1
|
Zakirjanova GF, Giniatullin AR, Gafurova CR, Malomouzh AI, Fedorov NS, Khaziev AN, Tsentsevitsky AN, Petrov AM. Effects of cholesterol oxidase on neurotransmission and acetylcholine levels at the mice neuromuscular junctions. Arch Biochem Biophys 2023; 749:109803. [PMID: 37955112 DOI: 10.1016/j.abb.2023.109803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/20/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Membrane cholesterol oxidation is a hallmark of redox and metabolic imbalance, and it may accompany neurodegenerative disorders. Using microelectrode recordings of postsynaptic responses as well as fluorescent dyes for monitoring synaptic vesicle cycling and membrane properties, the action of enzymatic cholesterol oxidation on neuromuscular transmission was studied in the mice diaphragms. Cholesterol oxidase (ChO) at low concentration disturbed lipid-ordering specifically in the synaptic membranes, but it did not change markedly spontaneous exocytosis and evoked release in response to single stimuli. At low external Ca2+ conditions, analysis of single exocytotic events revealed a decrease in minimal synaptic delay and the probability of exocytosis upon plasmalemmal cholesterol oxidation. At moderate- and high-frequency activity, ChO treatment enhanced both neurotransmitter and FM-dye release. Furthermore, it precluded a change in exocytotic mode from full-fusion to kiss-and-run during high-frequency stimulation. Accumulation of extracellular acetylcholine (without stimulation) dependent on vesamicol-sensitive transporters was suppressed by ChO. The effects of plasmalemmal cholesterol oxidation on both neurotransmitter/dye release at intense activity and external acetylcholine levels were reversed when synaptic vesicle membranes were also exposed to ChO (i.e., the enzyme treatment was combined with induction of exo-endocytotic cycling). Thus, we suggest that plasmalemmal cholesterol oxidation affects exocytotic machinery functioning, enhances synaptic vesicle recruitment to the exocytosis and decreases extracellular neurotransmitter levels at rest, whereas ChO acting on synaptic vesicle membranes suppresses the participation of the vesicles in the subsequent exocytosis and increases the neurotransmitter leakage. The mechanisms underlying ChO action can be related to the lipid raft disruption.
Collapse
Affiliation(s)
- Guzalia F Zakirjanova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia
| | - Arthur R Giniatullin
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia
| | - Chulpan R Gafurova
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia
| | - Artem I Malomouzh
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan National Research Technical University, 10, K. Marx Street, Kazan, 420111, Russia
| | - Nikita S Fedorov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Arthur N Khaziev
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Andrei N Tsentsevitsky
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia
| | - Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky St, Kazan, 420111, RT, Russia; Kazan State Medical University, 49 Butlerova St., Kazan, 420012, RT, Russia; Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Russia.
| |
Collapse
|
2
|
Mukhamedyarov MA, Khabibrakhmanov AN, Khuzakhmetova VF, Giniatullin AR, Zakirjanova GF, Zhilyakov NV, Mukhutdinova KA, Samigullin DV, Grigoryev PN, Zakharov AV, Zefirov AL, Petrov AM. Early Alterations in Structural and Functional Properties in the Neuromuscular Junctions of Mutant FUS Mice. Int J Mol Sci 2023; 24:9022. [PMID: 37240370 PMCID: PMC10218837 DOI: 10.3390/ijms24109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.
Collapse
Affiliation(s)
- Marat A. Mukhamedyarov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Aydar N. Khabibrakhmanov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Venera F. Khuzakhmetova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Arthur R. Giniatullin
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Guzalia F. Zakirjanova
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Nikita V. Zhilyakov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Kamilla A. Mukhutdinova
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Dmitry V. Samigullin
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University, 10 K. Marx St., Kazan 420111, Russia
| | - Pavel N. Grigoryev
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Andrey V. Zakharov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| | - Andrey L. Zefirov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Alexey M. Petrov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| |
Collapse
|
3
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
4
|
Azzaz F, Yahi N, Chahinian H, Fantini J. The Epigenetic Dimension of Protein Structure Is an Intrinsic Weakness of the AlphaFold Program. Biomolecules 2022; 12:biom12101527. [PMID: 36291736 PMCID: PMC9599222 DOI: 10.3390/biom12101527] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/12/2022] [Accepted: 10/16/2022] [Indexed: 12/02/2022] Open
Abstract
One of the most important lessons we have learned from sequencing the human genome is that not all proteins have a 3D structure. In fact, a large part of the human proteome is made up of intrinsically disordered proteins (IDPs) which can adopt multiple structures, and therefore, multiple functions, depending on the ligands with which they interact. Under these conditions, one can wonder about the value of algorithms developed for predicting the structure of proteins, in particular AlphaFold, an AI which claims to have solved the problem of protein structure. In a recent study, we highlighted a particular weakness of AlphaFold for membrane proteins. Based on this observation, we have proposed a paradigm, referred to as “Epigenetic Dimension of Protein Structure” (EDPS), which takes into account all environmental parameters that control the structure of a protein beyond the amino acid sequence (hence “epigenetic”). In this new study, we compare the reliability of the AlphaFold and Robetta algorithms’ predictions for a new set of membrane proteins involved in human pathologies. We found that Robetta was generally more accurate than AlphaFold for ascribing a membrane-compatible topology. Raft lipids (e.g., gangliosides), which control the structural dynamics of membrane protein structure through chaperone effects, were identified as major actors of the EDPS paradigm. We conclude that the epigenetic dimension of a protein structure is an intrinsic weakness of AI-based protein structure prediction, especially AlphaFold, which warrants further development.
Collapse
|
5
|
Geda O, Tábi T, Lakatos PP, Szökő É. Differential Ganglioside and Cholesterol Depletion by Various Cyclodextrin Derivatives and Their Effect on Synaptosomal Glutamate Release. Int J Mol Sci 2022; 23:ijms23169460. [PMID: 36012724 PMCID: PMC9409351 DOI: 10.3390/ijms23169460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Gangliosides are glycosphingolipids of the plasma membrane and are highly enriched in the nervous system where they play a vital role in normal cell functions. Furthermore, several studies suggest their potential involvement in the pathogenesis of neurological conditions. Since cyclodextrins (CDs) can form inclusion complexes with various lipids, methylated beta-CDs are widely used in biomedical research to extract cholesterol from the membrane and study its cellular role. Despite CDs being known to interact with other membrane lipid components, their effect on gangliosides is poorly characterized. The aim of this research was to investigate the effect of dimethyl-beta-cyclodextrin (DIMEB), hydroxypropyl-beta-cyclodextrin (HPBCD), randomly methylated-alpha-cyclodextrin (RAMEA), and hydroxypropyl-alpha-cyclodextrin (HPACD) on ganglioside and cholesterol levels in rat brain synaptosomes. Their effect on membrane integrity and viability was also assessed. We examined the role of lipid depletion by CDs on the release of the major excitatory neurotransmitter, glutamate. Selective concentration range for cholesterol depletion was only found with HPBCD, but not with DIMEB. Selective depletion of gangliosides was achieved by both RAMEA and HPACD. The inhibition of stimulated glutamate release upon ganglioside depletion was found, suggesting their potential role in neurotransmission. Our study highlights the importance of the characterization of the lipid depleting capability of different CDs.
