1
|
Shen E, Piao M, Li Y, Wu Y, Li S, Lee SH, Jin L, Lee KY. CMTM3 Suppresses Proliferation and Osteogenic Transdifferentiation of C2C12 Myoblasts through p53 Upregulation. Cells 2024; 13:1352. [PMID: 39195242 DOI: 10.3390/cells13161352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
CKLF-like MARVEL transmembrane domain-containing 3 (CMTM3), a member of the CMTM family that is closely related to tumor occurrence and progression, plays crucial roles in the immune system, cardiovascular system, and male reproductive system. Recently, CMTM3 has emerged as a potential target for treating diseases related to bone formation. However, additional studies are needed to understand the mechanisms by which CMTM3 regulates the process of osteogenic differentiation. In this study, we observed a significant downregulation of Cmtm3 expression during the transdifferentiation of C2C12 myoblasts into osteoblasts induced by BMP4. Cmtm3 overexpression suppressed proliferation and osteogenic differentiation in BMP4-induced C2C12 cells, whereas its knockdown conversely facilitated the process. Mechanistically, Cmtm3 overexpression upregulated both the protein and mRNA levels of p53 and p21. Conversely, Cmtm3 knockdown exerted the opposite effects. Additionally, we found that Cmtm3 interacts with p53 and increases protein stability by inhibiting proteasome-mediated ubiquitination and degradation. Notably, Trp53 downregulation abrogated the inhibitory effect of Cmtm3 on BMP4-induced proliferation and osteogenic differentiation of C2C12 myoblasts. Collectively, our findings provide key insights into the role of CMTM3 in regulating myoblast proliferation and transdifferentiation into osteoblasts, highlighting its significance in osteogenesis research.
Collapse
Affiliation(s)
- Enzhao Shen
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Meiyu Piao
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yuankuan Li
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yuecheng Wu
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Sihang Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Sung Ho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Litai Jin
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Kwang Youl Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
2
|
Lien JC, Wang YL. Cyclic stretching combined with cell-cell adhesion is sufficient for inducing cell intercalation. Biophys J 2023; 122:3146-3158. [PMID: 37408306 PMCID: PMC10432222 DOI: 10.1016/j.bpj.2023.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 02/09/2023] [Accepted: 06/23/2023] [Indexed: 07/07/2023] Open
Abstract
Although the important role of cell intercalation within a collective has long been recognized particularly for morphogenesis, the underlying mechanism remains poorly understood. Here we investigate the possibility that cellular responses to cyclic stretching play a major role in this process. By applying synchronized imaging and cyclic stretching to epithelial cells cultured on micropatterned polyacrylamide (PAA) substrates, we discovered that uniaxial cyclic stretching induces cell intercalation along with cell shape change and cell-cell interfacial remodeling. The process involved intermediate steps as previously reported for cell intercalation during embryonic morphogenesis, including the appearance of cell vertices, anisotropic vertex resolution, and directional expansion of cell-cell interface. Using mathematical modeling, we further found that cell shape change in conjunction with dynamic cell-cell adhesions was sufficient to account for the observations. Further investigation with small-molecule inhibitors indicated that disruption of myosin II activities suppressed cyclic stretching-induced intercalation while inhibiting the appearance of oriented vertices. Inhibition of Wnt signaling did not suppress stretch-induced cell shape change but disrupted cell intercalation and vertex resolution. Our results suggest that cyclic stretching, by inducing cell shape change and reorientation in the presence of dynamic cell-cell adhesions, can induce at least some aspects of cell intercalation and that this process is dependent in distinct ways on myosin II activities and Wnt signaling.
Collapse
Affiliation(s)
- Jui-Chien Lien
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Yu-Li Wang
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.
| |
Collapse
|
3
|
Putra VDL, Kilian KA, Knothe Tate ML. Biomechanical, biophysical and biochemical modulators of cytoskeletal remodelling and emergent stem cell lineage commitment. Commun Biol 2023; 6:75. [PMID: 36658332 PMCID: PMC9852586 DOI: 10.1038/s42003-022-04320-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
Across complex, multi-time and -length scale biological systems, redundancy confers robustness and resilience, enabling adaptation and increasing survival under dynamic environmental conditions; this review addresses ubiquitous effects of cytoskeletal remodelling, triggered by biomechanical, biophysical and biochemical cues, on stem cell mechanoadaptation and emergent lineage commitment. The cytoskeleton provides an adaptive structural scaffold to the cell, regulating the emergence of stem cell structure-function relationships during tissue neogenesis, both in prenatal development as well as postnatal healing. Identification and mapping of the mechanical cues conducive to cytoskeletal remodelling and cell adaptation may help to establish environmental contexts that can be used prospectively as translational design specifications to target tissue neogenesis for regenerative medicine. In this review, we summarize findings on cytoskeletal remodelling in the context of tissue neogenesis during early development and postnatal healing, and its relevance in guiding lineage commitment for targeted tissue regeneration. We highlight how cytoskeleton-targeting chemical agents modulate stem cell differentiation and govern responses to mechanical cues in stem cells' emerging form and function. We further review methods for spatiotemporal visualization and measurement of cytoskeletal remodelling, as well as its effects on the mechanical properties of cells, as a function of adaptation. Research in these areas may facilitate translation of stem cells' own healing potential and improve the design of materials, therapies, and devices for regenerative medicine.
Collapse
Affiliation(s)
- Vina D L Putra
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Kristopher A Kilian
- School of Chemistry and School of Materials Science & Engineering, University of New South Wales, Sydney, NSW, Australia.
| | - Melissa L Knothe Tate
- Blue Mountains World Interdisciplinary Innovation Institute (bmwi³), Blue Mountains, NSW, Australia.
| |
Collapse
|
4
|
De Martino E, Hides J, Elliott JM, Hoggarth MA, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. The Effects of Reconditioning Exercises Following Prolonged Bed Rest on Lumbopelvic Muscle Volume and Accumulation of Paraspinal Muscle Fat. Front Physiol 2022; 13:862793. [PMID: 35774286 PMCID: PMC9237402 DOI: 10.3389/fphys.2022.862793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Reduced muscle size and accumulation of paraspinal muscle fat content (PFC) have been reported in lumbopelvic muscles after spaceflights and head-down tilt (HDT) bed rest. While some information is available regarding reconditioning programs on muscle atrophy recovery, the effects on the accumulation of PFC are unknown. Recently, a device (the Functional Re-adaptive Exercise Device—FRED) has been developed which aims to specifically recruit lumbopelvic muscles. This study aimed to investigate the effects of a standard reconditioning (SR) program and SR program supplemented by FRED (SR + FRED) on the recovery of the lumbopelvic muscles following 60-day HDT bed rest. Twenty-four healthy participants arrived at the facility for baseline data collection (BDC) before the bed rest period. They remained in the facility for 13-day post-HDT bed rest and were randomly allocated to one of two reconditioning programs: SR or SR + FRED. Muscle volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles were measured from axial T1-weighted magnetic resonance imaging (MRI) at all lumbar intervertebral disc levels. PFC was determined using a chemical shift-based lipid/water Dixon sequence. Each lumbopelvic muscle was segmented into four equal quartiles (from medial to lateral). MRI of the lumbopelvic region was conducted at BDC, Day-59 of bed rest (HDT59), and Day-13 after reconditioning (R13). Comparing R13 with BDC, the volumes of the LM muscle at L4/L5 and L5/S1, LES at L1/L2, and QL at L3/L4 had not recovered (all—p < 0.05), and the PM muscle remained larger at L1/L2 (p = 0.001). Accumulation of PFC in the LM muscle at the L4/L5 and L5/S1 levels remained higher in the centro-medial regions at R13 than BDC (all—p < 0.05). There was no difference between the two reconditioning programs. A 2-week reconditioning program was insufficient to fully restore all volumes of lumbopelvic muscles and reverse the accumulation of PFC in the muscles measured to BDC values, particularly in the LM muscle at the lower lumbar levels. These findings suggest that more extended reconditioning programs or alternative exercises may be necessary to fully restore the size and properties of the lumbopelvic muscles after prolonged bed rest.
Collapse
Affiliation(s)
- Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- *Correspondence: Enrico De Martino,
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Brisbane, QLD, Australia
| | - James M. Elliott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Northern Sydney Local Health District, Faculty of Medicine and Health, The Kolling Institute Sydney, The University of Sydney, Sydney, NSW, Australia
| | - Mark A. Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | - Jochen Zange
- German Aerospace Center, Institute of Aerospace Medicine, Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Jonathan A. Cook
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Sauro E. Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tobias Weber
- Space Medicine Team, European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team, European Astronaut Centre, Cologne, Germany
- KBR GmbH, Cologne, Germany
| | - Paul W. Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
5
|
De Martino E, Hides J, Elliott JM, Hoggarth MA, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. Intramuscular lipid concentration increased in localized regions of the lumbar muscles following 60 day bedrest. Spine J 2022; 22:616-628. [PMID: 34813960 DOI: 10.1016/j.spinee.2021.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/18/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Prolonged bedrest induces accumulation of intramuscular lipid concentration (ILC) in the lumbar musculature; however, spatial distribution of ILC has not been determined. Artificial gravity (AG) mitigates some adaptations induced by 60 day bedrest by creating a head-to-feet force while participants are in a supine position. PURPOSE To quantify the spatial distribution of accumulation of ILC in the lumbar musculature after 60 day bedrest, and whether this can be mitigated by AG exposure. STUDY DESIGN Prospective longitudinal study. PATIENT SAMPLE Twenty-four healthy individuals (8 females) participated in the study: Eight received 30 min continuous AG (cAG); Eight received 6 × 5 min AG (iAG), interspersed with rests; Eight were not exposed to AG (CRTL). OUTCOME MEASURES From 3T magnetic resonance imaging (MRI), axial images were selected to assess lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 intervertebral disc levels. Chemical shift-based 2-echo lipid and/or water Dixon sequence was used to measure tissue composition. Each lumbar muscle was segmented into four equal quartiles (from medial to lateral). METHODS Participants arrived at the facility for the baseline data collection before undergoing a 60 day strict 6° head-down tilt (HDT) bedrest period. MRI of the lumbopelvic region was conducted at baseline and Day-59 of bedrest. Participants performed all activities, including hygiene, in 6° HDT and were discouraged from moving excessively or unnecessarily. RESULTS At the L4/L5 and L5/S1 intervertebral disc levels, 60-day bedrest induced a greater increase in ILC in medial and lateral regions (∼+4%) of the LM than central regions (∼+2%; p<.05). A smaller increase in ILC was induced in the lateral region of LES (∼+1%) at L1/L2 and L2/L3 than at the centro-medial region (∼+2%; p<.05). There was no difference between CRTL and intervention groups. CONCLUSIONS Inhomogeneous spatial distribution of accumulation of ILC was found in the lumbar musculature after 60 day bedrest. These findings might reflect pathophysiological mechanisms related to muscle disuse and contribute to localized lumbar spine dysfunction. Altered spatial distribution of ILC may impair lumbar spine function after prolonged body unloading, which could increase injury risk to vulnerable soft tissues, such as the lumbar intervertebral discs. These novel results may represent a new biomarker of lumbar deconditioning for astronauts, bedridden, sedentary individuals, or those with chronic back pain. Changes are potentially modifiable but not by the AG protocols tested here.
