tone but an increased contraction amplitude. Membrane potential recordings from LMCs of Ip3r1ismKO vessels revealed a depressed diastolic depolarization rate and an elongation of the plateau phase of the action potential (AP). Ca2+ imaging of LMCs using the genetically encoded Ca2+ sensor GCaMP6f demonstrated an elongation of the Ca2+ flash associated with an AP-driven contraction. Critically, diastolic subcellular Ca2+ transients were absent in LMCs of Ip3r1ismKO mice, demonstrating the necessity of IP3R1 activity in controlling ANO1-mediated diastolic depolarization. These findings indicate a critical role for IP3R1 in lymphatic vessel pressure-dependent chronotropy and contractile regulation.
Collapse
Affiliation(s)
- Scott D. Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Grace A. Pea
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Sarah E. Broyhill
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Advaya Patro
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Karen H. Bromert
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Min Li
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | | | - Edward J. Hancock
- School of Mathematics and Statistics, University of Sydney, Sydney, Australia
| | | | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Liu T, Zhang M, Asif IM, Wu Y, Li B, Wang L. The regulatory effects of fucoidan and laminarin on functional dyspepsia mice induced by loperamide. Food Funct 2023. [PMID: 37377021 DOI: 10.1039/d3fo00936j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Gastrointestinal dysmotility is a common cause of functional dyspepsia. As two kinds of polysaccharides derived from brown algae, fucoidan and laminarin possess many physiological properties; however, their relative abilities in regulating gastrointestinal motility have not been illustrated yet. In this study, we aimed to investigate the regulatory effect of fucoidan and laminarin on functional dyspepsia mice induced by loperamide. Mice with gastrointestinal dysmotility were treated with fucoidan (100 and 200 mg per kg bw) and laminarin (50 and 100 mg per kg bw). As a result, fucoidan and laminarin reversed the dysfunction mainly through regulating gastrointestinal hormones (motilin and ghrelin), the cholinergic pathway, the total bile acid level, c-kit protein expression, and gastric smooth muscle contraction-related gene expression (ANO1 and RYR3). Moreover, fucoidan and laminarin intervention modulated the gut microbiota profile including the altered richness of Muribaculaceae, Lachnospiraceae, and Streptococcus. The results indicated that fucoidan and laminarin may restore the rhythm of the migrating motor complex and regulate gut microecology. In conclusion, we provided evidence to support that fucoidan and laminarin might have potential abilities to regulate gastrointestinal motility.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Mengting Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Yonglin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| |
Collapse
|
5
|
Choi NR, Jung D, Kim SC, Park JW, Choi WG, Kim BJ. Analysis of Network Pharmacological Efficacy and Therapeutic Effectiveness in Animal Models for Functional Dyspepsia of Foeniculi fructus. Nutrients 2023; 15:2644. [PMID: 37375548 DOI: 10.3390/nu15122644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/03/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
For centuries, Foeniculi fructus (F. fructus) has been used as a traditional herbal medicine in China and Europe and is widely used as a natural therapy for digestive disorders, including indigestion, flatulence, and bloating. The mechanism of F. fructus that alleviates functional dyspepsia was analyzed through network pharmacology, and its therapeutic effect on an animal model of functional dyspepsia were investigated. The traditional Chinese medicine systems pharmacology (TCMSP) database was used to investigate the compounds, targets, and associated diseases of F. fructus. Information on the target genes was classified using the UniProtdatabase. Using the Cytoscape 3.9.1 software, a network was constructed, and the Cytoscape string application was employed to examine genes associated with functional dyspepsia. The efficacy of F. fructus on functional dyspepsia was confirmed by treatment with its extract in a mouse model of loperamide-induced functional dyspepsia. Seven compounds targeted twelve functional dyspepsia-associated genes. When compared to the control group, F. fructus exhibited significant suppression of symptoms in a mouse model of functional dyspepsia. The results of our animal studies indicated a close association between the mechanism of action of F. fructus and gastrointestinal motility. Based on animal experimental results, the results showed that F. fructus provided a potential means to treat functional dyspepsia, suggesting that its medical mechanism for functional dyspepsia could be described by the relationship between seven key compounds of F. fructus, including oleic acid, β-sitosterol, and 12 functional dyspepsia-related genes.