Collapse
|
6
|
Dorninger F, König T, Scholze P, Berger ML, Zeitler G, Wiesinger C, Gundacker A, Pollak DD, Huck S, Just WW, Forss-Petter S, Pifl C, Berger J. Disturbed neurotransmitter homeostasis in ether lipid deficiency. Hum Mol Genet 2020; 28:2046-2061. [PMID: 30759250 PMCID: PMC6548223 DOI: 10.1093/hmg/ddz040] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/21/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022] Open
Abstract
Plasmalogens, the most prominent ether (phospho)lipids in mammals, are structural components of most cellular membranes. Due to their physicochemical properties and abundance in the central nervous system, a role of plasmalogens in neurotransmission has been proposed, but conclusive data are lacking. Here, we targeted this issue in the glyceronephosphate O-acyltransferase (Gnpat) KO mouse, a model of complete deficiency in ether lipid biosynthesis. Throughout the study, focusing on adult male animals, we found reduced brain levels of various neurotransmitters. In the dopaminergic nigrostriatal tract, synaptic endings but not neuronal cell bodies were affected. Neurotransmitter turnover was altered in ether lipid-deficient murine as well as human post-mortem brain tissue. A generalized loss of synapses did not account for the neurotransmitter deficits, since the levels of several presynaptic proteins appeared unchanged. However, reduced amounts of vesicular monoamine transporter indicate a compromised vesicular uptake of neurotransmitters. As exemplified by norepinephrine, the release of neurotransmitters from Gnpat KO brain slices was diminished in response to strong electrical and chemical stimuli. Finally, addressing potential phenotypic correlates of the disturbed neurotransmitter homeostasis, we show that ether lipid deficiency manifests as hyperactivity and impaired social interaction. We propose that the lack of ether lipids alters the properties of synaptic vesicles leading to reduced amounts and release of neurotransmitters. These features likely contribute to the behavioral phenotype of Gnpat KO mice, potentially modeling some human neurodevelopmental disorders like autism or attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Theresa König
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Michael L Berger
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Gerhard Zeitler
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Christoph Wiesinger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, Vienna, Austria
| | - Sigismund Huck
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Wilhelm W Just
- Biochemistry Center Heidelberg (BZH), University of Heidelberg, Im Neuenheimer Feld 328, Heidelberg, Germany
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Christian Pifl
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna, Austria
| |
Collapse
|
7
|
Egawa J, Zemljic-Harpf A, Mandyam CD, Niesman IR, Lysenko LV, Kleschevnikov AM, Roth DM, Patel HH, Patel PM, Head BP. Neuron-Targeted Caveolin-1 Promotes Ultrastructural and Functional Hippocampal Synaptic Plasticity. Cereb Cortex 2019; 28:3255-3266. [PMID: 28981594 DOI: 10.1093/cercor/bhx196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 12/15/2022] Open
Abstract
A delicate interneuronal communication between pre- and postsynaptic membranes is critical for synaptic plasticity and the formation of memory. Evidence shows that membrane/lipid rafts (MLRs), plasma membrane microdomains enriched in cholesterol and sphingolipids, organize presynaptic proteins and postsynaptic receptors necessary for synaptic formation and signaling. MLRs establish a cell polarity that facilitates transduction of extracellular cues to the intracellular environment. Here we show that neuron-targeted overexpression of an MLR protein, caveolin-1 (SynCav1), in the adult mouse hippocampus increased the number of presynaptic vesicles per bouton, total excitatory type I glutamatergic synapses, number of same-dendrite multiple-synapse boutons, increased myelination, increased long-term potentiation, and increased MLR-localized N-methyl-d-aspartate receptor subunits (GluN1, GluN2A, and GluN2B). Immunogold electron microscopy revealed that Cav-1 localizes to both the pre- and postsynaptic membrane regions as well as in the synaptic cleft. These findings, which are consistent with a significant increase in ultrastructural and functional synaptic plasticity, provide a fundamental framework that underlies previously demonstrated improvements in learning and memory in adult and aged mice by SynCav1. Such observations suggest that Cav-1 and MLRs alter basic aspects of synapse biology that could serve as potential therapeutic targets to promote neuroplasticity and combat neurodegeneration in a number of neurological disorders.
Collapse
Affiliation(s)
- Junji Egawa
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Alice Zemljic-Harpf
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Larisa V Lysenko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - David M Roth
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Hemal H Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Piyush M Patel
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
8
|
Gangliosides interact with synaptotagmin to form the high-affinity receptor complex for botulinum neurotoxin B. Proc Natl Acad Sci U S A 2019; 116:18098-18108. [PMID: 31431523 DOI: 10.1073/pnas.1908051116] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Botulinum neurotoxin type B (BoNT/B) recognizes nerve terminals by binding to 2 receptor components: a polysialoganglioside, predominantly GT1b, and synaptotagmin 1/2. It is widely thought that BoNT/B initially binds to GT1b then diffuses in the plane of the membrane to interact with synaptotagmin. We have addressed the hypothesis that a GT1b-synaptotagmin cis complex forms the BoNT/B receptor. We identified a consensus glycosphingolipid-binding motif in the extracellular juxtamembrane domain of synaptotagmins 1/2 and confirmed by Langmuir monolayer, surface plasmon resonance, and circular dichroism that GT1b interacts with synaptotagmin peptides containing this sequence, inducing α-helical structure. Molecular modeling and tryptophan fluorescence spectroscopy were consistent with the intertwining of GT1b and synaptotagmin, involving cis interactions between the oligosaccharide and ceramide moieties of GT1b and the juxtamembrane and transmembrane domains of synaptotagmin, respectively. Furthermore, a point mutation on synaptotagmin, located outside of the BoNT/B-binding segment, inhibited GT1b binding and blocked GT1b-induced potentiation of BoNT/B binding to synaptotagmin-expressing cells. Our findings are consistent with a model in which a preassembled GT1b-synaptotagmin complex constitutes the high-affinity BoNT/B receptor.
Collapse
|
9
|
Valproic Acid Induced Neurotoxicological Manifestations and its Mitigation by Melatonin in Rat Brain Synaptosomes. Arch Med Res 2018; 49:441-450. [DOI: 10.1016/j.arcmed.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 01/08/2023]
|
10
|
Moreno-Galarza N, Mendieta L, Palafox-Sánchez V, Herrando-Grabulosa M, Gil C, Limón DI, Aguilera J. Peripheral Administration of Tetanus Toxin Hc Fragment Prevents MPP+ Toxicity In Vivo. Neurotox Res 2018; 34:47-61. [DOI: 10.1007/s12640-017-9853-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023]
|
11
|
Mori Y, Takamori S. Molecular Signatures Underlying Synaptic Vesicle Cargo Retrieval. Front Cell Neurosci 2018; 11:422. [PMID: 29379416 PMCID: PMC5770824 DOI: 10.3389/fncel.2017.00422] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/15/2017] [Indexed: 12/31/2022] Open
Abstract
Efficient retrieval of the synaptic vesicle (SV) membrane from the presynaptic plasma membrane, a process called endocytosis, is crucial for the fidelity of neurotransmission, particularly during sustained neural activity. Although multiple modes of endocytosis have been identified, it is clear that the efficient retrieval of the major SV cargos into newly formed SVs during any of these modes is fundamental for synaptic transmission. It is currently believed that SVs are eventually reformed via a clathrin-dependent pathway. Various adaptor proteins recognize SV cargos and link them to clathrin, ensuring the efficient retrieval of the cargos into newly formed SVs. Here, we summarize our current knowledge of the molecular signatures within individual SV cargos that underlie efficient retrieval into SV membranes, as well as discuss possible contributions of the mechanisms under physiological conditions.
Collapse
Affiliation(s)
- Yasunori Mori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
12
|
Descoteaux A. The Macrophage–Parasite Interface as a Chemotherapeutic Target in Leishmaniasis. DRUG DISCOVERY FOR LEISHMANIASIS 2017. [DOI: 10.1039/9781788010177-00387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Parasites of the genus Leishmania are intravacuolar pathogens that create compartments within their mammalian hosts where they can live, replicate and manipulate host immune responses. To generate these parasitophorous vacuoles, Leishmania diverts the default phagolysosomal biogenesis process, in part through the action of virulence factors on the host cell membrane fusion machinery. Components of this machinery essential to the biogenesis, maintenance and function of parasitophorous vacuoles may constitute attractive targets for the design of compounds that will disrupt the integrity of the Leishmania intracellular niche and interfere with parasite replication. Targeting components of the fusion machinery thus represents a promising avenue for the discovery of anti-leishmanial compounds that may not be plagued with problems associated with the development of resistance.
Collapse
Affiliation(s)
- Albert Descoteaux
- INRS-Institut Armand-Frappier 531 boul. des Prairies Laval, QC H7V 1B7 Canada
| |
Collapse
|
13
|
Chaudhary S, Parvez S. Phytanic acid induced neurological alterations in rat brain synaptosomes and its attenuation by melatonin. Biomed Pharmacother 2017; 95:37-46. [PMID: 28826095 DOI: 10.1016/j.biopha.2017.07.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/21/2017] [Accepted: 07/30/2017] [Indexed: 12/17/2022] Open
Abstract
Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) (Phyt) is a saturated branched chain fatty acid which originates after the breakdown of chlorophyll molecule, phytol. It plays an important role in a variety of metabolic disorders with peroxisomal impairments. The aim of our investigation was to evaluate the adverse effects of Phyt on synaptic functions by using synaptosomal preparation of rat brain as an in vitro model and the possible protective role of melatonin against Phyt-induced neurotoxicity. Melatonin is an antioxidant, secreted by the pineal gland. Melatonin and its metabolites have neuroprotective effects on cellular stress, by reducing reactive oxygen species (ROS) and reactive nitrogen species (RNS). In the present investigation, synaptosomes prepared from rat brain were co-treated with melatonin (10μM) and Phyt (50μM) for 2h. Co-treatment of Phyt with melatonin significantly restored the altered levels of protein carbonyl (PC) contents and lipid peroxidation (LPO). It also replenished the Phyt-induced alterations on the levels of non-enzymatic antioxidant defence reduced glutathione (GSH), enzymatic antioxidants such as catalase (CAT) and superoxide dismutase (SOD) and synaptosomal integral enzymes such as AChE, Na+, K+-ATPase and MAO. We observed that Phyt induced oxidative stress in synaptosomes as indicated by an elevation in the generation of ROS and melatonin was able to inhibit the elevated ROS generation. Moreover, the neurotoxic effects elicited by Phyt on NO level and membrane potential were totally prevented by the treatment of melatonin. The results of our investigation emphasize the potential use of melatonin as a nutraceutical and mitigatory agent against Phyt-induced oxidative stress.