Collapse
Affiliation(s)
- Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom.
| | - Julie Hides
- School of Health Sciences and Social Work, Griffith University, Nathan Campus, Brisbane, Australia
| | - James M Elliott
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA; Northern Sydney Local Health District and The University of Sydney, Faculty of Medicine and Health, The Kolling Institute Sydney, Australia
| | - Mark A Hoggarth
- Northwestern University, Feinberg School of Medicine Department of Physical Therapy and Human Movement Sciences, Chicago, IL, USA; Northwestern University, McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- NIHR Oxford Biomedical Research Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Jonathan A Cook
- NIHR Oxford Biomedical Research Center, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom; Center for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sauro E Salomoni
- The University of Queensland, NHMRC Center for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Tobias Weber
- Space Medicine Team (HRE-OM), European Astronaut Center, Cologne, Germany; KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- Space Medicine Team (HRE-OM), European Astronaut Center, Cologne, Germany; KBR GmbH, Cologne, Germany
| | - Paul W Hodges
- The University of Queensland, NHMRC Center for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, Brisbane, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
6
|
Hodges PW, Bailey JF, Fortin M, Battié MC. Paraspinal muscle imaging measurements for common spinal disorders: review and consensus-based recommendations from the ISSLS degenerative spinal phenotypes group. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2021; 30:3428-3441. [PMID: 34542672 DOI: 10.1007/s00586-021-06990-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/12/2021] [Accepted: 09/05/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Paraspinal muscle imaging is of growing interest related to improved phenotyping, prognosis, and treatment of common spinal disorders. We reviewed issues related to paraspinal muscle imaging measurement that contribute to inconsistent findings between studies and impede understanding. METHODS Three key contributors to inconsistencies among studies of paraspinal muscle imaging measurements were reviewed: failure to consider possible mechanisms underlying changes in paraspinal muscles, lack of control of confounding factors, and variations in spinal muscle imaging modalities and measurement protocols. Recommendations are provided to address these issues to improve the quality and coherence of future research. RESULTS Possible pathophysiological responses of paraspinal muscle to various common spinal disorders in acute or chronic phases are often overlooked, yet have important implications for the timing, distribution, and nature of changes in paraspinal muscle. These considerations, as well as adjustment for possible confounding factors, such as sex, age, and physical activity must be considered when planning and interpreting paraspinal muscle measurements in studies of spinal conditions. Adoption of standardised imaging measurement protocols for paraspinal muscle morphology and composition, considering the strengths and limitations of various imaging modalities, is critically important to interpretation and synthesis of research. CONCLUSION Study designs that consider physiological and pathophysiological responses of muscle, adjust for possible confounding factors, and use common, standardised measures are needed to advance knowledge of the determinants of variations or changes in paraspinal muscle and their influence on spinal health.
Collapse
Affiliation(s)
- Paul W Hodges
- School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Jeannie F Bailey
- Department of Orthopedic Surgery, University of California, San Francisco, CA, USA
| | - Maryse Fortin
- Department of Health, Kinesiology & Applied Physiology, Concordia University, Montreal, QC, Canada
| | - Michele C Battié
- Faculty of Health Sciences and Western's Bone and Joint Institute, Western University, London, ON, Canada
| |
Collapse
|
7
|
Nohawica M, Errachid A, Wyganowska-Swiatkowska M. Adipose-PAS interactions in the context of its localised bio-engineering potential (Review). Biomed Rep 2021; 15:70. [PMID: 34276988 PMCID: PMC8278035 DOI: 10.3892/br.2021.1446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/05/2021] [Indexed: 11/24/2022] Open
Abstract
Adipocytes are a known source of stem cells. They are easy to harvest, and are a suitable candidate for autogenous grafts. Adipose derived stem cells (ADSCs) have multiple target tissues which they can differentiate into, including bone and cartilage. In adipose tissue, ADSCs are able to differentiate, as well as providing energy and a supply of cytokines/hormones to manage the hypoxic and lipid/hormone saturated adipose environment. The plasminogen activation system (PAS) controls the majority of proteolytic activities in both adipose and wound healing environments, allowing for rapid cellular migration and tissue remodelling. While the primary activation pathway for PAS occurs through the urokinase plasminogen activator (uPA), which is highly expressed by endothelial cells, its function is not limited to enabling revascularisation. Proteolytic activity is dependent on protease activation, localisation, recycling mechanisms and substrate availability. uPA and uPA activated plasminogen allows pluripotent cells to arrive to new local environments and fulfil the niche demands. However, overstimulation, the acquisition of a migratory phenotype and constant protein turnover can be unconducive to the formation of structured hard and soft tissues. To maintain a suitable healing pattern, the proteolytic activity stimulated by uPA is modulated by plasminogen activator inhibitor 1. Depending on the physiological settings, different parts of the remodelling mechanism are activated with varying results. Utilising the differences within each microenvironment to recreate a desired niche is a valid therapeutic bio-engineering approach. By controlling the rate of protein turnover combined with a receptive stem cell lineage, such as ADSC, a novel avenue on the therapeutic opportunities may be identified, which can overcome limitations, such as scarcity of stem cells, low angiogenic potential or poor host tissue adaptation.
Collapse
Affiliation(s)
- Michal Nohawica
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
| | - Abdelmounaim Errachid
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
- Earth and Life Institute, University Catholique of Louvain, Louvain-la-Neuve B-1348, Belgium
| | - Marzena Wyganowska-Swiatkowska
- Chair and Department of Dental Surgery and Periodontology, Poznan University of Medicinal Sciences, Poznan, Greater Poland 60-812, Poland
| |
Collapse
|
8
|
De Martino E, Hides J, Elliott JM, Hoggarth M, Zange J, Lindsay K, Debuse D, Winnard A, Beard D, Cook JA, Salomoni SE, Weber T, Scott J, Hodges PW, Caplan N. Lumbar muscle atrophy and increased relative intramuscular lipid concentration are not mitigated by daily artificial gravity after 60-day head-down tilt bed rest. J Appl Physiol (1985) 2021; 131:356-368. [PMID: 34080918 DOI: 10.1152/japplphysiol.00990.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to axial unloading induces adaptations in paraspinal muscles, as shown after spaceflights. This study investigated whether daily exposure to artificial gravity (AG) mitigated lumbar spine flattening and muscle atrophy associated with 60-day head-down tilt (HDT) bed rest (Earth-based space analog). Twenty-four healthy individuals participated in the study: 8 received 30-min continuous AG; 8 received 6 × 5-min AG interspersed with rest periods; and 8 received no AG exposure (control group). Magnetic resonance imaging (MRI) of the lumbopelvic region was conducted at baseline (BDC) and at day 59 of HDT (HDT59). Longitudinal relaxation time (T1)-weighted images were used to assess morphology of the lumbar spine (spinal length, intervertebral disk angles, disk area) and volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 vertebral levels. A chemical shift-based two-point lipid/water Dixon sequence was used to evaluate muscle composition. Results showed that spinal length and disk area increased (P < 0.05); intervertebral disk angles (P < 0.05) and muscle volumes of LM, LES, and QL reduced (P < 0.01); and lipid-to-water ratio for the LM and LES muscles increased (P < 0.01) after HDT59 in all groups. Neither of the AG protocols mitigated the lumbar spinae deconditioning induced by HDT bed rest. The increase in lipid-to-water ratio in LM and LES muscles indicates an increased relative intramuscular lipid concentration. Altered muscle composition in atrophied muscles may impair lumbar spine function after body unloading, which could increase injury risk to vulnerable soft tissues. This relationship needs further investigation.NEW & NOTEWORTHY This study presents novel insights into the morphological adaptations occurring in the lumbar spine after 60-day head-down bed rest and the potential role of artificial gravity (AG) to mitigate them. Results demonstrated no protective effect of AG protocols used in this study. In atrophied paraspinal muscles, the ratio of lipids versus intramuscular water increased in the postural lumbar muscles, which could impair muscle function during upright standing. These findings have relevance for future space explorations.
Collapse
Affiliation(s)
- Enrico De Martino
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Julie Hides
- School of Allied Health Sciences, Griffith University, Nathan Campus, Brisbane, Queensland, Australia
| | - James M Elliott
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine Northwestern University, Chicago, Illinois.,Kolling Research Institute, Faculty of Medicine and Health, The University of Sydney and Northern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Mark Hoggarth
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine Northwestern University, Chicago, Illinois.,Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois
| | - Jochen Zange
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Kirsty Lindsay
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Dorothée Debuse
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Andrew Winnard
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - David Beard
- NIHR Oxford Biomedical Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Jonathan A Cook
- NIHR Oxford Biomedical Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.,Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Sauro E Salomoni
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tobias Weber
- European Astronaut Centre, Space Medicine Team (HRE-OM), European Space Agency (ESA), Cologne, Germany.,KBR GmbH, Cologne, Germany
| | - Jonathan Scott
- European Astronaut Centre, Space Medicine Team (HRE-OM), European Space Agency (ESA), Cologne, Germany.,KBR GmbH, Cologne, Germany
| | - Paul W Hodges
- NHMRC Centre for Clinical Research Excellence in Spinal Pain, Injury and Health, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Nick Caplan
- Aerospace Medicine and Rehabilitation Laboratory, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
9
|
Guan H, Zhang J, Luan J, Xu H, Huang Z, Yu Q, Gou X, Xu L. Secreted Frizzled Related Proteins in Cardiovascular and Metabolic Diseases. Front Endocrinol (Lausanne) 2021; 12:712217. [PMID: 34489867 PMCID: PMC8417734 DOI: 10.3389/fendo.2021.712217] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormal gene expression and secreted protein levels are accompanied by extensive pathological changes. Secreted frizzled related protein (SFRP) family members are antagonistic inhibitors of the Wnt signaling pathway, and they were recently found to be involved in the pathogenesis of a variety of metabolic diseases, which has led to extensive interest in SFRPs. Previous reports highlighted the importance of SFRPs in lipid metabolism, obesity, type 2 diabetes mellitus and cardiovascular diseases. In this review, we provide a detailed introduction of SFRPs, including their structural characteristics, receptors, inhibitors, signaling pathways and metabolic disease impacts. In addition to summarizing the pathologies and potential molecular mechanisms associated with SFRPs, this review further suggests the potential future use of SFRPs as disease biomarkers therapeutic targets.