Collapse
Affiliation(s)
- Na-Ri Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Daehwa Jung
- Department of Pharmaceutical Engineering, Daegu Hanny University, Gyeongsan 38610, Republic of Korea
| | - Sang-Chan Kim
- College of Oriental Medicine, Daegu Hanny University, Gyeongsan 38610, Republic of Korea
| | - Jae-Woo Park
- Department of Gastroenterology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Clinical Korean Medicine, Graduate School of Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woo-Gyun Choi
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| | - Byung-Joo Kim
- Department of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 50612, Republic of Korea
| |
Collapse
|
6
|
Imaizumi Y. Reciprocal Relationship between Ca 2+ Signaling and Ca 2+-Gated Ion Channels as a Potential Target for Drug Discovery. Biol Pharm Bull 2022; 45:1-18. [PMID: 34980771 DOI: 10.1248/bpb.b21-00896] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular Ca2+ signaling functions as one of the most common second messengers of various signal transduction pathways in cells and mediates a number of physiological roles in a cell-type dependent manner. Ca2+ signaling also regulates more general and fundamental cellular activities, including cell proliferation and apoptosis. Among ion channels, Ca2+-permeable channels in the plasma membrane as well as endo- and sarcoplasmic reticulum membranes play important roles in Ca2+ signaling by directly contributing to the influx of Ca2+ from extracellular spaces or its release from storage sites, respectively. Furthermore, Ca2+-gated ion channels in the plasma membrane often crosstalk reciprocally with Ca2+ signals and are central to the regulation of cellular functions. This review focuses on the physiological and pharmacological impact of i) Ca2+-gated ion channels as an apparatus for the conversion of cellular Ca2+ signals to intercellularly propagative electrical signals and ii) the opposite feedback regulation of Ca2+ signaling by Ca2+-gated ion channel activities in excitable and non-excitable cells.
Collapse
Affiliation(s)
- Yuji Imaizumi
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
7
|
Turovsky EA, Turovskaya MV, Dynnik VV. Deregulation of Ca 2+-Signaling Systems in White Adipocytes, Manifested as the Loss of Rhythmic Activity, Underlies the Development of Multiple Hormonal Resistance at Obesity and Type 2 Diabetes. Int J Mol Sci 2021; 22:ijms22105109. [PMID: 34065973 PMCID: PMC8150837 DOI: 10.3390/ijms22105109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 02/08/2023] Open
Abstract
Various types of cells demonstrate ubiquitous rhythmicity registered as simple and complex Ca2+-oscillations, spikes, waves, and triggering phenomena mediated by G-protein and tyrosine kinase coupled receptors. Phospholipase C/IP3-receptors (PLC/IP3R) and endothelial NO-synthase/Ryanodine receptors (NOS/RyR)–dependent Ca2+ signaling systems, organized as multivariate positive feedback generators (PLC-G and NOS-G), underlie this rhythmicity. Loss of rhythmicity at obesity may indicate deregulation of these signaling systems. To issue the impact of cell size, receptors’ interplay, and obesity on the regulation of PLC-G and NOS-G, we applied fluorescent microscopy, immunochemical staining, and inhibitory analysis using cultured adipocytes of epididumal white adipose tissue of mice. Acetylcholine, norepinephrine, atrial natriuretic peptide, bradykinin, cholecystokinin, angiotensin II, and insulin evoked complex [Ca2+]i responses in adipocytes, implicating NOS-G or PLC-G. At low sub-threshold concentrations, acetylcholine and norepinephrine or acetylcholine and peptide hormones (in paired combinations) recruited NOS-G, based on G proteins subunits interplay and signaling amplification. Rhythmicity was cell size- dependent and disappeared in hypertrophied cells filled with lipids. Contrary to control cells, adipocytes of obese hyperglycemic and hypertensive mice, growing on glucose, did not accumulate lipids and demonstrated hormonal resistance being non responsive to any hormone applied. Preincubation of preadipocytes with palmitoyl-L-carnitine (100 nM) provided accumulation of lipids, increased expression and clustering of IP3R and RyR proteins, and partially restored hormonal sensitivity and rhythmicity (5–15% vs. 30–80% in control cells), while adipocytes of diabetic mice were not responsive at all. Here, we presented a detailed kinetic model of NOS-G and discussed its control. Collectively, we may suggest that universal mechanisms underlie loss of rhythmicity, Ca2+-signaling systems deregulation, and development of general hormonal resistance to obesity.
Collapse
Affiliation(s)
- Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (E.A.T.); (M.V.T.)
| | - Maria V. Turovskaya
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290 Pushchino, Russia; (E.A.T.); (M.V.T.)