Collapse
Affiliation(s)
- Shaista Chaudhary
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
14
|
The role of cholesterol in membrane fusion. Chem Phys Lipids 2016; 199:136-143. [PMID: 27179407 DOI: 10.1016/j.chemphyslip.2016.05.003] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion.
Collapse
|
15
|
High cholesterol obviates a prolonged hemifusion intermediate in fast SNARE-mediated membrane fusion. Biophys J 2016. [PMID: 26200867 DOI: 10.1016/j.bpj.2015.06.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cholesterol is essential for exocytosis in secretory cells, but the exact molecular mechanism by which it facilitates exocytosis is largely unknown. Distinguishing contributions from the lateral organization and dynamics of membrane proteins to vesicle docking and fusion and the promotion of fusion pores by negative intrinsic spontaneous curvature and other mechanical effects of cholesterol have been elusive. To shed more light on this process, we examined the effect of cholesterol on SNARE-mediated membrane fusion in a single-vesicle assay that is capable of resolving docking and elementary steps of fusion with millisecond time resolution. The effect of cholesterol on fusion pore formation between synaptobrevin-2 (VAMP-2)-containing proteoliposomes and acceptor t-SNARE complex-containing planar supported bilayers was examined using both membrane and content fluorescent markers. This approach revealed that increasing cholesterol in either the t-SNARE or the v-SNARE membrane favors a mechanism of direct fusion pore opening, whereas low cholesterol favors a mechanism leading to a long-lived (>5 s) hemifusion state. The amount of cholesterol in the target membrane had no significant effect on docking of synaptobrevin vesicles. Comparative studies with α-tocopherol (vitamin E) show that the negative intrinsic spontaneous curvature of cholesterol and its presumed promotion of a very short-lived (<50 ms) lipid stalk intermediate is the main factor that favors rapid fusion pore opening at high cholesterol. This study also shows that this single-vesicle fusion assay can distinguish between hemifusion and full fusion with only a single lipid dye, thereby freeing up a fluorescence channel for the simultaneous measurement of another parameter in fast time-resolved fusion assays.
Collapse
|
16
|
Choi TY, Jung S, Nah J, Ko HY, Jo SH, Chung G, Park K, Jung YK, Choi SY. Low levels of methyl β-cyclodextrin disrupt GluA1-dependent synaptic potentiation but not synaptic depression. J Neurochem 2015; 132:276-85. [PMID: 25418874 DOI: 10.1111/jnc.12995] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/29/2014] [Accepted: 11/06/2014] [Indexed: 01/25/2023]
Abstract
Methyl-β-cyclodextrin (MβCD) is a reagent that depletes cholesterol and disrupts lipid rafts, a type of cholesterol-enriched cell membrane microdomain. Lipid rafts are essential for neuronal functions such as synaptic transmission and plasticity, which are sensitive to even low doses of MβCD. However, how MβCD changes synaptic function, such as N-methyl-d-aspartate receptor (NMDA-R) activity, remains unclear. We monitored changes in synaptic transmission and plasticity after disrupting lipid rafts with MβCD. At low concentrations (0.5 mg/mL), MβCD decreased basal synaptic transmission and miniature excitatory post-synaptic current without changing NMDA-R-mediated synaptic transmission and the paired-pulse facilitation ratio. Interestingly, low doses of MβCD failed to deplete cholesterol or affect α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) and NMDA-R levels, while clearly reducing GluA1 levels selectively in the synaptosomal fraction. Low doses of MβCD decreased the inhibitory effects of NASPM, an inhibitor for GluA2-lacking AMPA-R. MβCD successfully decreased NMDA-R-mediated long-term potentiation but did not affect the formation of either NMDA-R-mediated or group I metabotropic glutamate receptor-dependent long-term depression. MβCD inhibited de-depression without affecting de-potentiation. These results suggest that MβCD regulates GluA1-dependent synaptic potentiation but not synaptic depression in a cholesterol-independent manner.
Collapse
Affiliation(s)
- Tae-Yong Choi
- Department of Physiology and Dental Research Institute, Seoul National University School of Dentistry, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Matheoud D, Moradin N, Bellemare-Pelletier A, Shio MT, Hong WJ, Olivier M, Gagnon E, Desjardins M, Descoteaux A. Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8. Cell Host Microbe 2014; 14:15-25. [PMID: 23870310 DOI: 10.1016/j.chom.2013.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/08/2013] [Accepted: 05/17/2013] [Indexed: 11/18/2022]
Abstract
During phagocytosis, microorganisms are taken up by immune cells into phagosomes. Through membrane-trafficking events mediated by SNARE proteins, phagosomes fuse with lysosomes, generating degradative phagolysosomes. Phagolysosomes contribute to host immunity by linking microbial killing within these organelles with antigen processing for presentation on MHC class I or II molecules to T cells. We show that the intracellular parasite Leishmania evades immune recognition by inhibiting phagolysosome biogenesis. The Leishmania cell surface metalloprotease GP63 cleaves a subset of SNAREs, including VAMP8. GP63-mediated VAMP8 inactivation or Vamp8 disruption prevents the NADPH oxidase complex from assembling on phagosomes, thus altering their pH and degradative properties. Consequently, the presentation of exogenous Leishmania antigens on MHC class I molecules, also known as cross-presentation, is inhibited, resulting in reduced T cell activation. These findings indicate that Leishmania subverts immune recognition by altering phagosome function and highlight the importance of VAMP8 in phagosome biogenesis and antigen cross-presentation.
Collapse
Affiliation(s)
- Diana Matheoud
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Roles of Carbohydrates in the Interaction of Pathogens with Neural Cells. ADVANCES IN NEUROBIOLOGY 2014; 9:395-413. [DOI: 10.1007/978-1-4939-1154-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Hissa B, Pontes B, Roma PMS, Alves AP, Rocha CD, Valverde TM, Aguiar PHN, Almeida FP, Guimarães AJ, Guatimosim C, Silva AM, Fernandes MC, Andrews NW, Viana NB, Mesquita ON, Agero U, Andrade LO. Membrane cholesterol removal changes mechanical properties of cells and induces secretion of a specific pool of lysosomes. PLoS One 2013; 8:e82988. [PMID: 24376622 PMCID: PMC3869752 DOI: 10.1371/journal.pone.0082988] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MβCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MβCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MβCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.
Collapse
Affiliation(s)
- Barbara Hissa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paula Magda S. Roma
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina D. Rocha
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thalita M. Valverde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Henrique N. Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando P. Almeida
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Allan J. Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aristóbolo M. Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria C. Fernandes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Nathan B. Viana
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Oscar N. Mesquita
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O. Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
20
|
Abbineni PS, Hibbert JE, Coorssen JR. Critical role of cortical vesicles in dissecting regulated exocytosis: overview of insights into fundamental molecular mechanisms. THE BIOLOGICAL BULLETIN 2013; 224:200-217. [PMID: 23995744 DOI: 10.1086/bblv224n3p200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulated exocytosis is one of the defining features of eukaryotic cells, underlying many conserved and essential functions. Definitively assigning specific roles to proteins and lipids in this fundamental mechanism is most effectively accomplished using a model system in which distinct stages of exocytosis can be effectively separated. Here we discuss the establishment of sea urchin cortical vesicle fusion as a model to study regulated exocytosis-a system in which the docked, release-ready, and late Ca(2+)-triggered steps of exocytosis are isolated and can be quantitatively assessed using the rigorous coupling of functional and molecular assays. We provide an overview of the insights this has provided into conserved molecular mechanisms and how these have led to and integrate with findings from other regulated exocytotic cells.