Collapse
Affiliation(s)
- Hua Guan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Jin Zhang
- Department of Preventive Medicine, School of Stomatology, Fourth Military Medical University, Xi’an, China
| | - Jing Luan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hao Xu
- Institution of Basic Medical Science, Xi’an Medical University, Xi’an, China
| | - Zhenghao Huang
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Qi Yu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| | - Lixian Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anethesiology, School of Stomatology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Lixian Xu, ; Xingchun Gou,
| |
Collapse
|
10
|
Kuwahara Y, Kishimoto KN, Itoigawa Y, Okuno H, Hatta T, Matsuzawa G, Itoi E. Fatty degeneration and wnt10b expression in the supraspinatus muscle after surgical repair of torn rotator cuff tendon. J Orthop Surg (Hong Kong) 2020; 27:2309499019864817. [PMID: 31382826 DOI: 10.1177/2309499019864817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
PURPOSE In the torn rotator cuff muscles, decreased expression of wnt10b prior to elevation of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα) has previously been reported. The purpose of this study is to elucidate the expression profiles of these adipogenesis-related genes after rotator cuff detachment and reattachment in a rabbit model. METHODS We investigated gene expression profiles of PPARγ, C/EBPα, and wnt10b in different parts of rabbit supraspinatus (SSP) muscle after tendon detachment (n = 6 for each time point). In addition, we assessed expression of the same genes after SSP reattachment with different intervals from initial detachment (n = 6). Fatty degeneration of the SSP muscle was examined by Oil red-O staining. Gene expression profiles were examined by quantitative real-time polymerase chain reaction. RESULTS After SSP detachment, Oil red-O-positive oil deposits increased after 3 weeks. In the SSP reattachment model, numerous Oil red-O-positive cells were present at 5-week reattachment, following 2- and 3-week detachment. PPARγ and C/EBPα messenger ribonucleic acid expression exhibited a significant increase at 2 and 3 weeks after SSP detachment and remained increased at 5-week reattachment after 2- and 3-week detachment. A decreased expression of wnt10b was observed from 1 week after SSP detachment. Expression of wnt10b was recovered not in the central area of the SSP muscle but in the periphery after reattachment. Adipogenic change was not observed when SSP tendon was reattached after 1-week detachment. CONCLUSIONS These results may suggest that once the adipogenic transcription factors, PPARγ and C/EBPα, were elevated, repair surgery after rotator cuff tear could not prevent the emergence of fat in the SSP muscle.
Collapse
Affiliation(s)
- Yoshiyuki Kuwahara
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Koshi N Kishimoto
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan.,2 Department of Orthopaedic Surgery, Tohoku Kosai Hospital, Sendai, Japan
| | - Yoshiaki Itoigawa
- 3 Department of Orthopaedic Surgery, Juntendo University, Tokyo, Japan
| | - Hiroshi Okuno
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Taku Hatta
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Gaku Matsuzawa
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| | - Eiji Itoi
- 1 Department of Orthopaedic Surgery, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
11
|
Wang J, Cui C, Chim YN, Yao H, Shi L, Xu J, Wang J, Wong RMY, Leung KS, Chow SKH, Cheung WH. Vibration and β-hydroxy-β-methylbutyrate treatment suppresses intramuscular fat infiltration and adipogenic differentiation in sarcopenic mice. J Cachexia Sarcopenia Muscle 2020; 11:564-577. [PMID: 31994349 PMCID: PMC7113529 DOI: 10.1002/jcsm.12535] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 11/26/2019] [Accepted: 12/02/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Sarcopenia is an aging-induced deterioration of skeletal muscle mass and function. Low-magnitude high-frequency vibration (LMHFV) was shown to improve muscle functions and β-hydroxy-β-methylbutyrate (HMB) to increase muscle mass and strength. Muscle-derived stem cells (MDSCs) are progenitor cells important for muscle regeneration. We hypothesized that LMHFV and HMB could retard sarcopenia by reducing fat infiltration through inhibiting adipogenesis in MDSCs. METHODS Senescence-accelerated mouse P8 male mice were randomized into control (CTL), HMB, LMHFV (VIB), and combined (COM) groups. Interventions started at age of month 7 and assessed at 1, 2, and 3 months post-intervention by densitometry, histology, and functional tests. In vitro, MDSCs isolated from gastrocnemius of senescence-accelerated mouse P8 mice were characterized, randomized into CTL, VIB, HMB, and COM groups, and assessed by oil red O staining, mRNA, and protein expression. RESULTS At 2 months post-intervention, percentage lean mass of HMB, VIB, and COM groups were significantly higher than CTL group. Twitch, tetanic, and specific tetanic forces of COM group were higher, while specific twitch force of both VIB and COM groups were higher. Grip strength of HMB, VIB, and COM groups were higher. Histologically, both VIB and COM groups presented lower oil red O area than CTL group. Type I muscle fibre in CTL group was higher than HMB, VIB, and COM groups. MDSC were detected in situ by immunofluorescence stain with stem cell antigen-1 signals confirmed with higher β-catenin expression in the COM group. The observations were also confirmed in vitro, MDSCs in the HMB, VIB, and COM groups presented lower adipogenesis vs. the CTL group. β-Catenin mRNA and protein expressions were lower in the CTL group while their relationship was further validated through β-catenin knock-down approach. CONCLUSIONS Our results showed that combined LMHFV and HMB interventions enhanced muscle strength and decreased percentage fat mass and intramuscular fat infiltration as compared with either treatment alone. Additive effect of LMHFV and HMB was demonstrated in β-catenin expression than either treatment in MDSCs and altered cell fate from adipogenesis to myogenesis, leading to inhibition of intramuscular lipid accumulation. Wnt/β-catenin signalling pathway was found to be the predominant regulatory mechanism through which LMHFV and HMB combined treatment suppressed MDSCs adipogenesis.
Collapse
Affiliation(s)
- Jinyu Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Can Cui
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Yu Ning Chim
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Hao Yao
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Liu Shi
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Jiali Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Kwok-Sui Leung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China
| | - Simon Kwoon-Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, The People's Republic of China
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, The People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, The People's Republic of China
| |
Collapse
|
12
|
Wang Y, Song J, Liu X, Liu J, Zhang Q, Yan X, Yuan X, Ren D. Multiple Effects of Mechanical Stretch on Myogenic Progenitor Cells. Stem Cells Dev 2020; 29:336-352. [PMID: 31950873 DOI: 10.1089/scd.2019.0286] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yaqi Wang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| | - Jing Song
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| | - Xinqiang Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Jun Liu
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Qiang Zhang
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| | - Xiao Yan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| | - Xiao Yuan
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Dapeng Ren
- Department of Stomatology Medical Center, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Department of Stomatology, Medical School of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Ejaz A, Hatzmann FM, Hammerle S, Ritthammer H, Mattesich M, Zwierzina M, Waldegger P, Zwerschke W. Fibroblast feeder layer supports adipogenic differentiation of human adipose stromal/progenitor cells. Adipocyte 2019; 8:178-189. [PMID: 31033380 PMCID: PMC6768258 DOI: 10.1080/21623945.2019.1608751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/03/2019] [Accepted: 04/13/2019] [Indexed: 12/19/2022] Open
Abstract
Adipose stromal/progenitor cells (ASCs) can differentiate into adipocytes in the course of adipogenesis. This process is governed by systemic factors and signals of the adipose stem cell niche. ASCs isolated from fat tissues and amplified in vitro provide an essential and reliable model system to study adipogenesis. However, current cell culture models routinely grow ASCs on plastic surfaces largely missing niche parameters. In the present communication, we employed human foreskin fibroblasts (HFFs) monolayers as feeder cells for ASCs, which were isolated from human subcutaneous white adipose tissue and amplified in vitro. We found that PPARγ2 and several adipocyte markers were significantly higher expressed in differentiated ASCs growing on feeder layers relative to plastic dishes. Moreover, a significant higher number of adipocytes was generated from ASCs cultured on feeder layer and these adipocytes contained larger fat droplets. Insulin strongly stimulated glucose uptake into adipocytes produced on feeder layer suggesting that these cells show characteristic metabolic features of fat cells. Finally, we show that the HFF feeder layer allows adipogenic differentiation of low-density-seeded ASCs. In conclusion, we demonstrate that the HFF feeder layer increases adipocyte differentiation of ASCs and allows differentiation of low density seeded progenitor cells into functional adipocytes.
Collapse
Affiliation(s)
- Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Florian M Hatzmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Sarina Hammerle
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Heike Ritthammer
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Marit Zwierzina
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Petra Waldegger
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Du Y, Yang F, Lv D, Zhang Q, Yuan X. MiR-147 inhibits cyclic mechanical stretch-induced apoptosis in L6 myoblasts via ameliorating endoplasmic reticulum stress by targeting BRMS1. Cell Stress Chaperones 2019; 24:1151-1161. [PMID: 31628639 PMCID: PMC6882977 DOI: 10.1007/s12192-019-01037-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 01/11/2023] Open
Abstract
Functional orthopedic treatment is effective for the correction of malformation. Studies demonstrated myoblasts undergo proliferation and apoptosis on certain stretch conditions. MicroRNAs (miRNAs) function in RNA silencing and post-transcriptional regulation of gene expression, and participate in various biological processes, including proliferation and apoptosis. One hypothesis suggested that miRNA was involved into the procedure via suppressing its target genes then triggered endoplasmic reticulum stress-induced apoptosis. Therefore, miRNAs play important roles in the regulation of the proliferation and apoptosis of myoblasts. In our study, the miR-147 has been explored. A cyclic mechanical stretch model was established to observe the features of rat L6 myoblasts. The detection of mRNA and protein levels was performed by qRT-PCR and western blot. L6 cell proliferation/apoptosis was checked by CCK-8 assay, DNA fragmentation assay, and caspase-3 activity assay. MiRNA transfections were performed as per the manufacturer's suggestions: (1) cyclic mechanical stretch induced apoptosis of L6 myoblasts and inhibition of miR-147; (2) miR-147 attenuated cyclic mechanical stretch-induced apoptosis of L6 myoblasts; (3) miR-147 attenuated cyclic mechanical stretch-induced L6 myoblast endoplasmic reticulum stress; (4) BRMS1 was a direct target of miR-147 in L6 myoblasts; (5) miR-147/BRMS1 axis participated in the regulation of cyclic mechanical stress on L6 myoblasts. MiR-147 attenuates endoplasmic reticulum stress by targeting BRMS1 to inhibit cyclic mechanical stretch-induced apoptosis of L6 myoblasts.