| | - Vladimir V. Dynnik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
- Correspondence: ; Tel.: +79-2-5150-6655
| |
Collapse
|
8
|
Jeon YJ, Lee JS, Cho YR, Lee SB, Kim WY, Roh SS, Joung JY, Lee HD, Moon SO, Cho JH, Son CG. Banha-sasim-tang improves gastrointestinal function in loperamide-induced functional dyspepsia mouse model. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111834. [PMID: 30940567 DOI: 10.1016/j.jep.2019.111834] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Banha-sasim-tang (BST; Hange-shashin-to in Kampo medicine; Banxia xiexin tang in traditional Chinese medicine) is a traditional Chinese harbal medicine that has been commonly used for gastrointestinal disorders. AIM OF THE STUDY To investigate the pharmacological effects of BST, a standardized herbal drug, on main symptoms of functional dyspepsia including delayed gastric emptying, and underlying mechanisms of action in mouse model. METHODS AND MATERIALS Balb/C mice were pretreated with BST (25, 50, 100 mg/kg, po) or mosapride (3 mg/kg, po) for 3 days, and then treated with loperamide (10 mg/kg, ip) after 19 h fasting. A solution of 0.05% phenol red (500 μL) or 5% charcoal diet (200 μL) was orally administered, followed by scarifying and assessment of gastric emptying or gastro-intestinal motility. C-kit (immunofluorescence), nNOS (western blot) and gastric contraction-related gene expression were examined in stomach tissue. RESULTS The loperamide injection substantially delayed gastric emptying, while the BST pretreatment significantly attenuated this peristaltic dysfunction, as evidenced by the quantity of stomach-retained phenol red (p < 0.05 or 0.01) and stomach weight (p < 0.05 or 0.01). The BST pretreatment significantly tempered the loperamide-induced inactivation of c-kit and nNOS (p < 0.05 or 0.01) as well as the contraction-related gene expression, such as the 5HT4 receptor (5HT4R), anoctamin-1 (ANO1), ryanodine receptor 3 (RYR3) and smooth muscle myosin light chain kinase (smMLCK). The BST pretreatment also significantly attenuated the alterations in gastro-intestinal motility (p < 0.01). CONCLUSION Our results are the first evidence of the prokinetic agent effects of Banha-sasim-tang in a loperamide-induced FD animal model. The underlying mechanisms of action may involve the modulation of peristalsis via activation of the interstitial cells of Cajal and the smooth muscle cells in the stomach.
Collapse
Affiliation(s)
- Yoo-Jin Jeon
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Jin-Seok Lee
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Yong-Rae Cho
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Sung-Bae Lee
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Won-Young Kim
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Seong-Soo Roh
- Department of Herbology, College of Korean Medicine, DaeguHaany University, 136 Shinchendong-ro, Suseong-gu, Daegu, 42158, Republic of Korea.
| | - Jin-Yong Joung
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Hwa-Dong Lee
- Office of Strategic Planning, National Development Institute of Korean Medicine (NIKOM), 94, Hwarang-ro(Gapje-dong), Gyengsan-si, Republic of Korea.
| | - Sung-Ok Moon
- Korean Medicine R&D Team 2, Korea Medicine Development, National Development Institute of Korean Medicine (NIKOM), 94, Hwarang-ro(Gapje-dong), Gyengsan-si, Republic of Korea.
| | - Jung-Hyo Cho
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| | - Chang-Gue Son
- Liver & Immunology Research Center, Doonsan Oriental Hospital, 75, Daedeok-daero 176 Street, Seo-gu, Daejeon, 35235, Republic of Korea.
| |
Collapse
|
9
|
Saeki T, Kimura T, Hashidume K, Murayama T, Yamamura H, Ohya S, Suzuki Y, Nakayama S, Imaizumi Y. Conversion of Ca2+ oscillation into propagative electrical signals by Ca2+-activated ion channels and connexin as a reconstituted Ca2+ clock model for the pacemaker activity. Biochem Biophys Res Commun 2019; 510:242-247. [DOI: 10.1016/j.bbrc.2019.01.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 01/27/2023]
|
10
|
Sanders KM. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1124:3-46. [PMID: 31183821 PMCID: PMC7035145 DOI: 10.1007/978-981-13-5895-1_1] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gastrointestinal (GI) tract has multifold tasks of ingesting, processing, and assimilating nutrients and disposing of wastes at appropriate times. These tasks are facilitated by several stereotypical motor patterns that build upon the intrinsic rhythmicity of the smooth muscles that generate phasic contractions in many regions of the gut. Phasic contractions result from a cyclical depolarization/repolarization cycle, known as electrical slow waves, which result from intrinsic pacemaker activity. Interstitial cells of Cajal (ICC) are electrically coupled to smooth muscle cells (SMCs) and generate and propagate pacemaker activity and slow waves. The mechanism of slow waves is dependent upon specialized conductances expressed by pacemaker ICC. The primary conductances responsible for slow waves in mice are Ano1, Ca2+-activated Cl- channels (CaCCs), and CaV3.2, T-type, voltage-dependent Ca2+ channels. Release of Ca2+ from intracellular stores in ICC appears to be the initiator of pacemaker depolarizations, activation of T-type current provides voltage-dependent Ca2+ entry into ICC, as slow waves propagate through ICC networks, and Ca2+-induced Ca2+ release and activation of Ano1 in ICC amplifies slow wave depolarizations. Slow waves conduct to coupled SMCs, and depolarization elicited by these events enhances the open-probability of L-type voltage-dependent Ca2+ channels, promotes Ca2+ entry, and initiates contraction. Phasic contractions timed by the occurrence of slow waves provide the basis for motility patterns such as gastric peristalsis and segmentation. This chapter discusses the properties of ICC and proposed mechanism of electrical rhythmicity in GI muscles.