Collapse
Affiliation(s)
- Prabhodh S Abbineni
- Department of Molecular Physiology, School of Medicine, University of Western Sydney, NSW, Australia
| | | | | |
Collapse
|
21
|
Cubí R, Matas LA, Pou M, Aguilera J, Gil C. Differential sensitivity to detergents of actin cytoskeleton from nerve endings. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:2385-93. [PMID: 23817010 DOI: 10.1016/j.bbamem.2013.06.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 01/13/2023]
Abstract
Detergent-resistant membranes (DRM), an experimental model used to study lipid rafts, are typically extracted from cells by means of detergent treatment and subsequent ultracentrifugation in density gradients, Triton X-100 being the detergent of choice in most of the works. Since lipid rafts are membrane microdomains rich in cholesterol, depletion of this component causes solubilization of DRM with detergent. In previous works from our group, the lack of effect of cholesterol depletion on DRM solubilization with Triton X-100 was detected in isolated rat brain synaptosomes. In consequence, the aim of the present work is to explore reasons for this observation, analyzing the possible role of the actin cytoskeleton, as well as the use of an alternative detergent, Brij 98, to overcome the insensitivity to Triton X-100 of cholesterol-depleted DRM. Brij 98 yields Brij-DRM that are highly dependent on cholesterol, since marker proteins (Flotillin-1 and Thy-1), as well as actin, appear solubilized after MCD treatment. Pretreatment with Latrunculin A results in a significant increase in Flotillin-1, Thy-1 and actin solubilization by Triton X-100 after cholesterol depletion. Studies with transmission electron microscopy show that combined treatment with MCD and Latrunculin A leads to a significant increase in solubilization of DRM with Triton X-100. Thus, Triton-DRM resistance to cholesterol depletion can be explained, at least partially, thanks to the scaffolding action of the actin cytoskeleton, without discarding differential effects of Brij 98 and Triton X-100 on specific membrane components. In conclusion, the detergent of choice is important when events that depend on the actin cytoskeleton are going to be studied.
Collapse
Affiliation(s)
- Roger Cubí
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra 08193, Catalunya, Spain; Institut de Neurociències, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | |
Collapse
|
22
|
Mencarelli C, Martinez–Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 2013; 70:181-203. [PMID: 22729185 PMCID: PMC3535405 DOI: 10.1007/s00018-012-1038-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
Abstract
Ceramide, the precursor of all complex sphingolipids, is a potent signaling molecule that mediates key events of cellular pathophysiology. In the nervous system, the sphingolipid metabolism has an important impact. Neurons are polarized cells and their normal functions, such as neuronal connectivity and synaptic transmission, rely on selective trafficking of molecules across plasma membrane. Sphingolipids are abundant on neural cellular membranes and represent potent regulators of brain homeostasis. Ceramide intracellular levels are fine-tuned and alteration of the sphingolipid-ceramide profile contributes to the development of age-related, neurological and neuroinflammatory diseases. The purpose of this review is to guide the reader towards a better understanding of the sphingolipid-ceramide pathway system. First, ceramide biology is presented including structure, physical properties and metabolism. Second, we describe the function of ceramide as a lipid second messenger in cell physiology. Finally, we highlight the relevance of sphingolipids and ceramide in the progression of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Mencarelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Pilar Martinez–Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
23
|
Moradin N, Descoteaux A. Leishmania promastigotes: building a safe niche within macrophages. Front Cell Infect Microbiol 2012; 2:121. [PMID: 23050244 PMCID: PMC3445913 DOI: 10.3389/fcimb.2012.00121] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/04/2012] [Indexed: 12/16/2022] Open
Abstract
Upon their internalization by macrophages, Leishmania promastigotes inhibit phagolysosome biogenesis. The main factor responsible for this inhibition is the promastigote surface glycolipid lipophosphoglycan (LPG). This glycolipid has a profound impact on the phagosome, causing periphagosomal accumulation of F-actin and disruption of phagosomal lipid microdomains. Functionally, this LPG-mediated inhibition of phagosome maturation is characterized by an impaired assembly of the NADPH oxidase and the exclusion of the vesicular proton-ATPase from phagosomes. In this chapter, we review the current knowledge concerning the nature of the intra-macrophage compartment in which Leishmania donovani promastigotes establish infection. We also describe how LPG enables this parasite to remodel the parasitophorous vacuole.
Collapse
Affiliation(s)
- Neda Moradin
- INRS - Institut Armand-Frappier and Center for Host-Parasite Interactions Laval, QC, Canada
| | | |
Collapse
|
24
|
Abstract
Mutations in LRRK2 (leucine-rich repeat kinase 2) (also known as PARK8 or dardarin) are responsible for the autosomal-dominant form of PD (Parkinson's disease). LRRK2 mutations were found in approximately 3–5% of familial and 1–3% of sporadic PD cases with the highest prevalence (up to 40%) in North Africans and Ashkenazi Jews. To date, mutations in LRRK2 are a major genetic risk factor for familial and sporadic PD. Despite the fact that 8 years have passed from the establishment of the first link between PD and dardarin in 2004, the pathophysiological role of LRRK2 in PD onset and progression is far from clearly defined. Also the generation of different LRRK2 transgenic or knockout animals has not provided new hints on the function of LRRK2 in the brain. The present paper reviews recent evidence regarding a potential role of LRRK2 in the regulation of membrane trafficking from vesicle generation to the movement along cytoskeleton and finally to vesicle fusion with cell membrane.
Collapse
|
25
|
Teixeira G, Vieira LB, Gomez MV, Guatimosim C. Cholesterol as a key player in the balance of evoked and spontaneous glutamate release in rat brain cortical synaptosomes. Neurochem Int 2012; 61:1151-9. [PMID: 22940694 DOI: 10.1016/j.neuint.2012.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 08/09/2012] [Accepted: 08/15/2012] [Indexed: 01/01/2023]
Abstract
Membrane rafts are domains enriched in sphingolipids, glycolipids and cholesterol that are able to compartmentalize cellular processes. Noteworthy, many proteins have been assigned to membrane rafts including those related to the control of the synaptic vesicle release machinery, which is a important step for neurotransmission between synapses. In this work, we have investigated the role of cholesterol in key steps of glutamate release in isolated nerve terminals (synaptosomes) from rat brain cortices. Incubation of synaptosomes with methyl-β-cyclodextrin (MβCD) induced glutamate release in a dose-dependent fashion. HγCD, a cyclodextrin with low affinity for cholesterol, had no significant effect on spontaneous glutamate release. When we evaluated the effects of MβCD on glutamate release induced by depolarizing stimuli, we observed that MβCD treatment inhibited the KCl-evoked glutamate release. The glutamate release induced by MβCD was not altered by treatment with EGTA nor with EGTA-AM. The KCl-evoked glutamate release was no further inhibited when synaptosomes were incubated with MβCD in the absence of calcium. We therefore investigated whether the cholesterol removal by MβCD changes intrasynaptosomal sodium and calcium levels. Our results suggested that the cholesterol removal effect on spontaneous and evoked glutamate release might be upstream to sodium and calcium entry through voltage-activated channels. We therefore tested if MβCD would have a direct effect on synaptic vesicle exocytosis and we showed that cholesterol removal by MβCD induced spontaneous exocytosis and inhibited synaptic vesicle exocytosis evoked by depolarizing stimuli. Lastly, we investigated the effect of protein kinase inhibitors on the spontaneous exocytosis evoked by MβCD and we observed a statistically significant reduction of synaptic vesicles exocytosis. In conclusion, our work shows that cholesterol removal facilitates protein kinase activation that favors spontaneous synaptic vesicles and consequently glutamate release in isolated nerve terminals.
Collapse
Affiliation(s)
- Graziele Teixeira
- Departamento de Morfologia, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
26
|
Sebastião AM, Colino-Oliveira M, Assaife-Lopes N, Dias RB, Ribeiro JA. Lipid rafts, synaptic transmission and plasticity: impact in age-related neurodegenerative diseases. Neuropharmacology 2012; 64:97-107. [PMID: 22820274 DOI: 10.1016/j.neuropharm.2012.06.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 06/23/2012] [Accepted: 06/26/2012] [Indexed: 10/28/2022]
Abstract
The synapse is a crowded area. In the last years, the concept that proteins can be organized in different membrane domains according to their structure has emerged. Cholesterol-rich membrane domains, or lipid rafts, form an organized portion of the membrane that is thought to concentrate signaling molecules. Accumulating evidence has shown that both the pre-synaptic and post-synaptic sites are highly enriched in lipid rafts, which are likely to organize and maintain synaptic proteins in their precise localization. Here we review recent studies highlighting the importance of lipid rafts for synaptic function and plasticity, as well as their relevance for age or disease-related cognitive impairment. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
Affiliation(s)
- Ana M Sebastião
- Institute of Pharmacology and Neurosciences, Faculty of Medicine, University of Lisbon, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
27
|
The dynamic architecture of photoreceptor ribbon synapses: cytoskeletal, extracellular matrix, and intramembrane proteins. Vis Neurosci 2012; 28:453-71. [PMID: 22192503 DOI: 10.1017/s0952523811000356] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rod and cone photoreceptors possess ribbon synapses that assist in the transmission of graded light responses to second-order bipolar and horizontal cells of the vertebrate retina. Proper functioning of the synapse requires the juxtaposition of presynaptic release sites immediately adjacent to postsynaptic receptors. In this review, we focus on the synaptic, cytoskeletal, and extracellular matrix proteins that help to organize photoreceptor ribbon synapses in the outer plexiform layer. We examine the proteins that foster the clustering of release proteins, calcium channels, and synaptic vesicles in the presynaptic terminals of photoreceptors adjacent to their postsynaptic contacts. Although many proteins interact with one another in the presynaptic terminal and synaptic cleft, these protein-protein interactions do not create a static and immutable structure. Instead, photoreceptor ribbon synapses are remarkably dynamic, exhibiting structural changes on both rapid and slow time scales.