Collapse
Affiliation(s)
- Yanxiao Du
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Stomatology, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Feng Yang
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Stomatology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Di Lv
- Department of Stomatology, Qingdao Central Hospital, Qingdao, 266042, Shandong, China
| | - Qiang Zhang
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiao Yuan
- Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Orthodontics II, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
15
|
Wang T, Shao L, Xu W, Li F, Huang W. Surgical injury and repair of hip external rotators in THA via posterior approach: a three-dimensional MRI-evident quantitative prospective study. BMC Musculoskelet Disord 2019; 20:22. [PMID: 30642331 PMCID: PMC6332581 DOI: 10.1186/s12891-018-2367-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/03/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND As one of the classical total hip arthroplasty (THA) approaches, the posterior approach is widely used. However, there is a lack of in-depth quantitative researches on the surgical-related injury to the hip external rotators. The purpose of this study is to quantificationally analyse the surgical injury of hip external rotators after posterior THA and explore the effect of the muscle repair on the muscle recovery using the MRI three-dimensional reconstruction technique combined with the clinical assessment. METHODS Sixty five patients were eligible to receive a unilateral cementless THA via the posterior approach. During operation, the piriformis tendon was reattached but it was not applicable for the internal obturator muscle. We performed three-dimensional MRI reconstruction of bilateral piriformis and internal obturator muscle along with clinical assessment preoperatively, 6, 12 and 52 weeks postoperatively. RESULTS Bilateral piriformis and internal obturator muscle were homogeneous preoperatively. Compared with the contralateral side, the volume atrophy and fat-muscle ratio of the piriformis on the operated side increased inconspicuously by 1.64%, 0.26% (p = 0.062, p = 0.071) at 6 weeks and 1.33%, 0.20% (p = 0.057, p = 0.058) at 12 weeks, while 7.28%, 2.09% and 15.71%, 5.14% for the internal obturator muscle (p < 0.01). Up to 52 weeks, the pirformis also showed significant muscle atrophy as well as fatty infiltration (increased by 7.79%, 4.21%; p < 0.01), and 24.18%, 11.91% for the internal obturator muscle (p < 0.01). CONCLUSION The THA via posterior approach significantly harms the hip external rotators and the early hip external rotation function. The effective repair could be conducive to the early postoperative recovery of the hip external rotators. TRAIL REGISTRATION The study has been registered in Chinese Clinical Trial Registry (ChiCTR) before the clical trial started, the Clinical Trial Registry Number is ChiCTR-IOR-17013007 . Registered 17 October 2017. The Trial registration is prospective registration.
Collapse
Affiliation(s)
- Ting Wang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan jiagang, Yuzhong District, Chongqing, China
| | - Long Shao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan jiagang, Yuzhong District, Chongqing, China
| | - Wei Xu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan jiagang, Yuzhong District, Chongqing, China
| | - Feilong Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan jiagang, Yuzhong District, Chongqing, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuan jiagang, Yuzhong District, Chongqing, China.
| |
Collapse
|
16
|
Wnt3a disrupts GR-TEAD4-PPARγ2 positive circuits and cytoskeletal rearrangement in a β-catenin-dependent manner during early adipogenesis. Cell Death Dis 2019; 10:16. [PMID: 30622240 PMCID: PMC6325140 DOI: 10.1038/s41419-018-1249-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 11/09/2022]
Abstract
Adipogenesis is a process which induces or represses many genes in a way to drive irreversible changes of cell phenotypes; lipid accumulation, round cell-shape, secreting many adipokines. As a master transcription factor (TF), PPARγ2 induces several target genes to orchestrate these adipogenic changes. Thus induction of Pparg2 gene is tightly regulated by many adipogenic and also anti-adipogenic factors. Four hours after the treatment of adipogenic hormones, more than fifteen TFs including glucocorticoid receptor (GR), C/EBPβ and AP-1 cooperatively bind the promoter of Pparg2 gene covering 400 bps, termed "hotspot". In this study, we show that TEA domain family transcription factor (TEAD)4 reinforces occupancy of both GR and C/EBPβ on the hotspot of Pparg2 during early adipogenesis. Our findings that TEAD4 requires GR for its expression and for the ability to bind its own promoter and the hotspot region of Pparg2 gene indicate that GR is a common component of two positive circuits, which regulates the expression of both Tead4 and Pparg2. Wnt3a disrupts these mutually related positive circuits by limiting the nuclear location of GR in a β-catenin dependent manner. The antagonistic effects of β-catenin extend to cytoskeletal remodeling during the early phase of adipogenesis. GR is necessary for the rearrangements of both cytoskeleton and chromatin of Pparg2, whereas Wnt3a inhibits both processes in a β-catenin-dependent manner. Our results suggest that hotspot formation during early adipogenesis is related to cytoskeletal remodeling, which is regulated by the antagonistic action of GR and β-catenin, and that Wnt3a reinforces β-catenin function.
Collapse
|
17
|
Rogers EH, Pekovic-Vaughan V, Hunt JA. Mechanical stretch and chronotherapeutic techniques for progenitor cell transplantation and biomaterials. Biomedicine (Taipei) 2018; 8:14. [PMID: 30141401 PMCID: PMC6108224 DOI: 10.1051/bmdcn/2018080314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 01/02/2023] Open
Abstract
In the body, mesenchymal progenitor cells are subjected to a substantial amount external force from different mechanical stresses, each potentially influences their behaviour and maintenance differentially. Tensile stress, or compression loading are just two of these forces, and here we examine the role of cyclical or dynamic mechanical loading on progenitor cell proliferation and differentiation, as well as on other cellular processes including cell morphology, apoptosis and matrix mineralisation. Moreover, we also examine how mechanical stretch can be used to optimise and ready biomaterials before their implantation, and examine the role of the circadian rhythm, the body's innate time keeping system, on biomaterial delivery and acceptance. Finally, we also investigate the effect of mechanical stretch on the circadian rhythm of progenitor cells, as research suggests that mechanical stimulation may be sufficient in itself to synchronise the circadian rhythm of human adult progenitor cells alone, and has also been linked to progenitor cell function. If proven correct, this could offer a novel, non-intrusive method by which human adult progenitor cells may be activated or preconditioned, being readied for differentiation, so that they may be more successfully integrated within a host body, thereby improving tissue engineering techniques and the efficacy of cellular therapies.
Collapse
Affiliation(s)
- Eve Helena Rogers
- Institute of Ageing and Chronic Disease, University of Liverpool, the William Henry Duncan Building, 6 West Derby Street, Liverpool, UK, L7 8TX
| | - Vanja Pekovic-Vaughan
- Institute of Ageing and Chronic Disease, University of Liverpool, the William Henry Duncan Building, 6 West Derby Street, Liverpool, UK, L7 8TX
| | - John Alan Hunt
- School of Science and Technology, Nottingham Trent University, Clifton Campus, College Drive, Nottingham, UK, NG11 8NS
| |
Collapse
|
18
|
HMGB2 is a novel adipogenic factor that regulates ectopic fat infiltration in skeletal muscles. Sci Rep 2018; 8:9601. [PMID: 29942000 PMCID: PMC6018498 DOI: 10.1038/s41598-018-28023-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 06/05/2018] [Indexed: 01/22/2023] Open
Abstract
Although various surgical procedures have been developed for chronic rotator cuff tear repair, the re-tear rate remains high with severe fat infiltration. However, little is known about the molecular regulation of this process. Mesenchymal stem cells (MSCs) in the intra-muscular space are origin of ectopic fat cells in skeletal muscle. We have previously shown that high-mobility group box 2 (HMGB2), which is a nuclear protein commonly associated with mesenchymal differentiation, is involved in the early articular cartilage degeneration. In this study, we addressed the role of HMGB2 in adipogenesis of MSCs and fat infiltration into skeletal muscles. HMGB2 was highly expressed in undifferentiated MSCs and co-localized with platelet-derived growth factor receptor α (PDGFRA) known as an MSC-specific marker, while their expressions were decreased during adipocytic differentiation. Under the deficiency of HMGB2, the expressions of adipogenesis-related molecules were reduced, and adipogenic differentiation is substantially impaired in MSCs. Moreover, HMGB2+ cells were generated in the muscle belly of rat supraspinatus muscles after rotator cuff transection, and some of these cells expressed PDGFRA in intra-muscular spaces. Thus, our findings suggest that the enhance expression of HMGB2 induces the adipogenesis of MSCs and the fat infiltration into skeletal muscles through the cascade of HMGB2-PDGFRA.
Collapse
|
19
|
Bosco DB, Roycik MD, Jin Y, Schwartz MA, Lively TJ, Zorio DAR, Sang QXA. A new synthetic matrix metalloproteinase inhibitor reduces human mesenchymal stem cell adipogenesis. PLoS One 2017; 12:e0172925. [PMID: 28234995 PMCID: PMC5325569 DOI: 10.1371/journal.pone.0172925] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/10/2017] [Indexed: 01/12/2023] Open
Abstract
Development of adipose tissue requires the differentiation of less specialized cells, such as human mesenchymal stem cells (hMSCs), into adipocytes. Since matrix metalloproteinases (MMPs) play critical roles in the cell differentiation process, we conducted investigations to determine if a novel mercaptosulfonamide-based MMP inhibitor (MMPI), YHJ-7-52, could affect hMSC adipogenic differentiation and lipid accumulation. Enzyme inhibition assays, adipogenic differentiation experiments, and quantitative PCR methods were employed to characterize this inhibitor and determine its effect upon adipogenesis. YHJ-7-52 reduced lipid accumulation in differentiated cells by comparable amounts as a potent hydroxamate MMPI, GM6001. However, YHJ-7-82, a non-inhibitory structural analog of YHJ-7-52, in which the zinc-binding thiol group is replaced by a hydroxyl group, had no effect on adipogenesis. The two MMPIs (YHJ-7-52 and GM6001) were also as effective in reducing lipid accumulation in differentiated cells as T0070907, an antagonist of peroxisome-proliferator activated receptor gamma (PPAR-gamma), at a similar concentration. PPAR-gamma is a typical adipogenic marker and a key regulatory protein for the transition of preadiopocyte to adipocyte. Moreover, MMP inhibition was able to suppress lipid accumulation in cells co-treated with Troglitazone, a PPAR-gamma agonist. Our results indicate that MMP inhibitors may be used as molecular tools for adipogenesis and obesity treatment research.