Collapse
Affiliation(s)
- Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
11
|
Baker SA, Drumm BT, Saur D, Hennig GW, Ward SM, Sanders KM. Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine. J Physiol 2016; 594:3317-38. [PMID: 26824875 DOI: 10.1113/jp271699] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/24/2016] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. ABSTRACT Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it was determined that firing was stochastic in nature. Ca(2+) transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca(2+) transients, suggesting that ICC-DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca(2+) transients were minimally affected after 12 min in Ca(2+) free solution, indicating these events do not depend immediately upon Ca(2+) influx. However, inhibitors of sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3 R) and ryanodine receptor (RyR) channels blocked ICC Ca(2+) transients. These data suggest an interdependence between RyR and InsP3 R in the generation of Ca(2+) transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high-resolution recording of the subcellular Ca(2+) dynamics that control the behaviour of ICC-DMP in situ.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Dieter Saur
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der TU München, München, Germany
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
12
|
Drumm BT, Large RJ, Hollywood MA, Thornbury KD, Baker SA, Harvey BJ, McHale NG, Sergeant GP. The role of Ca(2+) influx in spontaneous Ca(2+) wave propagation in interstitial cells of Cajal from the rabbit urethra. J Physiol 2015; 593:3333-50. [PMID: 26046824 DOI: 10.1113/jp270883] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 06/01/2015] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS Tonic contractions of rabbit urethra are associated with spontaneous electrical slow waves that are thought to originate in pacemaker cells termed interstitial cells of Cajal (ICC). ICC pacemaker activity results from their ability to generate propagating Ca(2+) waves, although the exact mechanisms of propagation are not understood. In this study, we have identified spontaneous localised Ca(2+) events for the first time in urethral ICC; these were due to Ca(2+) release from the endoplasmic reticulum (ER) via ryanodine receptors (RyRs) and, while they often remained localised, they sometimes initiated propagating Ca(2+) waves. We show that propagation of Ca(2+) waves in urethral ICC is critically dependent upon Ca(2+) influx via reverse mode NCX. Our data provide a clearer understanding of the intracellular mechanisms involved in the generation of ICC pacemaker activity. Interstitial cells of Cajal (ICC) are putative pacemaker cells in the rabbit urethra. Pacemaker activity in ICC results from spontaneous propagating Ca(2+) waves that are modulated by [Ca(2+)]o and whose propagation is inhibited by inositol tri-phosphate receptor (IP3 R) blockers. The purpose of this study was to further examine the role of Ca(2+) influx and Ca(2+) release in the propagation of Ca(2+) waves. Intracellular Ca(2+) was measured in Fluo-4-loaded ICC using a Nipkow spinning disc confocal microscope at fast acquisition rates (50 fps). We identified previously undetected localised Ca(2+) events originating from ryanodine receptors (RyRs). Inhibiting Ca(2+) influx by removing [Ca(2+)]o or blocking reverse mode sodium-calcium exchange (NCX) with KB-R 7943 or SEA-0400 abolished Ca(2+) waves, while localised Ca(2+) events persisted. Stimulating RyRs with 1 mm caffeine restored propagation. Propagation was also inhibited when Ca(2+) release sites were uncoupled by buffering intracellular Ca(2+) with EGTA-AM. This was reversed when Ca(2+) influx via NCX was increased by reducing [Na(+)]o to 13 mm. Low [Na(+)]o also increased the frequency of Ca(2+) waves and this effect was blocked by tetracaine and ryanodine but not 2-aminoethoxydiphenyl borate (2-APB). RT-PCR revealed that isolated ICC expressed both RyR2 and RyR3 subtypes. We conclude: (i) RyRs are required for the initiation of Ca(2+) waves, but wave propagation normally depends on activation of IP3 Rs; (ii) under resting conditions, propagation by IP3 Rs requires sensitisation by influx of Ca(2+) via reverse mode NCX; (iii) propagation can be maintained by RyRs if they have been sensitised to Ca(2+).
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland.,Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland.,Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, 89557, USA
| | - Roddy J Large
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Mark A Hollywood
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Keith D Thornbury
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, 89557, USA
| | - Brian J Harvey
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin 9, Ireland
| | - Noel G McHale
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| | - Gerard P Sergeant
- Smooth Muscle Research Centre, Dundalk Institute of Technology, Dundalk, Co. Louth, Ireland
| |
Collapse
|
13
|
Zhu MH, Sung TS, O'Driscoll K, Koh SD, Sanders KM. Intracellular Ca(2+) release from endoplasmic reticulum regulates slow wave currents and pacemaker activity of interstitial cells of Cajal. Am J Physiol Cell Physiol 2015; 308:C608-20. [PMID: 25631870 DOI: 10.1152/ajpcell.00360.2014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/16/2015] [Indexed: 02/02/2023]
Abstract
Interstitial cells of Cajal (ICC) provide pacemaker activity in gastrointestinal muscles that underlies segmental and peristaltic contractions. ICC generate electrical slow waves that are due to large-amplitude inward currents resulting from anoctamin 1 (ANO1) channels, which are Ca(2+)-activated Cl(-) channels. We investigated the hypothesis that the Ca(2+) responsible for the stochastic activation of ANO1 channels during spontaneous transient inward currents (STICs) and synchronized activation of ANO1 channels during slow wave currents comes from intracellular Ca(2+) stores. ICC, obtained from the small intestine of Kit(+/copGFP) mice, were studied under voltage and current clamp to determine the effects of blocking Ca(2+) uptake into stores and release of Ca(2+) via inositol 1,4,5-trisphosphate (IP3)-dependent and ryanodine-sensitive channels. Cyclocpiazonic acid, thapsigargin, 2-APB, and xestospongin C inhibited STICs and slow wave currents. Ryanodine and tetracaine also inhibited STICs and slow wave currents. Store-active compounds had no direct effects on ANO1 channels expressed in human embryonic kidney-293 cells. Under current clamp, store-active drugs caused significant depolarization of ICC and reduced spontaneous transient depolarizations (STDs). After block of ryanodine receptors with ryanodine and tetracaine, repolarization did not restore STDs. ANO1 expressed in ICC has limited access to cytoplasmic Ca(2+) concentration, suggesting that pacemaker activity depends on Ca(2+) dynamics in restricted microdomains. Our data from studies of isolated ICC differ somewhat from studies on intact muscles and suggest that release of Ca(2+) from both IP3 and ryanodine receptors is important in generating pacemaker activity in ICC.