Collapse
|
28
|
Hissa B, Duarte JG, Kelles LF, Santos FP, del Puerto HL, Gazzinelli-Guimarães PH, de Paula AM, Agero U, Mesquita ON, Guatimosim C, Chiari E, Andrade LO. Membrane cholesterol regulates lysosome-plasma membrane fusion events and modulates Trypanosoma cruzi invasion of host cells. PLoS Negl Trop Dis 2012; 6:e1583. [PMID: 22479662 PMCID: PMC3313932 DOI: 10.1371/journal.pntd.0001583] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 02/12/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization. Lysosomes continue to fuse with the newly formed parasitophorous vacuole until the parasite is completely enclosed by lysosomal membrane, a process indispensable for a stable infection. Previous work has shown that host membrane cholesterol is also important for the T. cruzi invasion process in both professional (macrophages) and non-professional (epithelial) phagocytic cells. However, the mechanism by which cholesterol-enriched microdomains participate in this process has remained unclear. METHODOLOGY/PRINCIPAL FINDING In the present work we show that cardiomyocytes treated with MβCD, a drug able to sequester cholesterol from cell membranes, leads to a 50% reduction in invasion by T. cruzi trypomastigotes, as well as a decrease in the number of recently internalized parasites co-localizing with lysosomal markers. Cholesterol depletion from host membranes was accompanied by a decrease in the labeling of host membrane lipid rafts, as well as excessive lysosome exocytic events during the earlier stages of treatment. Precocious lysosomal exocytosis in MβCD treated cells led to a change in lysosomal distribution, with a reduction in the number of these organelles at the cell periphery, and probably compromises the intracellular pool of lysosomes necessary for T. cruzi invasion. CONCLUSION/SIGNIFICANCE Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events, reducing lysosome availability at the cell cortex and consequently compromise T. cruzi entry into host cells. The results also suggest that two different pools of lysosomes are available in the cell and that cholesterol depletion may modulate the fusion of pre-docked lysosomes at the cell cortex.
Collapse
Affiliation(s)
- Bárbara Hissa
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Jacqueline G. Duarte
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ludmila F. Kelles
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Fabio P. Santos
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Helen L. del Puerto
- Department of General Pathology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Ana M. de Paula
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ubirajara Agero
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Oscar N. Mesquita
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Cristina Guatimosim
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Department of Parasitology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luciana O. Andrade
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
29
|
Mercer AJ, Szalewski RJ, Jackman SL, Van Hook MJ, Thoreson WB. Regulation of presynaptic strength by controlling Ca2+ channel mobility: effects of cholesterol depletion on release at the cone ribbon synapse. J Neurophysiol 2012; 107:3468-78. [PMID: 22442573 DOI: 10.1152/jn.00779.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Synaptic communication requires proper coupling between voltage-gated Ca(2+) (Ca(V)) channels and synaptic vesicles. In photoreceptors, L-type Ca(V) channels are clustered close to synaptic ribbon release sites. Although clustered, Ca(V) channels move continuously within a confined domain slightly larger than the base of the ribbon. We hypothesized that expanding Ca(V) channel confinement domains should increase the number of channel openings needed to trigger vesicle release. Using single-particle tracking techniques, we measured the expansion of Ca(V) channel confinement domains caused by depletion of membrane cholesterol with cholesterol oxidase or methyl-β-cyclodextrin. With paired whole cell recordings from cones and horizontal cells, we then determined the number of Ca(V) channel openings contributing to cone Ca(V) currents (I(Ca)) and the number of vesicle fusion events contributing to horizontal cell excitatory postsynaptic currents (EPSCs) following cholesterol depletion. Expansion of Ca(V) channel confinement domains reduced the peak efficiency of release, decreasing the number of vesicle fusion events accompanying opening of each Ca(V) channel. Cholesterol depletion also inhibited exocytotic capacitance increases evoked by brief depolarizing steps. Changes in efficiency were not due to changes in I(Ca) amplitude or glutamate receptor properties. Replenishing cholesterol restored Ca(V) channel domain size and release efficiency to control levels. These results indicate that cholesterol is important for organizing the cone active zone. Furthermore, the finding that cholesterol depletion impairs coupling between channel opening and vesicle release by allowing Ca(V) channels to move further from release sites shows that changes in presynaptic Ca(V) channel mobility can be a mechanism for adjusting synaptic strength.
Collapse
Affiliation(s)
- Aaron J Mercer
- Dept. of Ophthalmology and Visual Sciences, Univ. of Nebraska Medical Center, Omaha, NE 68198-5840, USA
| | | | | | | | | |
Collapse
|
30
|
Brodde A, Teigler A, Brugger B, Lehmann WD, Wieland F, Berger J, Just WW. Impaired neurotransmission in ether lipid-deficient nerve terminals. Hum Mol Genet 2012; 21:2713-24. [PMID: 22403185 DOI: 10.1093/hmg/dds097] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Isolated defects of ether lipid (EL) biosynthesis in humans cause rhizomelic chondrodysplasia punctata type 2 and type 3, serious peroxisomal disorders. Using a previously described mouse model [Rodemer, C., Thai, T.P., Brugger, B., Kaercher, T., Werner, H., Nave, K.A., Wieland, F., Gorgas, K., and Just, W.W. (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum. Mol. Genet., 12, 1881-1895], we investigated the effect of EL deficiency in isolated murine nerve terminals (synaptosomes) on the pre-synaptic release of the neurotransmitters (NTs) glutamate and acetylcholine. Both Ca(2+)-dependent exocytosis and Ca(2+)-independent efflux of the transmitters were affected. EL-deficient synaptosomes respire at a reduced rate and exhibit a lowered adenosin-5'-triphosphate/adenosine diphosphate (ATP/ADP) ratio. Consequently, ATP-driven processes, such as synaptic vesicle cycling and maintenance of Na(+), K(+) and Ca(2+) homeostasis, might be disturbed. Analyzing reactive oxygen species in EL-deficient neural and non-neural tissues revealed that plasmalogens (PLs), the most abundant EL species in mammalian central nervous system, considerably contribute to the generation of the lipid peroxidation product malondialdehyde. Although EL-deficient tissue contains less lipid peroxidation products, fibroblasts lacking ELs are more susceptible to induced oxidative stress. In summary, these results suggest that due to the reduced energy state of EL-deficient tissue, the Ca(2+)-independent efflux of NTs increases while the Ca(2+)-dependent release declines. Furthermore, lack of PLs is mainly compensated for by an increase in the concentration of phosphatidylethanolamine and results in a significantly lowered level of lipid peroxidation products in the brain cortex and cerebellum.