Collapse
Affiliation(s)
- Dale B. Bosco
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Mark D. Roycik
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Yonghao Jin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Martin A. Schwartz
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Ty J. Lively
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Diego A. R. Zorio
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
| | - Qing-Xiang Amy Sang
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
20
|
Mesenchymal Stem Cell Treatment of Intervertebral Disc Lesion Prevents Fatty Infiltration and Fibrosis of the Multifidus Muscle, but not Cytokine and Muscle Fiber Changes. Spine (Phila Pa 1976) 2016; 41:1208-1217. [PMID: 27135642 DOI: 10.1097/brs.0000000000001669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Longitudinal case-control animal model. OBJECTIVE To investigate effects of mesenchymal stem cell (MSC) treatment on multifidus muscle remodeling after intervertebral disc (IVD) lesion. SUMMARY OF BACKGROUND DATA Lesion and degeneration of IVDs cause structural remodeling of the multifidus muscle. Proinflammatory cytokines are thought to contribute. MSC treatment restores IVD health after lesion but its effects on surrounding tissues remains unknown. Using an animal model of IVD degeneration, we assessed the effects of MSC treatment of IVDs on the structural remodeling and cytokine expression within the multifidus muscle. METHODS An anterolateral lesion was performed on the L1-2, L3-4, and L5-6 IVDs in sheep. At either 4 (early treatment) or 12 (late treatment) weeks after IVD lesion, MSCs were injected into the lesioned IVD. Multifidus muscle was harvested from L2 (gene expression analysis) and L4 (histological analysis) at 3 or 6 months after IVD lesion and naïve controls for histological analysis of muscle, adipose, and connective tissue cross-sectional areas, and immunohistochemistry to study muscle fiber types. Real-time polymerase chain reactions quantified expression of tumor necrosis factor, interleukin-1β, and transforming growth factor-β1. RESULTS MSC treatment of IVD lesion prevented the increased adipose and connective tissue cross-sectional area expected after IVD lesion. MSC treatment did not prevent slow-to-fast muscle fiber type transformation. Gene expression of proinflammatory cytokines within the muscle was altered by the MSC treatment of IVD. Increased interleukin-1β expression was prevented in the early treatment group and tumor necrosis factor and transforming growth factor-β1 expression was upregulated at 6 months. CONCLUSION Results show that although MSC treatment prevents fatty infiltration and fibrosis of the multifidus muscle after IVD lesion, it cannot prevent a muscle inflammatory response and muscle fiber transformation. These findings highlight the potential role of MSC therapy after IVD injury, but reveals that other interventions may also be necessary to optimize recovery of muscle. LEVEL OF EVIDENCE 4.
Collapse
|
21
|
Wu W, Sun Y, Zhao C, Zhao C, Chen X, Wang G, Pang W, Yang G. Lipogenesis in myoblasts and its regulation of CTRP6 by AdipoR1/Erk/PPARγ signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2016; 48:509-19. [PMID: 27125977 DOI: 10.1093/abbs/gmw032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
The induced lipogenesis and its regulation in C2C12 myoblasts remain largely unclear. Here, we found that the cocktail method could significantly induce lipogenesis through regulating lipid metabolic genes and Erk1/2 phosphorylation in myoblasts. Meanwhile, the expression and secretion of CTRP6 were increased during ectopic lipogenesis. Moreover, CTRP6 knockdown down-regulated the levels of lipogenic genes and phosphorylated Erk1/2 (p-Erk1/2) in the early lipogenic stage, whereas up-regulated p-Erk1/2 in the terminal differentiation. Interestingly, the effect of CTRP6 siRNA was attenuated by U0126 (a special p-Erk1/2 inhibitor) in myoblasts. Furthermore, AdipoR1, not AdipoR2, was first identified as a receptor of CTRP6 during the process of mitotic clonal expansion. Collectively, we suggest that CTRP6 mediates the ectopic lipogenesis through AdipoR1/Erk/PPARγ signaling pathway in myoblasts. Our findings will shed light on the novel biological function of CTRP6 during myoblast lipogenesis and provide a hopeful direction of improving meat quality of domestic animal by lipogenic regulation in skeletal muscle myoblasts.
Collapse
Affiliation(s)
- Wenjing Wu
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yunmei Sun
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chen Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Cunzhen Zhao
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Xiaochang Chen
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Guoqiang Wang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Weijun Pang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Gongshe Yang
- Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
22
|
Laurens C, Louche K, Sengenes C, Coué M, Langin D, Moro C, Bourlier V. Adipogenic progenitors from obese human skeletal muscle give rise to functional white adipocytes that contribute to insulin resistance. Int J Obes (Lond) 2015; 40:497-506. [PMID: 26395744 DOI: 10.1038/ijo.2015.193] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 08/25/2015] [Accepted: 09/07/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVES Recent reports indicate that inter/intramuscular adipose tissue (IMAT), composed by adipocytes underneath the deep fascia of the muscles, is positively correlated with aging, obesity and insulin resistance in humans. However, no molecular/cellular evidence is available to support these interactions. The current study aimed to better characterize human skeletal muscle-derived adipogenic progenitors obtained from obese volunteers and investigate the impact of derived adipocytes on insulin action in primary skeletal muscle cells. METHODS Primary cultured stroma-vascular fraction (SVF) obtained from vastus lateralis muscle biopsies of middle-aged obese subjects was immunoseparated (magnetic beads or flow cytometry). The characteristics and/or metabolic phenotype of CD56(+), CD56(-) and CD56(-)CD15(+) cellular fractions were investigated by complementary approaches (flow cytometry, cytology, quantitative PCR and metabolic assays). The effects of conditioned media from CD56(-)CD15(+) cells differentiated into adipocytes on insulin action and signaling in human primary myotubes was also examined. RESULTS Our data indicate that CD56(+) and CD56(-) cellular fractions isolated from cultured SVF of human muscle contain two distinct committed progenitors: CD56(+) cells (that is, satellite cells) as myogenic progenitors and CD15(+) cells as adipogenic progenitors, respectively. CD56(-)CD15(+)-derived adipocytes display the phenotype and metabolic properties of white adipocytes. Secretions of CD56(-)CD15(+) cells differentiated into functional white adipocytes reduced insulin-mediated non-oxidative glucose disposal (P=0.0002) and insulin signaling. CONCLUSIONS Using in-vitro models, we show for the first time that secretions of skeletal muscle adipocytes are able to impair insulin action and signaling of muscle fibers. This paracrine effect could explain, at least in part, the negative association between high levels of IMAT and insulin sensitivity in obesity and aging.
Collapse
Affiliation(s)
- C Laurens
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - K Louche
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - C Sengenes
- UMR5273 UPS/CNRS/EFS/INSERM U1031, STROMALab, University de Toulouse, Toulouse, France
| | - M Coué
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - D Langin
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France.,Department of Clinical Biochemistry, Toulouse University Hospitals, Toulouse, France
| | - C Moro
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - V Bourlier
- INSERM UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France.,University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| |
Collapse
|
23
|
Multifidus Muscle Changes After Back Injury Are Characterized by Structural Remodeling of Muscle, Adipose and Connective Tissue, but Not Muscle Atrophy: Molecular and Morphological Evidence. Spine (Phila Pa 1976) 2015; 40:1057-71. [PMID: 25943090 DOI: 10.1097/brs.0000000000000972] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Longitudinal case-controlled animal study. OBJECTIVE To investigate putative cellular mechanisms to explain structural changes in muscle and adipose and connective tissues of the back muscles after intervertebral disc (IVD) injury. SUMMARY OF BACKGROUND DATA Structural back muscle changes are ubiquitous with back pain/injury and considered relevant for outcome, but their exact nature, time course, and cellular mechanisms remain elusive. We used an animal model that produces phenotypic back muscle changes after IVD injury to study these issues at the cellular/molecular level. METHODS Multifidus muscle was harvested from both sides of the spine at L1-L2 and L3-L4 IVDs in 27 castrated male sheep at 3 (n = 10) or 6 (n = 17) months after a surgical anterolateral IVD injury at both levels. Ten control sheep underwent no surgery (3 mo, n = 4; 6 mo, n = 6). Tissue was harvested at L4 for histological analysis of cross-sectional area of muscle and adipose and connective tissue (whole muscle), plus immunohistochemistry to identify proportion and cross-sectional area of individual muscle fiber types in the deepest fascicle. Quantitative polymerase chain reaction measured gene expression of typical cytokines/signaling molecules at L2. RESULTS Contrary to predictions, there was no multifidus muscle atrophy (whole muscle or individual fiber). There was increased adipose and connective tissue (fibrotic proliferation) cross-sectional area and slow-to-fast muscle fiber transition at 6 but not 3 months. Within the multifidus muscle, increases in the expression of several cytokines (tumor necrosis factor α and interleukin-1β) and molecules that signal trophic/atrophic processes for the 3 tissue types (e.g., growth factor pathway [IGF-1, PI3k, Akt1, mTOR], potent tissue modifiers [calcineurin, PCG-1α, and myostatin]) were present. CONCLUSION This study provides cellular evidence that refutes the presence of multifidus muscle atrophy accompanying IVD degeneration at this intermediate time point. Instead, adipose/connective tissue increased in parallel with the expression of the genes that provide putative mechanisms for multifidus structural remodeling. This provides novel targets for pharmacological and physical interventions. LEVEL OF EVIDENCE N/A.
Collapse
|
24
|
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev 2015; 24:1150-63. [PMID: 25603196 PMCID: PMC4424969 DOI: 10.1089/scd.2014.0484] [Citation(s) in RCA: 463] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising candidates for tissue engineering and regenerative medicine. The multipotent stem cell component of MSC isolates is able to differentiate into derivatives of the mesodermal lineage including adipocytes, osteocytes, chondrocytes, and myocytes. Many common pathways have been described in the regulation of adipogenesis and osteogenesis. However, stimulation of osteogenesis appears to suppress adipogenesis and vice-versa. Increasing evidence implicates a tight regulation of these processes by reactive oxygen species (ROS). ROS are short-lived oxygen-containing molecules that display high chemical reactivity toward DNA, RNA, proteins, and lipids. Mitochondrial complexes I and III, and the NADPH oxidase isoform NOX4 are major sources of ROS production during MSC differentiation. ROS are thought to interact with several pathways that affect the transcription machinery required for MSC differentiation including the Wnt, Hedgehog, and FOXO signaling cascades. On the other hand, elevated levels of ROS, defined as oxidative stress, lead to arrest of the MSC cell cycle and apoptosis. Tightly regulated levels of ROS are therefore critical for MSC terminal differentiation, although the precise sources, localization, levels and the exact species of ROS implicated remain to be determined. This review provides a detailed overview of the influence of ROS on adipogenic and osteogenic differentiation in MSCs.