Collapse
Affiliation(s)
- Mei Hong Zhu
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Tae Sik Sung
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kate O'Driscoll
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Sang Don Koh
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada
| |
Collapse
|
14
|
Cell and gene therapy for arrhythmias: Repair of cardiac conduction damage. J Geriatr Cardiol 2012; 8:147-58. [PMID: 22783301 PMCID: PMC3390069 DOI: 10.3724/sp.j.1263.2011.00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 08/10/2011] [Accepted: 08/17/2011] [Indexed: 11/25/2022] Open
Abstract
Action potentials generated in the sinoatrial node (SAN) dominate the rhythm and rate of a healthy human heart. Subsequently, these action potentials propagate to the whole heart via its conduction system. Abnormalities of impulse generation and/or propagation in a heart can cause arrhythmias. For example, SAN dysfunction or conduction block of the atrioventricular node can lead to serious bradycardia which is currently treated with an implanted electronic pacemaker. On the other hand, conduction damage may cause reentrant tachyarrhythmias which are primarily treated pharmacologically or by medical device-based therapies, including defibrillation and tissue ablation. However, drug therapies sometimes may not be effective or are associated with serious side effects. Device-based therapies for cardiac arrhythmias, even with well developed technology, still face inadequacies, limitations, hardware complications, and other challenges. Therefore, scientists are actively seeking other alternatives for antiarrhythmic therapy. In particular, cells and genes used for repairing cardiac conduction damage/defect have been investigated in various studies both in vitro and in vivo. Despite the complexities of the excitation and conduction systems of the heart, cell and gene-based strategies provide novel alternatives for treatment or cure of cardiac arrhythmias. This review summarizes some highlights of recent research progress in this field.
Collapse
|
15
|
Yu Wang Z, Fei Han Y, Huang X, Zhao P, Li Lu H, Chul Kim Y, Xie Xu W. Pacemaking activity is regulated by membrane stretch via the CICR pathway in cultured interstitial cells of Cajal from murine intestine. J Biomech 2010; 43:2214-20. [DOI: 10.1016/j.jbiomech.2010.03.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 03/13/2010] [Accepted: 03/19/2010] [Indexed: 11/26/2022]
|
16
|
Takaki M, Suzuki H, Nakayama S. Recent advances in studies of spontaneous activity in smooth muscle: ubiquitous pacemaker cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 102:129-35. [PMID: 20553741 DOI: 10.1016/j.pbiomolbio.2010.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 05/19/2010] [Indexed: 02/08/2023]
Abstract
The general and specific properties of pacemaker cells, including Kit-negative cells, that are distributed in gastrointestinal, urethral and uterine smooth muscle tissues, are discussed herein. In intestinal tissues, interstitial cells of Cajal (ICC) are heterogeneous in both their forms and roles. ICC distributed in the myenteric layer (ICC-MY) act as primary pacemaker cells for intestinal mechanical and electrical activity. ICC distributed in muscle bundles play a role as mediators of signals from autonomic nerves to smooth muscle cells. A group of ICC also appears to act as a stretch sensor. Intracellular Ca2+ dynamics play a crucial role in ICC-MY pacemaking; intracellular Ca2+ ([Ca2+](i)) oscillations periodically activate plasmalemmal Ca2+-activated ion channels, such as Ca2+-activated Cl(-) channels and/or non-selective cation channels, although the relative contributions of these channels are not defined. With respect to gut motility, both the ICC network and enteric nervous system, including excitatory and inhibitory enteric neurons, play an essential role in producing highly coordinated peristalsis.