Collapse
Affiliation(s)
- Alexander Brodde
- Heidelberg Center of Biochemistry, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Rodríguez-Asiain A, Ruiz-Babot G, Romero W, Cubí R, Erazo T, Biondi RM, Bayascas JR, Aguilera J, Gómez N, Gil C, Claro E, Lizcano JM. Brain specific kinase-1 BRSK1/SAD-B associates with lipid rafts: modulation of kinase activity by lipid environment. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1811:1124-35. [PMID: 22020259 DOI: 10.1016/j.bbalip.2011.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 09/29/2011] [Accepted: 10/05/2011] [Indexed: 10/16/2022]
Abstract
Brain specific kinases 1 and 2 (BRSK1/2, also named SAD kinases) are serine-threonine kinases specifically expressed in the brain, and activated by LKB1-mediated phosphorylation of a threonine residue at their T-loop (Thr189/174 in human BRSK1/2). BRSKs are crucial for establishing neuronal polarity, and BRSK1 has also been shown to regulate neurotransmitter release presynaptically. How BRSK1 exerts this latter function is unknown, since its substrates at the synaptic terminal and the mechanisms modulating its activity remain to be described. Key regulators of neurotransmitter release, such as SNARE complex proteins, are located at membrane rafts. Therefore we initially undertook this work to check whether BRSK1 also locates at these membrane microdomains. Here we show that brain BRSK1, but not BRSK2, is palmitoylated, and provide biochemical and pharmacological evidences demonstrating that a pool of BRSK1, but not BRSK2 or LKB1, localizes at membrane lipid rafts. We also show that raft-associated BRSK1 has higher activity than BRSK1 from non-raft environment, based on a higher T-loop phosphorylation at Thr-189. Further, recombinant BRSK1 activity increased 3-fold when assayed with small multilamellar vesicles (SMV) generated with lipids extracted from synaptosomal raft fractions. A similar BRSK1-activating effect was obtained with synthetic SMV made with phosphatidylcholine, cholesterol and sphingomyelin, mixed in the same molar ratio at which these three major lipids are present in rafts. Importantly, SMV also enhanced the activity of a constitutively active BRSK1 (T189E), underpinning that interaction with lipid rafts represents a new mechanism of BRSK1 activity modulation, additional to T-loop phosphorylation.
Collapse
Affiliation(s)
- Arantza Rodríguez-Asiain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mendez M, Gross KW, Glenn ST, Garvin JL, Carretero OA. Vesicle-associated membrane protein-2 (VAMP2) mediates cAMP-stimulated renin release in mouse juxtaglomerular cells. J Biol Chem 2011; 286:28608-18. [PMID: 21708949 PMCID: PMC3151102 DOI: 10.1074/jbc.m111.225839] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Renin is essential for blood pressure control. Renin is stored in granules in juxtaglomerular (JG) cells, located in the pole of the renal afferent arterioles. The second messenger cAMP stimulates renin release. However, it is unclear whether fusion and exocytosis of renin-containing granules is involved. In addition, the role of the fusion proteins, SNAREs (soluble N-ethylmaleimide-sensitive factor attachment proteins), in renin release from JG cells has not been studied. The vesicle SNARE proteins VAMP2 (vesicle associated membrane protein 2) and VAMP3 mediate cAMP-stimulated exocytosis in other endocrine cells. Thus, we hypothesized that VAMP2 and/or -3 mediate cAMP-stimulated renin release from JG cells. By fluorescence-activated cell sorting, we isolated JG cells expressing green fluorescent protein and compared the relative abundance of VAMP2/3 in JG cells versus total mouse kidney mRNA by quantitative PCR. We found that VAMP2 and VAMP3 mRNA are expressed and enriched in JG cells. Confocal imaging of primary cultures of JG cells showed that VAMP2 (but not VAMP3) co-localized with renin-containing granules. Cleavage of VAMP2 and VAMP3 with tetanus toxin blocked cAMP-stimulated renin release from JG cells by ∼50% and impaired cAMP-stimulated exocytosis by ∼50%, as monitored with FM1–43. Then we specifically knocked down VAMP2 or VAMP3 by adenoviral-mediated delivery of short hairpin silencing RNA. We found that silencing VAMP2 blocked cAMP-induced renin release by ∼50%. In contrast, silencing VAMP3 had no effect on basal or cAMP-stimulated renin release. We conclude that VAMP2 and VAMP3 are expressed in JG cells, but only VAMP2 is targeted to renin-containing granules and mediates the stimulatory effect of cAMP on renin exocytosis.
Collapse
Affiliation(s)
- Mariela Mendez
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan 48202, USA.
| | | | | | | | | |
Collapse
|
33
|
Gil C, Falqués A, Sarró E, Cubi R, Blasi J, Aguilera J, Itarte E. Protein kinase CK2 associates to lipid rafts and its pharmacological inhibition enhances neurotransmitter release. FEBS Lett 2010; 585:414-20. [PMID: 21187092 DOI: 10.1016/j.febslet.2010.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/17/2010] [Accepted: 12/17/2010] [Indexed: 01/14/2023]
Abstract
In the present work we report the presence of protein kinase CK2 in lipid raft preparations from rat brain synaptosomes, obtained after detergent extraction and subsequent isolation of detergent-resistant membranes using sucrose gradient ultracentrifugation. Moreover, the phosphorylation of syntaxin-1 at Ser14, a specific CK2 target, has been detected in lipid rafts, as assessed by a phospho-specific antibody. Treatment with DMAT, a specific CK2 inhibitor, results in a decrease of syntaxin-1 Ser14 phosphorylation in lipid rafts, while the glutamate release from synaptosomes is enhanced. In conclusion, CK2 might control neurotransmitter release by acting on SNARE proteins attached to cholesterol-enriched microdomains.
Collapse
Affiliation(s)
- Carles Gil
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | | | | | | | | | | | | |
Collapse
|
34
|
Fraldi A, Annunziata F, Lombardi A, Kaiser HJ, Medina DL, Spampanato C, Fedele AO, Polishchuk R, Sorrentino NC, Simons K, Ballabio A. Lysosomal fusion and SNARE function are impaired by cholesterol accumulation in lysosomal storage disorders. EMBO J 2010; 29:3607-20. [PMID: 20871593 PMCID: PMC2982760 DOI: 10.1038/emboj.2010.237] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Accepted: 08/26/2010] [Indexed: 11/09/2022] Open
Abstract
The function of lysosomes relies on the ability of the lysosomal membrane to fuse with several target membranes in the cell. It is known that in lysosomal storage disorders (LSDs), lysosomal accumulation of several types of substrates is associated with lysosomal dysfunction and impairment of endocytic membrane traffic. By analysing cells from two severe neurodegenerative LSDs, we observed that cholesterol abnormally accumulates in the endolysosomal membrane of LSD cells, thereby reducing the ability of lysosomes to efficiently fuse with endocytic and autophagic vesicles. Furthermore, we discovered that soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptors (SNAREs), which are key components of the cellular membrane fusion machinery are aberrantly sequestered in cholesterol-enriched regions of LSD endolysosomal membranes. This abnormal spatial organization locks SNAREs in complexes and impairs their sorting and recycling. Importantly, reducing membrane cholesterol levels in LSD cells restores normal SNARE function and efficient lysosomal fusion. Our results support a model by which cholesterol abnormalities determine lysosomal dysfunction and endocytic traffic jam in LSDs by impairing the membrane fusion machinery, thus suggesting new therapeutic targets for the treatment of these disorders.
Collapse
Affiliation(s)
| | - Fabio Annunziata
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Alessia Lombardi
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Hermann-Josef Kaiser
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr., Dresden, Germany
| | | | | | | | - Roman Polishchuk
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | - Kai Simons
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr., Dresden, Germany
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Medical Genetics, Department of Pediatrics, Federico II University, Naples, Italy
| |
Collapse
|
35
|
The fusion of synaptic vesicle membranes studied by lipid mixing: the R18 fluorescence assay validity. Chem Phys Lipids 2010; 163:778-86. [DOI: 10.1016/j.chemphyslip.2010.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 12/27/2022]
|
36
|
Borisova T, Sivko R, Borysov A, Krisanova N. Diverse presynaptic mechanisms underlying methyl-β-cyclodextrin-mediated changes in glutamate transport. Cell Mol Neurobiol 2010; 30:1013-23. [PMID: 20502957 DOI: 10.1007/s10571-010-9532-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 05/13/2010] [Indexed: 02/05/2023]
Abstract
The effect of the cholesterol-depleting agent methyl-β-cyclodextrin (MβCD) on exocytotic, transporter-mediated, tonic release, the ambient level and uptake of L-[(14)C]glutamate was assessed in rat brain synaptosomes using different methodological approaches of MβCD application. The addition of 15 mM MβCD to synaptosomes (the acute treatment, AT) immediately resulted in the extraction of cholesterol and in a two times increase in the extracellular L-[(14)C]glutamate level. When 15 mM MβCD was applied to synaptosomes for 35 min followed by washing of the acceptor (the long-term pretreatment, LP), this level was only one-third higher than in the control. The opposite effects of MβCD on tonic L-[(14)C]glutamate release and glutamate transporter reversal were found in AT and LP. Tonic release was dramatically enlarged in AT, but decreased after LP. Transporter-mediated release was increased several times in AT, but attenuated in LP. Depolarization-evoked exocytotic release of L-[(14)C]glutamate was completely lost in AT, whereas after LP, it was decreased by half in comparison with the control. Na(+)-dependent L-[(14)C]glutamate uptake was decreased by ~60% in AT, whereas in LP, it was lowered by ~40% only. The presence of MβCD in the incubation media during AT caused dramatic dissipation of the proton gradient of synaptic vesicles that was shown with the pH-sensitive dye acridine orange, whereas after LP, no statistically significant changes were registered in synaptic vesicle acidification. It was concluded that the diverse changes in glutamate transport in AT and LP were associated with the difference in the functional state of synaptic vesicles.