Collapse
Affiliation(s)
- Fatemeh Atashi
- 1 Department of Plastic, Reconstructive & Aesthetic Surgery, University Hospitals of Geneva , University of Geneva, Geneva, Switzerland
| | | | | |
Collapse
|
25
|
Kozakowska M, Szade K, Dulak J, Jozkowicz A. Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 2014; 20:1827-50. [PMID: 24053682 PMCID: PMC3961774 DOI: 10.1089/ars.2013.5341] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenase-1 (HO-1) converts heme to biliverdin, carbon monoxide, and ferrous ions, but its cellular functions are far beyond heme metabolism. HO-1 via heme removal and degradation products acts as a cytoprotective, anti-inflammatory, immunomodulatory, and proangiogenic protein, regulating also a cell cycle. Additionally, HO-1 can translocate to nucleus and regulate transcription factors, so it can also act independently of enzymatic function. RECENT ADVANCES Recently, a body of evidence has emerged indicating a role for HO-1 in postnatal differentiation of stem and progenitor cells. Maturation of satellite cells, skeletal myoblasts, adipocytes, and osteoclasts is inhibited by HO-1, whereas neurogenic differentiation and formation of cardiomyocytes perhaps can be enhanced. Moreover, HO-1 influences a lineage commitment in pluripotent stem cells and maturation of hematopoietic cells. It may play a role in development of osteoblasts, but descriptions of its exact effects are inconsistent. CRITICAL ISSUES In this review we discuss a role of HO-1 in cell differentiation, and possible HO-1-dependent signal transduction pathways. Among the potential mediators, we focused on microRNA (miRNA). These small, noncoding RNAs are critical for cell differentiation. Recently we have found that HO-1 not only influences expression of specific miRNAs but also regulates miRNA processing enzymes. FUTURE DIRECTIONS It seems that interplay between HO-1 and miRNAs may be important in regulating fates of stem and progenitor cells and needs further intensive studies.
Collapse
Affiliation(s)
- Magdalena Kozakowska
- 1 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | | | | | | |
Collapse
|
26
|
Liu Y, Wang L, Long ZY, Wu YM, Wan Q, Jiang JX, Wang ZG. Inhibiting PTEN protects hippocampal neurons against stretch injury by decreasing membrane translocation of AMPA receptor GluR2 subunit. PLoS One 2013; 8:e65431. [PMID: 23799014 PMCID: PMC3684616 DOI: 10.1371/journal.pone.0065431] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
The AMPA type of glutamate receptors (AMPARs)-mediated excitotoxicity is involved in the secondary neuronal death following traumatic brain injury (TBI). But the underlying cellular and molecular mechanisms remain unclear. In this study, the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in GluR2-lacking AMPARs mediated neuronal death was investigated through an in vitro stretch injury model of neurons. It was indicated that both the mRNA and protein levels of PTEN were increased in cultured hippocampal neurons after stretch injury, which was associated with the decreasing expression of GluR2 subunits on the surface of neuronal membrane. Inhibition of PTEN activity by its inhibitor can promote the survival of neurons through preventing reduction of GluR2 on membrane. Moreover, the effect of inhibiting GluR2-lacking AMPARs was similar to PTEN suppression-mediated neuroprotective effect in stretch injury-induced neuronal death. Further evidence identified that the total GluR2 protein of neurons was not changed in all groups. So inhibition of PTEN or blockage of GluR2-lacking AMPARs may attenuate the death of hippocampal neurons post injury through decreasing the translocation of GluR2 subunit on the membrane effectively.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Research Institute of Surgery, Daping Hospital, the Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Li Wang
- Department of Research Institute of Surgery, Daping Hospital, the Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Zai-yun Long
- Department of Research Institute of Surgery, Daping Hospital, the Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Ya-min Wu
- Department of Research Institute of Surgery, Daping Hospital, the Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Qi Wan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, United States of America
| | - Jian-xin Jiang
- Department of Research Institute of Surgery, Daping Hospital, the Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
| | - Zheng-guo Wang
- Department of Research Institute of Surgery, Daping Hospital, the Third Military Medical University, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing, China
- * E-mail:
| |
Collapse
|
27
|
Park JH, Ushida T, Akimoto T. Control of cell differentiation by mechanical stress. JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2013. [DOI: 10.7600/jpfsm.2.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Mapping the mechanome of live stem cells using a novel method to measure local strain fields in situ at the fluid-cell interface. PLoS One 2012; 7:e43601. [PMID: 22970134 PMCID: PMC3438189 DOI: 10.1371/journal.pone.0043601] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/25/2012] [Indexed: 12/20/2022] Open
Abstract
During mesenchymal condensation, the initial step of skeletogenesis, transduction of minute mechanical forces to the nucleus is associated with up or down-regulation of genes, ultimately resulting in formation of the skeletal template and appropriate cell lineage commitment. The summation of these biophysical cues affects the cell's shape and fate. Here, we predict and measure surface strain, in live stem cells, in response to controlled delivery of stresses, providing a platform to direct short-term structure - function relationships and long-term fate decisions. We measure local strains on stem cell surfaces using fluorescent microbeads coated with Concanavalin A. During delivery of controlled mechanical stresses, 4-Dimensional (x,y,z,t) displacements of the bound beads are measured as surface strains using confocal microscopy and image reconstruction. Similarly, micro-particle image velocimetry (μ-piv) is used to track flow fields with fluorescent microspheres. The measured flow velocity gradient is used to calculate stress imparted by fluid drag at the surface of the cell. We compare strain measured on cell surfaces with those predicted computationally using parametric estimates of the cell's elastic and shear modulus. Finally, cross-correlating stress - strain data to measures of gene transcription marking lineage commitment enables us to create stress - strain - fate maps, for live stem cells in situ. The studies show significant correlations between live stem cell stress - strain relationships and lineage commitment. The method presented here provides a novel means to probe the live stem cell's mechanome, enabling mechanistic studies of the role of mechanics in lineage commitment as it unfolds.
Collapse
|
29
|
Cyclic mechanical strain maintains Nanog expression through PI3K/Akt signaling in mouse embryonic stem cells. Exp Cell Res 2012; 318:1726-32. [PMID: 22683858 DOI: 10.1016/j.yexcr.2012.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/23/2012] [Accepted: 05/24/2012] [Indexed: 01/01/2023]
Abstract
Mechanical strain has been reported to affect the proliferation/differentiation of many cell types; however, the effects of mechanotransduction on self-renewal as well as pluripotency of embryonic stem (ES) cells remains unknown. To investigate the effects of mechanical strain on mouse ES cell fate, we examined the expression of Nanog, which is an essential regulator of self-renewal and pluripotency as well as Nanog-associated intracellular signaling during uniaxial cyclic mechanical strain. The mouse ES cell line, CCE was plated onto elastic membranes, and we applied 10% strain at 0.17 Hz. The expression of Nanog was reduced during ES cell differentiation in response to the withdrawal of leukemia inhibitory factor (LIF); however, two days of cyclic mechanical strain attenuated this reduction of Nanog expression. On the other hand, the cyclic mechanical strain promoted PI3K-Akt signaling, which is reported as an upstream of Nanog transcription. The cyclic mechanical strain-induced Akt phosphorylation was blunted by the PI3K inhibitor wortmannin. Furthermore, cytochalasin D, an inhibitor of actin polymerization, also inhibited the mechanical strain-induced increase in phospho-Akt. These findings imply that mechanical force plays a role in regulating Nanog expression in ES cells through the actin cytoskeleton-PI3K-Akt signaling.
Collapse
|
30
|
Goljanek-Whysall K, Pais H, Rathjen T, Sweetman D, Dalmay T, Münsterberg A. Regulation of multiple target genes by miR-1 and miR-206 is pivotal for C2C12 myoblast differentiation. J Cell Sci 2012; 125:3590-600. [PMID: 22595520 DOI: 10.1242/jcs.101758] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are short non-coding RNAs involved in post-transcriptional regulation of multiple messenger RNA targets. The miR-1/miR-206 family is expressed during skeletal muscle differentiation and is an integral component of myogenesis. To better understand miR-1/miR-206 function during myoblast differentiation we identified novel target mRNAs by microarray and characterized their function in C2C12 myoblasts. Candidate targets from the screen were experimentally validated together with target genes that were predicted by three different algorithms. Some targets characterised have a known function in skeletal muscle development and/or differentiation and include Meox2, RARB, Fzd7, MAP4K3, CLCN3 and NFAT5, others are potentially novel regulators of myogenesis, such as the chromatin remodelling factors Smarcd2 and Smarcb1 or the anti-apoptotic protein SH3BGRL3. The expression profiles of confirmed target genes were examined during C2C12 cell myogenesis. We found that inhibition of endogenous miR-1 and miR-206 by antimiRs blocked the downregulation of most targets in differentiating cells, thus indicating that microRNA activity and target interaction is required for muscle differentiation. Finally, we show that sustained expression of validated miR-1 and/or miR-206 targets resulted in increased proliferation and inhibition of C2C12 cell myogenesis. In many cases the expression of genes related to non-muscle cell fates, such as chondrogenesis, was activated. This indicates that the concerted downregulation of multiple microRNA targets is not only crucial to the skeletal muscle differentiation program but also serves to prevent alternative cell fate choices.
Collapse
Affiliation(s)
- Katarzyna Goljanek-Whysall
- Cell and Developmental Biology, School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | | | | | |
Collapse
|
31
|
Lee JY, Chien IC, Lin WY, Wu SM, Wei BH, Lee YE, Lee HH. Fhl1 as a downstream target of Wnt signaling to promote myogenesis of C2C12 cells. Mol Cell Biochem 2012; 365:251-62. [PMID: 22367176 DOI: 10.1007/s11010-012-1266-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/09/2012] [Indexed: 11/25/2022]
Abstract
Previous studies have shown that Wnt signaling is involved in postnatal mammalian myogenesis; however, the downstream mechanism of Wnt signaling is not fully understood. This study reports that the murine four-and-a-half LIM domain 1 (Fhl1) could be stimulated by β-catenin or LiCl treatment to induce myogenesis. In contrast, knockdown of the Fhl1 gene expression in C2C12 cells led to reduced myotube formation. We also adopted reporter assays to demonstrate that either β-catenin or LiCl significantly activated the Fhl1 promoter, which contains four putative consensus TCF/LEF binding sites. Mutations of two of these sites caused a significant decrease in promoter activity by luciferase reporter assay. Thus, we suggest that Wnt signaling induces muscle cell differentiation, at least partly, through Fhl1 activation.
Collapse
Affiliation(s)
- Jing-Yu Lee
- Department of Bioagricultural Sciences, National Chiayi University, No. 300 Syuefu Rd., Chiayi 60004, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
32
|
Kang JR, Gupta R. Mechanisms of fatty degeneration in massive rotator cuff tears. J Shoulder Elbow Surg 2012; 21:175-80. [PMID: 22244060 DOI: 10.1016/j.jse.2011.11.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/12/2011] [Accepted: 11/12/2011] [Indexed: 02/01/2023]
Abstract
Fatty degeneration of chronically injured muscle is a commonly recognized consequence of massive rotator cuff tears. Current surgical treatments are unable to alter or reverse the progression of fatty degeneration and are associated with poor functional outcomes in these patients. Therefore, a better understanding of the pathophysiology of fatty degeneration is required. As such, recent discoveries in stem cell biology and new animal models have significantly advanced our understanding of the cellular and molecular basis of fatty degeneration. Future studies will facilitate development of novel treatments to prevent the progression of fatty degeneration and improve muscle regeneration in patients with massive rotator cuff tears.