Collapse
Affiliation(s)
- Miyako Takaki
- Department of Physiology II, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan.
| | | | | |
Collapse
|
17
|
Huang X, Zhao D, Wang ZY, Zhang ML, Yan ZQ, Han YF, Lu HL, Xu WX, Jiang ZL. Spontaneous rhythmic inward currents recorded in interstitial cells of rabbit portal vein. Cell Biochem Biophys 2010; 57:77-85. [PMID: 20473644 DOI: 10.1007/s12013-010-9085-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
It is now well established that smooth muscle of the portal vein exhibits spontaneous rhythmic contraction in vitro. The present study was designed to investigate the pacemaking mechanism(s) underlying the spontaneous rhythmic contractions in the rabbit portal vein (RPV). Using whole-cell patch clamp techniques, spontaneous inward currents were recorded at -60 mV of holding potential in freshly dispersed c-Kit immunopositive interstitial cells (ICs) isolated from sections of RPV. The inward currents were abolished by caffeine, FCCP, thapsigargin, and ryanodine, but were partially inhibited by 2-APB. Both gadolinium, a non-selective cation channel inhibitor, and niflumic acid, a chloride channel blocker, inhibited the inward currents completely. Replacement of external Na(+) with NMDG(+) also blocked the inward currents. W-7, a calmodulin inhibitor, increased both the amplitude and frequency of the inward currents. Taken together, these results indicate that non-selective cationic channels are involved in the generation of spontaneous inward currents recorded from ICs. Intracellular calcium concentration and calmodulin regulate the spontaneous inward currents, which may account for spontaneous rhythmic contraction in the RPV, but a role of chloride channels may not be excluded in the present study.
Collapse
Affiliation(s)
- Xu Huang
- Department of Physiology, School of Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai, 200240, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang ZY, Han YF, Huang X, Lu HL, Guo X, Kim YC, Xu WX. Actin microfilament involved in regulation of pacemaking activity in cultured interstitial cells of Cajal from murine intestine. J Membr Biol 2010; 234:217-25. [PMID: 20349180 DOI: 10.1007/s00232-010-9248-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 03/04/2010] [Indexed: 12/27/2022]
Abstract
The present study investigated the effect of actin microfilament structure on pacemaker currents and calcium oscillation in cultured murine intestinal interstitial cells of Cajal (ICCs) by whole-cell patch-clamp technique and calcium imaging technique. Cytochalasin B, a disruptor of actin microfilaments, decreased the amplitude and frequency of pacemaker currents from 491.32 +/- 160.33 pA and 11.73 +/- 0.79 cycles/min to 233.12 +/- 92.00 pA and 10.29 +/- 0.76 cycles/min. Cytochalasin B also decreased the amplitude and frequency of calcium oscillation from 0.32 +/- 0.08 (DeltaF/F0) and 2.75 +/- 0.17 cycles/min to 0.02 +/- 0.01 (DeltaF/F0) and 1.20 +/- 0.08 cycles/min. Phalloidin, a stabilizer of actin microfilaments, increased the amplitude and frequency of pacemaker currents from 751.79 +/- 282.82 pA and 13.93 +/- 1.00 cycles/min to 1234.34 +/- 607.83 pA and 14.68 +/- 1.00 cycles/min. Phalloidin also increased the amplitude and frequency of calcium oscillation from 0.26 +/- 0.01 (DeltaF/F0) and 2.27 +/- 0.18 cycles/min to 0.43 +/- 0.03 (DeltaF/F0) and 2.87 +/- 0.07 cycles/min. 2-Aminoethoxydiphenyl borane (2-APB), an IP(3) receptor blocker, suppressed both pacemaker currents and calcium oscillations. 2-APB also blocked the phalloidin-induced increase in pacemaker currents and calcium oscillation. Ryanodine, an inhibitor of calcium-induced calcium release, did not affect pacemaker current but suppressed calcium oscillations. Ryanodine had no effect on altering phalloidin-induced increases in pacemaker current and calcium oscillation. These results suggest that actin microfilaments regulate pacemaker activity via the IP(3)-induced calcium release signaling pathway.
Collapse
Affiliation(s)
- Zuo Yu Wang
- Department of Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, 200240, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Wang ZY, Xu WX. Advances in research on pacemaking function of gastrointestinal smooth muscle cells. Shijie Huaren Xiaohua Zazhi 2010; 18:319-323. [DOI: 10.11569/wcjd.v18.i4.319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastrointestinal smooth muscle has spontaneous contractile activity, which is very important to digestion and absorption function. However, the pacemaking mechanism in gastrointestinal smooth muscle is still not clear. In this article, we review the recent advances in research on the mechanisms underlying gastrointestinal pacemaker activity. We summarize the classification, function and pacemaking mechanisms of pacemaker cells, and the relationship between pacemaker cells and gastrointestinal motility dysfunction. As abnormal pacemaking activity is often associated with gastrointestinal motility dysfunction, it is of great clinical significance to clarify the pacemaking mechanisms in the gastrointestinal tract.