Collapse
Affiliation(s)
- Tatiana Borisova
- Department of Neurochemistry, Palladin Institute of Biochemistry, NAS of Ukraine, 9 Leontovicha Street, Kiev, Ukraine.
| | | | | | | |
Collapse
|
37
|
Núñez E, Alonso-Torres P, Fornés A, Aragón C, López-Corcuera B. The neuronal glycine transporter GLYT2 associates with membrane rafts: functional modulation by lipid environment. J Neurochem 2010; 105:2080-90. [PMID: 18266927 DOI: 10.1111/j.1471-4159.2008.05292.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The neuronal glycine transporter GLYT2 is a plasma membrane protein that removes the neurotransmitter glycine from the synaptic cleft, thereby aiding the pre-synaptic terminal reloading and the termination of the glycinergic signal. Missense mutations in the gene encoding GLYT2 (SLC6A5) cause hyperekplexia in humans. The activity of GLYT2 seems to be highly regulated. In this report, we demonstrate that GLYT2 is associated with membrane rafts in the plasma membrane of brainstem terminals and neurons. The transporter is localized to Triton X-100-insoluble light synaptosomal membranes together with flotillin-1, a marker protein for membrane rafts, in a methyl-beta-cyclodextrin (MbetaCD)-sensitive manner. In brainstem primary neurons, the GLYT2 punctuate pattern visualized by confocal microscopy was modified by cholesterol depletion with MbetaCD, unlike other non-raft neuronal markers. GLYT2-associated gold particles were observed by electron microscopy on purified rafts from brainstem synaptosomes. Furthermore, either in brainstem terminals and cultured neurons, the pharmacological reduction of the levels of raft components, cholesterol and sphingomyelin, impairs both the association of GLYT2 with membrane rafts and its transport activity. Thus, GLYT2 may require membrane raft location for optimal function, and therefore the lipid environment may constitute a new mechanism to modulate GLYT2.
Collapse
Affiliation(s)
- Enrique Núñez
- Departamento de Biología Molecular, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | |
Collapse
|
38
|
The role of cholesterol in the exo- and endocytosis of synaptic vesicles in frog motor nerve endings. ACTA ACUST UNITED AC 2010; 40:894-901. [PMID: 20680473 DOI: 10.1007/s11055-010-9338-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Indexed: 12/22/2022]
Abstract
Experiments on frog neuromuscular preparations using electrophysiological (two-electrode voltage clamping) and optical (with the fluorescent endocytic stain FM1-43) methods were performed to study the importance of membrane cholesterol in the exo- and endocytic cycle of synaptic vesicles (SV) in motor nerve endings in conditions of prolonged rhythmic stimulation of the motor nerve (20 impulses/sec, 3 min). Extraction of cholesterol from the superficial plasma membranes using methyl-beta-cyclodextrin (1 mM) led to marked changes in SV recycling. There was weakening of SV exocytosis and suppression of processes leading to the recovery of SV populations with rapid readiness to release neurotransmitter. When cholesterol was leached from the outer membranes and the membranes of SV undergoing recycling, these effects were supplemented by impairments to SV endocytosis and recycling. Thus, plasma membrane cholesterol plays a key role in the processes of exocytosis, while the efficiency of endocytosis depends on cholesterol in SV membranes.
Collapse
|
39
|
Wallace R. Neural membrane signaling platforms. Int J Mol Sci 2010; 11:2421-42. [PMID: 20640161 PMCID: PMC2904925 DOI: 10.3390/ijms11062421] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 06/03/2010] [Accepted: 06/09/2010] [Indexed: 11/16/2022] Open
Abstract
Throughout much of the history of biology, the cell membrane was functionally defined as a semi-permeable barrier separating aqueous compartments, and an anchoring site for proteins. Little attention was devoted to its possible regulatory role in intracellular molecular processes and neuron electrical signaling. This article reviews the history of membrane studies and the current state of the art. Emphasis is placed on natural and artificial membrane studies of electric field effects on molecular organization, especially as these may relate to impulse propagation in neurons. Implications of these studies for new designs in artificial intelligence are briefly examined.
Collapse
Affiliation(s)
- Ron Wallace
- Department of Anthropology, University of Central Florida, Box 25000, Orlando, FL, 32816, USA; E-Mail: ; Tel.: +1-407-823-2227
| |
Collapse
|
40
|
Ma MT, Zhang J, Farooqui AA, Chen P, Ong WY. Effects of cholesterol oxidation products on exocytosis. Neurosci Lett 2010; 476:36-41. [DOI: 10.1016/j.neulet.2010.03.078] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2010] [Revised: 03/31/2010] [Accepted: 03/31/2010] [Indexed: 12/13/2022]
|
41
|
Hawes CM, Wiemer H, Krueger SR, Karten B. Pre-synaptic defects of NPC1-deficient hippocampal neurons are not directly related to plasma membrane cholesterol. J Neurochem 2010; 114:311-22. [PMID: 20456004 DOI: 10.1111/j.1471-4159.2010.06768.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Imbalances in brain cholesterol homeostasis have been observed in several neurodegenerative diseases. In Niemann-Pick Type C (NPC) disease, mutations in NPC1 or NPC2 lead to endosomal cholesterol accumulation, neuronal dysfunction and death. Cholesterol in synaptic plasma membranes influences membrane fluidity, curvature, and protein function, and its depletion may adversely affect synaptic vesicle cycling. We have investigated pre-synaptic function in primary hippocampal neurons with altered cholesterol distribution because of NPC1 deficiency or cyclodextrin treatment. In NPC1-deficient neurons grown in serum-free medium, plasma membrane cholesterol was reduced and total synaptic vesicle release during prolonged stimulation was attenuated. In NPC1-deficient neurons cultured in the presence of high-density lipoproteins, plasma membrane cholesterol markedly increased, but the defects in synaptic vesicle release in NPC1-deficient neurons were exacerbated. Treatment with 1 mM methyl-beta-cyclodextrin acutely depleted plasma membrane cholesterol in wild-type neurons to levels below those in NPC1 deficiency, but did not alter synaptic vesicle exo- or endocytosis. Defects only became apparent when higher methyl-beta-cyclodextrin concentrations were used. Our data indicate that synaptic vesicle release can tolerate some degree of plasma membrane cholesterol depletion and suggest that the pre-synaptic defects in NPC1-deficient neurons are not solely caused by a reduction of plasma membrane cholesterol.
Collapse
Affiliation(s)
- Cory M Hawes
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | |
Collapse
|
42
|
Cholesterol Depletion from the Plasma Membrane Impairs Proton and Glutamate Storage in Synaptic Vesicles of Nerve Terminals. J Mol Neurosci 2010; 41:358-67. [DOI: 10.1007/s12031-010-9351-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 03/12/2010] [Indexed: 12/14/2022]
|
43
|
Vinet AF, Fukuda M, Turco SJ, Descoteaux A. The Leishmania donovani lipophosphoglycan excludes the vesicular proton-ATPase from phagosomes by impairing the recruitment of synaptotagmin V. PLoS Pathog 2009; 5:e1000628. [PMID: 19834555 PMCID: PMC2757729 DOI: 10.1371/journal.ppat.1000628] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 09/23/2009] [Indexed: 12/20/2022] Open
Abstract
We recently showed that the exocytosis regulator Synaptotagmin (Syt) V is recruited to the nascent phagosome and remains associated throughout the maturation process. In this study, we investigated the possibility that Syt V plays a role in regulating interactions between the phagosome and the endocytic organelles. Silencing of Syt V by RNA interference revealed that Syt V contributes to phagolysosome biogenesis by regulating the acquisition of cathepsin D and the vesicular proton-ATPase. In contrast, recruitment of cathepsin B, the early endosomal marker EEA1 and the lysosomal marker LAMP1 to phagosomes was normal in the absence of Syt V. As Leishmania donovani promastigotes inhibit phagosome maturation, we investigated their potential impact on the phagosomal association of Syt V. This inhibition of phagolysosome biogenesis is mediated by the virulence glycolipid lipophosphoglycan, a polymer of the repeating Galbeta1,4Manalpha1-PO(4) units attached to the promastigote surface via an unusual glycosylphosphatidylinositol anchor. Our results showed that insertion of lipophosphoglycan into ganglioside GM1-containing microdomains excluded or caused dissociation of Syt V from phagosome membranes. As a consequence, L. donovani promatigotes established infection in a phagosome from which the vesicular proton-ATPase was excluded and which failed to acidify. Collectively, these results reveal a novel function for Syt V in phagolysosome biogenesis and provide novel insight into the mechanism of vesicular proton-ATPase recruitment to maturing phagosomes. We also provide novel findings into the mechanism of Leishmania pathogenesis, whereby targeting of Syt V is part of the strategy used by L. donovani promastigotes to prevent phagosome acidification.