Collapse
Affiliation(s)
- Jason R Kang
- Department of Orthopaedic Surgery, University of California, Irvine, CA, USA
| | | |
Collapse
|
33
|
Izawa T, Ogasawara JE, Sakurai T, Nomura S, Kizaki T, Ohno H. Recent advances in the adaptations of adipose tissue to physical activity: Morphology and adipose tissue cellularity. THE JOURNAL OF PHYSICAL FITNESS AND SPORTS MEDICINE 2012. [DOI: 10.7600/jpfsm.1.381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 2011; 12:722-34. [PMID: 21952300 DOI: 10.1038/nrm3198] [Citation(s) in RCA: 1036] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adipose tissue, which is primarily composed of adipocytes, is crucial for maintaining energy and metabolic homeostasis. Adipogenesis is thought to occur in two stages: commitment of mesenchymal stem cells to a preadipocyte fate and terminal differentiation. Cell shape and extracellular matrix remodelling have recently been found to regulate preadipocyte commitment and competency by modulating WNT and RHO-family GTPase signalling cascades. Adipogenic stimuli induce terminal differentiation in committed preadipocytes through the epigenomic activation of peroxisome proliferator-activated receptor-γ (PPARγ). The coordination of PPARγ with CCAAT/enhancer-binding protein (C/EBP) transcription factors maintains adipocyte gene expression. Improving our understanding of these mechanisms may allow us to identify therapeutic targets against metabolic diseases that are rapidly becoming epidemic globally.
Collapse
|
35
|
Itoigawa Y, Kishimoto KN, Sano H, Kaneko K, Itoi E. Molecular mechanism of fatty degeneration in rotator cuff muscle with tendon rupture. J Orthop Res 2011; 29:861-6. [PMID: 21246616 DOI: 10.1002/jor.21317] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 10/28/2010] [Indexed: 02/04/2023]
Abstract
Fatty degeneration often occurs in rotator cuff muscle with tendon rupture. However, the molecular mechanism underlying this change has not been fully clarified yet. We investigated the gene expression of Wnt10b and adipogenic marker gene, PPARγ and C/EBPα in C2C12 myogenic cell line under inhibition of Wnt10b by adipogenic induction medium, isobutylmethylxanthine, dexamethasone, and insulin (MDI). The role of Wnt-signal was confirmed by adding Lithium chloride (LiCl), which mimics Wnt signaling to the cultured cell with MDI. We also assessed the expression profiles of same genes in the rat rotator cuff tear model in vivo. MDI induced Oil red-O staining positive adipocytes and upregulated PPARγ and C/EBPα expression. LiCl inhibited adipogenic induction of MDI. Rotator cuff muscle with tendon rupture showed positive staining for Oil red-O. Real-time polymerase chain reaction analyses revealed decreased expression of Wnt10b followed by increased PPARγ and C/EBPα gene expression in the supraspinatus muscle. Fatty degeneration and its molecular events were remarkably seen in the distal one-third of the detached supraspinatus muscle versus control. Wnt signaling may regulate adipogenic differentiation both in the myoblasts in vitro and the muscle in vivo. Our results indicate that the reduction of Wnt10b in muscle with a rotator cuff tear is a key signal in fatty degeneration of the muscle.
Collapse
|
36
|
Heise RL, Stober V, Cheluvaraju C, Hollingsworth JW, Garantziotis S. Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J Biol Chem 2011; 286:17435-44. [PMID: 21398522 DOI: 10.1074/jbc.m110.137273] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epithelial injury is a central event in the pathogenesis of many inflammatory and fibrotic lung diseases like acute respiratory distress syndrome, pulmonary fibrosis, and iatrogenic lung injury. Mechanical stress is an often underappreciated contributor to lung epithelial injury. Following injury, differentiated epithelia can assume a myofibroblast phenotype in a process termed epithelial to mesenchymal transition (EMT), which contributes to aberrant wound healing and fibrosis. We demonstrate that cyclic mechanical stretch induces EMT in alveolar type II epithelial cells, associated with increased expression of low molecular mass hyaluronan (sHA). We show that sHA is sufficient for induction of EMT in statically cultured alveolar type II epithelial cells and necessary for EMT during cell stretch. Furthermore, stretch-induced EMT requires the innate immune adaptor molecule MyD88. We examined the Wnt/β-catenin pathway, which is known to mediate EMT. The Wnt target gene Wnt-inducible signaling protein 1 (wisp-1) is significantly up-regulated in stretched cells in hyaluronan- and MyD88-dependent fashion, and blockade of WISP-1 prevents EMT in stretched cells. In conclusion, we show for the first time that innate immunity transduces mechanical stress responses through the matrix component hyaluronan, and activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Rebecca L Heise
- Laboratory of Respiratory Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
37
|
Song MJ, Dean D, Knothe Tate ML. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale. PLoS One 2010; 5. [PMID: 20862249 PMCID: PMC2941457 DOI: 10.1371/journal.pone.0012796] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 08/24/2010] [Indexed: 01/14/2023] Open
Abstract
A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.
Collapse
Affiliation(s)
- Min Jae Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - David Dean
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Melissa L. Knothe Tate
- Department of Biomedical Engineering, Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
38
|
Tsivitse S. Notch and Wnt signaling, physiological stimuli and postnatal myogenesis. Int J Biol Sci 2010; 6:268-81. [PMID: 20567496 PMCID: PMC2878172 DOI: 10.7150/ijbs.6.268] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/13/2010] [Indexed: 12/18/2022] Open
Abstract
Adult skeletal muscle stem cells, termed satellite cells are imperative to muscle regeneration. Much work has been performed on satellite cell identification and the subsequent activation of the myogenic response but the regulation of satellite cells including its activation is not well elucidated. The purpose of this review article is to synthesize what the literature reveals in regards to the current understanding of satellite cells including their contribution to muscle repair and growth following physiological stimuli. In addition, this review article will describe the recent findings on the roles of the classic developmental signaling pathways, Notch and Wnt, to the myogenic response in various muscle injury models. This purpose of this summary is to bring awareness of the impact that muscle contraction models have on the local and systemic environment of adult muscle stem cells which will be beneficial for comprehending and treatment development for muscle -associated ailments and other organ diseases.
Collapse
Affiliation(s)
- Susan Tsivitse
- Department of Kinesiology, Exercise Physiology Laboratory, University North Carolina-Charlotte, NC 28223, USA.
| |
Collapse
|
39
|
Yu HC, Wu TC, Chen MR, Liu SW, Chen JH, Lin KMC. Mechanical stretching induces osteoprotegerin in differentiating C2C12 precursor cells through noncanonical Wnt pathways. J Bone Miner Res 2010; 25:1128-37. [PMID: 20200998 DOI: 10.1002/jbmr.9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mechanical loading is known to be important for maintaining the formation and resorption rates of bone. To study the mechanisms by which mechanical loading regulates osteogenesis, we investigated the role of the Wnt pathway in C2C12 cells committed to osteogenic differentiation in response to cyclic mechanical stretching. Osteoprotegerin (OPG) acts as a decoy receptor for RANKL to inhibit osteoclastogenesis and resorption of bone. Our results demonstrate that stretching leads to a sustained increase in OPG expression in C2C12 cells. The expression of osteogenic marker genes, such as osteocalcin and alkaline phosphatase, was transiently decreased by stretching at 24 hours and returned to control levels at 48 hours. The addition of inhibitors of the canonical Wnt/beta-catenin pathways, such as the secreted FZD-related peptide sRFP2, as well as siRNA-mediated knockdown, did not inhibit the effect of stretching on OPG expression. In contrast, treatment with inhibitors of noncanonical Wnt signaling, including KN93, and siRNA for Nemo-like kinase (NLK) blocked most of the mechanical inductive effect on OPG. Furthermore, stretching-induced OPG production in the culture medium was able to inhibit the osteoclast formation of bone marrow macrophages. These results suggest that mechanical stretching may play an important role in bone remodeling through the upregulation of OPG and that the mechanical signaling leading to OPG induction involves the noncanonical Wnt pathway.
Collapse
Affiliation(s)
- Hsiao-Chi Yu
- Division of Medical Engineering Research, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
AIMS/HYPOTHESIS Visceral and intermuscular adipose tissue (IMAT) depots account for most obesity-related metabolic and cardiovascular complications. Muscle satellite cells (SCs) are mesenchymal stem cells giving rise to myotubes and also to adipocytes, suggesting their possible contribution to IMAT origin and expansion. We investigated the myogenic differentiation of SCs and the adipogenic potential of both preadipocytes and SCs from genetically obese Zucker rats (fa/fa), focusing on the role of Wnt signaling in these differentiation processes. METHODS SCs were isolated by single-fiber technique from flexor digitorum brevis muscle and preadipocytes were extracted from subcutaneous adipose tissue (AT). Morphological features and gene expression profile were evaluated during in vitro myogenesis and adipogenesis. Wingless-type MMTV integration site family member 10b (Wnt10b) expression was quantified by quantitative PCR in skeletal muscle and AT. RESULTS We did not observe any difference in the proliferation rate and in the myogenic differentiation of SCs from obese and lean rats. However, a decreased insulin-induced glucose uptake was present in myotubes originating from fa/fa rats. Under adipogenic conditions, preadipocytes and SCs of obese animals displayed an enhanced adipogenesis. Wnt10b expression was reduced in obese rats in both muscle and AT. CONCLUSIONS/INTERPRETATION Our data suggest that the increase in different fat depots including IMAT and the reduced muscle insulin sensitivity, the major phenotypical alteration of obese Zucker rats, could be ascribed to an intrinsic defect, either genetically determined or acquired, still present in both muscle and fat precursors. The involvement of Wnt10b as a regulator of both adipogenesis and muscle-to-fat conversion is suggested.