Collapse
|
20
|
Abstract
BACKGROUND AND OBJECTIVES The mechanisms that trigger gallbladder evacuation dysfunction, the key risk factor for gallstone formation, have not yet been fully elucidated. The sphincter of Oddi (SO) plays important roles in the regulation of gallbladder evacuation and maintenance of normal hydraulic pressure of the biliary tract. The aim of our study was to investigate the effects of hypercholesterolemia on the motility function of SO and the underlying mechanisms of SO dysfunction (SOD). METHODS Forty New Zealand white rabbits were divided randomly into the control group fed with standard chow and the experimental (Ch) group fed with a high-cholesterol diet for 8 weeks. Changes in the maximal gallbladder emptying rate, gallbladder evacuation with cholecystokinin-octapeptide (CCK-8) stimulation and SO functions of both groups were measured in vivo; B ultrasound examination was used for dynamic observation of peristaltic movements in vivo; SO pressure was measured using manometry; morphological characteristics were observed by electronic microscope; laser scanning confocal fluorescence microscopy was used to identify changes in [Ca]i and Ca oscillation in primary SO smooth muscle cells (SMCs). RESULTS Gallbladder cholestasis was observed during early stages of gallstone formation in Ch rabbits. CCK-8 could not improve the gallbladder cholestatic state in Ch group. Passive dilation of SO significantly improved the cholestatic state in Ch rabbits (P<0.05), although the maximal gallbladder emptying rate was still lower than that of the control group. Manometry data indicted a significant increase in the base pressure of the SO low-pressure ampulla segment and high-pressure segment (P<0.05) in Ch group. laser scanning confocal fluorescence microscopy assay data indicated that [Ca]i in SO cells of Ch group significantly increased and were in a state of overload (P<0.05); Ca oscillation signals in SO cells of Ch group were also abnormal. CONCLUSION Hypercholesterolemia initially induced SOD, leading to increased gallbladder evacuation resistance and cholestasis. We suggested that [Ca]i overload and/or Ca oscillation abnormality potentially play important roles in the pathogenesis of SOD.
Collapse
|
21
|
Dabertrand F, Mironneau J, Macrez N, Morel JL. Full length ryanodine receptor subtype 3 encodes spontaneous calcium oscillations in native duodenal smooth muscle cells. Cell Calcium 2008; 44:180-9. [PMID: 18207571 DOI: 10.1016/j.ceca.2007.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 09/12/2007] [Accepted: 11/04/2007] [Indexed: 10/22/2022]
Abstract
Two isoforms of the ryanodine receptor subtype 3 (RYR3) have been described in smooth muscle. The RYR3 short isoform (RYR3S) negatively regulates the calcium-induced calcium release mechanism encoded by the RYR2, whereas the role of the full length isoform of RYR3 (RYR3L) was still unclear. Here, we describe RYR-dependent spontaneous Ca(2+) oscillations measured in 10% of native duodenum myocytes. We investigated the role of RYR3 isoforms in these spontaneous Ca(2+) signals. Inhibition of RYR3S expression by antisense oligonucleotides revealed that both RYR2 and RYR3L were able to propagate spontaneous Ca(2+) waves that were distinguishable by frequency analysis. When RYR3L expression was inhibited, the spontaneous Ca(2+) oscillations were never observed, indicating that RYR3S inhibited the function of RYR2. RYR2 expression inhibition led to Ca(2+) oscillations identical to those observed in control cells suggesting that RYR3S did not functionally interact with RYR3L. The presence and frequency of RYR3L-dependent Ca(2+) oscillations were dependent on sarcoplasmic reticulum Ca(2+) content as revealed by long-term changes of the extracellular Ca(2+) concentration. Our study shows that, in native duodenal myocytes, the spontaneous Ca(2+) waves are encoded by the RYR3L alone, which activity is regulated by sarcoplasmic reticulum Ca(2+) loading.