Collapse
Affiliation(s)
- Adrien F. Vinet
- INRS-Institut Armand-Frappier and Centre for Host-Parasite Interactions, Laval, Québec, Canada
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Tohoku University, Sendai, Miyagi, Japan
| | - Salvatore J. Turco
- Department of Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier and Centre for Host-Parasite Interactions, Laval, Québec, Canada
- * E-mail:
| |
Collapse
|
44
|
Abstract
Exocytosis is a highly conserved and essential process. Although numerous proteins are involved throughout the exocytotic process, the defining membrane fusion step appears to occur through a lipid-dominated mechanism. Here we review and integrate the current literature on protein and lipid roles in exocytosis, with emphasis on the multiple roles of cholesterol in exocytosis and membrane fusion, in an effort to promote a more molecular systems-level view of the as yet poorly understood process of Ca2+-triggered membrane mergers.
Collapse
|
45
|
Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry 2009; 14:601-13. [PMID: 18268500 DOI: 10.1038/mp.2008.7] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dorsolateral prefrontal cortex (dlpfc) is strongly implicated in the pathogenesis of schizophrenia (SCZ) and bipolar disorder (BPD) and, within this region, abnormalities in glutamatergic neurotransmission and synaptic function have been described. Proteins associated with these functions are enriched in membrane microdomains (MM). In the current study, we used two complementary proteomic methods, two-dimensional difference gel electrophoresis and one-dimensional sodium dodecyl sulphate polyacrylamide gel electrophoresis followed by reverse phase-liquid chromatography-tandem mass spectrometry (RP-LC-MS/MS) (gel separation liquid chromatography-tandem mass spectrometry (GeLC-MS/MS)) to assess protein expression in MM in pooled samples of dlpfc from SCZ, BPD and control cases (n=10 per group) from the Stanley Foundation Brain series. We identified 16 proteins altered in one/both disorders using proteomic methods. We selected three proteins with roles in synaptic function (syntaxin-binding protein 1 (STXBP1), brain abundant membrane-attached signal protein 1 (BASP1) and limbic system-associated membrane protein (LAMP)) for validation by western blotting. This revealed significantly increased expression of these proteins in SCZ (STXBP1 (24% difference; P<0.001), BASP1 (40% difference; P<0.05) and LAMP (22% difference; P<0.01)) and BPD (STXBP1 (31% difference; P<0.001), BASP1 (23% difference; P<0.01) and LAMP (20% difference; P<0.01)) in the Stanley brain series (n=20 per group). Further validation in dlpfc from the Harvard brain subseries (n=10 per group) confirmed increased protein expression in SCZ of STXBP1 (18% difference; P<0.0001), BASP1 (14% difference; P<0.0001) but not LAMP (20% difference; P=0.14). No significant differences in STXBP1, BASP1 or LAMP protein expression in BPD dlpfc were observed. This study, through proteomic assessments of MM in dlpfc and validation in two brain series, strongly implicates LAMP, STXBP1 and BASP1 in SCZ and supports the view of a neuritic and synaptic dysfunction in the neuropathology of SCZ.
Collapse
|
46
|
Gonçalves PP, Stenovec M, Chowdhury HH, Grilc S, Kreft M, Zorec R. Prolactin secretion sites contain syntaxin-1 and differ from ganglioside monosialic acid rafts in rat lactotrophs. Endocrinology 2008; 149:4948-57. [PMID: 18556353 DOI: 10.1210/en.2008-0096] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In neuroendocrine cells, discharge of hormones follows the fusion of exocytotic vesicles with the plasma membrane at confined sites; however, the molecular nature of these distinct sites remains poorly understood. We studied intact pituitary lactotrophs and plasma membrane lawns by confocal microscopy in conjunction with antibodies against rat prolactin (rPRL), soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE) proteins (syntaxin-1 and synaptobrevin-2,) and fluorescent cholera toxin subunit B (CT-B), a marker of ganglioside monosialic acid (GM1) lipid rafts, to examine 1) whether rPRL vesicles discharge cargo at GM1 rafts, 2) whether discharging rPRL vesicles interact with SNAREs, and 3) to examine the overlap of GM1 rafts, rPRL, and syntaxin-1 sites in plasma membrane lawns. In intact cells, immunofluorescently labeled rPRL poorly colocalized (<6%) with CT-B. In conditions favoring endocytotic trafficking, vesicle SNARE synaptobrevin-2 modestly colocalized (35%) with CT-B, whereas it highly colocalized (58%) with retrieved rPRL. Although partial mixing between rPRL and CT-B intracellular trafficking pathways is likely, our results indicated that rPRL discharge involves interactions with plasma membrane SNAREs, but not with GM1 rafts. In support of this, the plasma membrane SNARE syntaxin-1 poorly colocalized with CT-B (<5%), whereas it highly colocalized (75%) with rPRL in inside-out plasma membrane lawns. Spontaneous and stimulated rPRL discharge in live lactotrophs is thus associated with plasma membrane sites enriched with SNARE proteins, however, spatially confined to plasma membrane areas other than GM1 rafts.
Collapse
Affiliation(s)
- Paula P Gonçalves
- Centro de Estudos do Ambiente e do Mar, Departamento de Biologia, Universidade de Aveiro, Aveiro, Portugal
| | | | | | | | | | | |
Collapse
|
47
|
Frank C, Rufini S, Tancredi V, Forcina R, Grossi D, D'Arcangelo G. Cholesterol depletion inhibits synaptic transmission and synaptic plasticity in rat hippocampus. Exp Neurol 2008; 212:407-14. [DOI: 10.1016/j.expneurol.2008.04.019] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/07/2008] [Accepted: 04/17/2008] [Indexed: 01/20/2023]
|
48
|
Lv JH, He L, Sui SF. Lipid rafts association of synaptotagmin I on synaptic vesicles. BIOCHEMISTRY (MOSCOW) 2008; 73:283-8. [PMID: 18393763 DOI: 10.1134/s0006297908030073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We confirmed the raft association of synaptotagmin I (syt I) in synaptic vesicles by sucrose density gradient centrifugation, cholesterol depletion, and temperature dependence, and Ca2+ was found to positively regulate this association. Furthermore, using syt I mutants we found that the transmembrane domain (TMD) of syt I plays an important role in localizing syt I into the lipid rafts of synaptic vesicles, and the raft association of the TMD can be regulated by its phosphorylation status.
Collapse
Affiliation(s)
- Ji-Hua Lv
- Department of Biological Sciences and Biotechnology, State-Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | | | | |
Collapse
|
49
|
C2 domain of synaptotagmin I associates with lipid rafts of plasma membrane. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Robin E, Cognié J, Foulon-Gauze F, Fontaine J, Cayla X. Disruption of lipid rafts induces gonadotropin release in ovine pituitary and LbetaT2 gonadotroph cells. Biol Reprod 2008; 79:17-25. [PMID: 18322272 DOI: 10.1095/biolreprod.107.064881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In order to better understand the cellular mechanisms underlying LH and FSH secretion, we have addressed the contribution of lipid rafts to the secretion of gonadotropins. We used methyl-beta-cyclodextrin (MbetaCD), a cholesterol-sequestering agent, on an LbetaT2 murine gonadotroph cell line and on primary cultures of ovine pituitary cells. We found that in both systems, cholesterol depletion by MbetaCD induced a fast and substantial release of LH in the absence of natural stimulation by GnRH. In ovine pituitary cells, MbetaCD-mediated LH release was shown to be independent of protein synthesis. Twenty-four hours after MbetaCD treatment, there was no loss of cell viability and full recovery of LH secretory capabilities, as determined by GnRH or MbetaCD treatment. In addition, our data suggest the existence of a pool of LH that is not released by GnRH treatment but that is released by MbetaCD treatment. Finally, in ovine pituitary cells, MbetaCD treatment induced FSH secretion. Importantly, these in vitro data are supported by in vivo studies, because MbetaCD injected into the pituitary glands of anaesthetized sheep reproducibly induced a peak of LH release.
Collapse
Affiliation(s)
- E Robin
- UMR Physiologie de la Reproduction et des Comportements, INRA/CNRS/Université Tours/Haras Nationaux, 37380 Nouzilly, France
| | | | | | | | | |
Collapse
|