Collapse
Affiliation(s)
- Fabrice Dabertrand
- Centre de Neurosciences Intégratives et Cognitives, CNRS UMR5228, Universités de Bordeaux, avenue des facultés, 33405 Talence, France
| | | | | | | |
Collapse
|
22
|
Nakayama S, Kajioka S, Goto K, Takaki M, Liu HN. Calcium-associated mechanisms in gut pacemaker activity. J Cell Mol Med 2008; 11:958-68. [PMID: 17979877 PMCID: PMC4401267 DOI: 10.1111/j.1582-4934.2007.00107.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A considerable body of evidence has revealed that interstitial cells of Cajal (ICC), identified with c-Kit-immunoreactivity, act as gut pacemaker cells, with spontaneous Ca2+ activity in ICC as the probable primary mechanism. Namely, intracellular (cytosolic) Ca2+ oscillations in ICC periodically activate plasmalemmal Ca2+-dependent ion channels and thereby generate pacemaker potentials. This review will, thus, focus on Ca2+-associated mechanisms in ICC in the gastrointestinal (GI) tract, including auxiliary organs.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | | | | | | | | |
Collapse
|
23
|
Nakayama S, Shimono K, Liu HN, Jiko H, Katayama N, Tomita T, Goto K. Pacemaker phase shift in the absence of neural activity in guinea-pig stomach: a microelectrode array study. J Physiol 2006; 576:727-38. [PMID: 16990400 PMCID: PMC1890421 DOI: 10.1113/jphysiol.2006.118893] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) motility is well organized. GI muscles act as a functional syncytium to achieve physiological functions under the control of neurones and pacemaker cells, which generate basal spontaneous pacemaker electrical activity. To date, it is unclear how spontaneous electrical activities are coupled, especially within a micrometre range. Here, using a microelectrode array, we show a spatio-temporal analysis of GI spontaneous electrical activity. The muscle preparations were isolated from guinea-pig stomach, and fixed in a chamber with an array of 8 x 8 planar multielectrodes (with 300 microm in interpolar distance). The electrical activities (field potentials) were simultaneously recorded through a multichannel amplifier system after high-pass filtering at 0.1 Hz. Dihydropyridine Ca(2+) channel antagonists are known to differentiate the electrical pacemaker activity of interstitial cells of Cajal (ICCs) by suppressing smooth muscle activity. In the presence of nifedipine, we observed spontaneous electrical activities that were well synchronized over the array area, but had a clear phase shift depending on the distance. The additional application of tetrodotoxin (TTX) had little effect on the properties of the electrical activity. Furthermore, by constructing field potential images, we visualized the synchronization of pacemaker electrical activities resolving phase shifts that were measurable over several hundred micrometres. The results imply a phase modulation mechanism other than neural activity, and we postulate that this mechanism enables smooth GI motility. In addition, some preparations clearly showed plasticity of the pacemaker phase shift.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | |
Collapse
|
24
|
Nakayama S, Ohya S, Liu HN, Watanabe T, Furuzono S, Wang J, Nishizawa Y, Aoyama M, Murase N, Matsubara T, Ito Y, Imaizumi Y, Kajioka S. Sulphonylurea receptors differently modulate ICC pacemaker Ca2+ activity and smooth muscle contractility. J Cell Sci 2005; 118:4163-73. [PMID: 16141235 DOI: 10.1242/jcs.02540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Appropriate gastrointestinal motility is essential to properly control the body energy level. Intracellular Ca2+ ([Ca2+]i) oscillations in interstitial cells of Cajal (ICCs; identified with c-Kit immunoreactivity) are considered to be the primary mechanism for the pacemaker activity in gastrointestinal motility. In the present study, RT-PCR examinations revealed predominant expression of the type 1 isoform of sulphonylurea receptors (SUR1) in ICCs of the mouse ileum, but expression of SUR2 was predominant in smooth muscle. In cell clusters prepared from the same tissue, smooth muscle contractility and pacemaker [Ca2+]i activity in ICCs were found to be differentially modulated by K(ATP) channel openers and sulphonylurea compounds, in accordance with the expression of SUR isoforms. 1 microM cromakalim nearly fully suppressed the mechanical activity in smooth muscle, whereas ICC pacemaker [Ca2+]i oscillations persisted. Greater concentrations (approximately 10 microM) of cromakalim attenuated pacemaker [Ca2+]i oscillations. This effect was not reversed by changing the reversal potential of K+, but was prevented by glibenclamide. Diazoxide at 30 muM terminated ICC pacemaker [Ca2+]i oscillations, but again treatment with high extracellular K+ did not restore them. These results suggest that SUR can modulate pacemaker [Ca2+]i oscillations via voltage-independent mechanism(s), and also that intestinal pacemaking and glucose control are closely associated with SUR.
Collapse
Affiliation(s)
- Shinsuke Nakayama
- Department of Cell Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Featherstone NC, Jesudason EC, Connell MG, Fernig DG, Wray S, Losty PD, Burdyga TV. Spontaneous Propagating Calcium Waves Underpin Airway Peristalsis in Embryonic Rat Lung. Am J Respir Cell Mol Biol 2005; 33:153-60. [PMID: 15891108 DOI: 10.1165/rcmb.2005-0137oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Prenatal airways from diverse species exhibit spontaneous peristaltic contractions (airway peristalsis). These contractile waves appear coupled to and may function to regulate prenatal lung growth. They are unaffected by atropine or tetrodotoxin but abolished by nifedipine. Nevertheless, the mechanisms by which these contractile waves are generated, regulated, and propagated remain obscure. Using calcium imaging and whole embryonic lung organ culture, we demonstrate for the first time that peristalsis of the embryonic airway is driven by spontaneous, regenerative, temperature-sensitive calcium (Ca2+) waves. These Ca2+ waves propagate between individual airway smooth muscle cells coupled via gap junctions, are likely to be action potential-mediated, and are dependent on not only extracellular calcium entry via L-type voltage-gated channels but also intracellular Ca2+ stores. Thus, if airway peristalsis regulates lung growth, these findings mean that airway smooth muscle Ca2+ waves in turn regulate prenatal lung morphogenesis.
Collapse
Affiliation(s)
- Neil C Featherstone
- Division of Child Health, Royal Liverpool Children's Hospital (Alder Hey), School of Biological Sciences, University of Liverpool, Liverpool L69 3BX, UK.
| | | | | | | | | | | | | |
Collapse
|