Collapse
|
41
|
Huang SC, Wu TC, Yu HC, Chen MR, Liu CM, Chiang WS, Lin KM. Mechanical strain modulates age-related changes in the proliferation and differentiation of mouse adipose-derived stromal cells. BMC Cell Biol 2010; 11:18. [PMID: 20219113 PMCID: PMC2841110 DOI: 10.1186/1471-2121-11-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 03/10/2010] [Indexed: 01/01/2023] Open
Abstract
Background Previous studies on the effects of aging in human and mouse mesenchymal stem cells suggest that a decline in the number and differentiation potential of stem cells may contribute to aging and aging-related diseases. In this report, we used stromal cells isolated from adipose tissue (ADSCs) of young (8-10 weeks), adult (5 months), and old (21 months) mice to test the hypothesis that mechanical loading modifies aging-related changes in the self-renewal and osteogenic and adipogenic differentiation potential of these cells. Results We show that aging significantly reduced the proliferation and increased the adipogenesis of ADSCs, while the osteogenic potential is not significantly reduced by aging. Mechanical loading (10% cyclic stretching, 0.5 Hz, 48 h) increased the subsequent proliferation of ADSCs from mice of all ages. Although the number of osteogenic colonies with calcium deposition was increased in ADSCs subjected to pre-strain, it resulted from an increase in colony number rather than from an increase in osteogenic potential after strain. Pre-strain significantly reduced the number of oil droplets and the expression of adipogenic marker genes in adult and old ADSCs. Simultaneously subjecting ADSCs to mechanical loading and adipogenic induction resulted in a stronger inhibition of adipogenesis than that caused by pre-strain. The reduction of adipogenesis by mechanical strain was loading-magnitude dependent: loading with 2% strain only resulted in a partial inhibition, and loading with 0.5% strain could not inhibit adipogenesis in ADSCs. Conclusions We demonstrate that mechanical stretching counteracts the loss of self-renewal in aging ADSCs by enhancing their proliferation and, at the same time, reduces the heightened adipogenesis of old cells. These findings are important for the further study of stem cell control and treatment for a variety of aging related diseases.
Collapse
Affiliation(s)
- See-Chang Huang
- Biomedical Engineering Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | | | | | | | | | | | | |
Collapse
|
42
|
Hossain MG, Iwata T, Mizusawa N, Shima SWN, Okutsu T, Ishimoto K, Yoshimoto K. Compressive force inhibits adipogenesis through COX-2-mediated down-regulation of PPARgamma2 and C/EBPalpha. J Biosci Bioeng 2009; 109:297-303. [PMID: 20159581 DOI: 10.1016/j.jbiosc.2009.09.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/25/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Various mechanical stimuli affect differentiation of mesoderm-derived cells such as osteoblasts or myoblasts, suggesting that adipogenesis may also be influenced by mechanical stimulation. However, effects of mechanical stimuli on adipogenesis are scarcely known. Compressive force was applied to a human preadipocyte cell line, SGBS. Levels of gene expression were estimated by real-time reverse transcription-polymerase chain reaction. The accumulation of lipids was evaluated by Sudan III or Oil Red O staining. In SGBS cells subjected to a compressive force of 226 Pa for 12 h before adipogenic induction, adipogenesis was inhibited. Compressive force immediately after adipogenic induction did not affect the adipogenesis. The expression of peroxisome proliferator-activated receptor (PPAR) gamma2 and CCAAT/enhancer binding protein (C/EBP) alpha mRNA during adipogenesis was inhibited by compressive force, whereas C/EBPbeta and C/EBPdelta mRNA levels were unaffected. In preadipocytes, compressive force increased mRNA levels of Krüppel-like factor 2, preadipocyte factor 1, WNT10b, and cyclooxygenase-2 (COX-2) which are known as negative regulators for the PPARgamma2 and C/EBPalpha genes. Furthermore, a COX-2 inhibitor completely reversed the inhibition of adipogenesis by compressive force. In conclusion, compressive force inhibited adipogenesis by suppressing expression of PPARgamma2 and C/EBPalpha in a COX-2-dependent manner.
Collapse
Affiliation(s)
- Md Golam Hossain
- Department of Medical Pharmacology, Institute of Health Biosciences, The University of Tokushima Graduate School, 3-18-15 Kuramoto-cho, Tokushima City 770-8504, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Kim IS, Song YM, Cho TH, Kim JY, Weber FE, Hwang SJ. Synergistic action of static stretching and BMP-2 stimulation in the osteoblast differentiation of C2C12 myoblasts. J Biomech 2009; 42:2721-7. [PMID: 19766220 DOI: 10.1016/j.jbiomech.2009.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 08/06/2009] [Accepted: 08/11/2009] [Indexed: 10/20/2022]
Abstract
Static stretching is a major type of mechanical stimuli utilized during distraction osteogenesis (DO), a general surgical method for the lengthening of bone. The molecular signals that drive the regenerative process in DO include a variety of cytokines. Among these, bone morphogenic protein (BMP, -2 and -4) has been reported to exhibit strongly enhanced expression following the application of mechanical strain during the distraction phase. We hypothesize that mechanical stretching enhances osteoblast differentiation in DO by means of interaction with BMP-2 induced cytokine stimulation. C2C12 pluripotential myoblasts were exposed to stretching load and the resulting cell proliferation and osteoblast differentiation were then examined. The application of static stretching force resulted in significant cell proliferation at day 3, although with variable intensity according to the magnitude of stretching. A combined treatment of stretching load with BMP-2 stimulation significantly increased alkaline phosphatase (ALP) activity and up-regulated the gene expression of osteogenic markers (ALP, type I collagen, osteopontin, osteocalcin, cbfa1, osterix and dlx5). Results obtained with the combined treatment yielded more activity than just the BMP-2 treatment or stretching alone. These results reveal that specific levels of static stretching force increase cell proliferation and effectively stimulate the osteoblast differentiation of C2C12 cells in conjunction with BMP-2 stimulation, thus indicating a synergistic interaction between mechanical strain and cytokine signaling.
Collapse
Affiliation(s)
- In Sook Kim
- Dental Research Institute, Seoul National University, Seoul 110-768, Republic of Korea
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Lipases are acyl hydrolases that represent a diverse group of enzymes present in organisms ranging from prokaryotes to humans. This article focuses on an evolutionarily related family of extracellular lipases that include lipoprotein lipase, hepatic lipase and endothelial lipase. As newly synthesized proteins, these lipases undergo a series of co- and post-translational maturation steps occurring in the endoplasmic reticulum, including glycosylation and glycan processing, and protein folding and subunit assembly. This article identifies and discusses mechanisms that direct early and late events in lipase folding and assembly. Lipase maturation employs the two general chaperone systems operating in the endoplasmic reticulum, as well as a recently identified lipase-specific chaperone termed lipase maturation factor 1. We propose that the two general chaperone systems act in a coordinated manner early in lipase maturation in order to help create partially folded monomers; lipase maturation factor 1 then facilitates final monomer folding and subunit assembly into fully functional homodimers. Once maturation is complete, the lipases exit the endoplasmic reticulum and are secreted to extracellular sites, where they carry out a number of functions related to lipoprotein and lipid metabolism.
Collapse
Affiliation(s)
- Mark H Doolittle
- VA Greater Los Angeles, Healthcare System, 11301 Wilshire Blvd, Bldg 113, Rm 312, Los Angeles, CA 90073, USA, Tel.: +1 661 433 6349
| | | |
Collapse
|
45
|
Lahoute C, Sotiropoulos A, Favier M, Guillet-Deniau I, Charvet C, Ferry A, Butler-Browne G, Metzger D, Tuil D, Daegelen D. Premature aging in skeletal muscle lacking serum response factor. PLoS One 2008; 3:e3910. [PMID: 19079548 PMCID: PMC2593784 DOI: 10.1371/journal.pone.0003910] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 11/14/2008] [Indexed: 11/18/2022] Open
Abstract
Aging is associated with a progressive loss of muscle mass, increased adiposity and fibrosis that leads to sarcopenia. At the molecular level, muscle aging is known to alter the expression of a variety of genes but very little is known about the molecular effectors involved. SRF (Serum Response Factor) is a crucial transcription factor for muscle-specific gene expression and for post-natal skeletal muscle growth. To assess its role in adult skeletal muscle physiology, we developed a post-mitotic myofiber-specific and tamoxifen-inducible SRF knockout model. Five months after SRF loss, no obvious muscle phenotype was observed suggesting that SRF is not crucial for myofiber maintenance. However, mutant mice progressively developed IIB myofiber-specific atrophy accompanied by a metabolic switch towards a more oxidative phenotype, muscular lipid accumulation, sarcomere disorganization and fibrosis. After injury, mutant muscles exhibited an altered regeneration process, showing smaller regenerated fibers and persistent fibrosis. All of these features are strongly reminiscent of abnormalities encountered in aging skeletal muscle. Interestingly, we also observed an important age associated decrease in SRF expression in mice and human muscles. Altogether, these results suggest that a naturally occurring SRF down-regulation precedes and contributes to the muscle aging process. Indeed, triggering SRF loss in the muscles of mutant mice results in an accelerated aging process.
Collapse
Affiliation(s)
- Charlotte Lahoute
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Paris, France
| | - Athanassia Sotiropoulos
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Paris, France
| | - Marilyne Favier
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Paris, France
| | - Isabelle Guillet-Deniau
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Paris, France
| | - Claude Charvet
- INRA, UR1282 Infectiologie Animale et Santé Publique, Nouzilly, France
| | - Arnaud Ferry
- UMR S787, Inserm/UPMC-Paris 6/ Institut de Myologie, Paris, France
- Université Paris Descartes, Paris, France
| | | | - Daniel Metzger
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Department of Functional Genomics, Inserm, U596, CNRS, UMR 7104, Collège de France, Illkirch, Université Louis Pasteur, Strasbourg, France
| | - David Tuil
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Paris, France
- * E-mail: (DT); (DD)
| | - Dominique Daegelen
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France
- Inserm, U567, Paris, France
- * E-mail: (DT); (DD)
| |
Collapse
|
46
|
Cyclic stretch-induced TGFbeta1/Smad signaling inhibits adipogenesis in umbilical cord progenitor cells. Biochem Biophys Res Commun 2008; 377:1147-51. [PMID: 18983975 DOI: 10.1016/j.bbrc.2008.10.131] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 12/12/2022]
Abstract
Human umbilical cord perivascular cells (HUCPVCs) can differentiate along numerous lineages making them a favourable cell source for tissue regeneration. However, how these cells respond to biomechanical forces is unclear. This study aimed to determine whether cyclic stretch could regulate adipogenic differentiation of HUCPVCs, and to elucidate the mechanism of this regulation. In adipogenic culture, HUCPVCs expressed the adipocyte-specific transcription factors PPARgamma and C/EBPalpha and accumulated cytoplasmic lipid droplets. Exposure of these cells to equibiaxial cyclic stretch (10%, 0.5 Hz) in the presence of adipogenic medium, increased Smad2 phosphorylation compared to static samples and inhibited the expression of adipocyte markers; ERK1/2 phosphorylation was not changed. Inhibiting TGFbeta1 signaling decreased Smad2 phosphorylation and prevented the inhibition of adipogenic differentiation by cyclic stretch. These results demonstrate that cyclic equibiaxial stretch regulates HUCPVC differentiation even in the presence of an adipogenic milieu and should be an important consideration in developing future progenitor cell therapies.
Collapse
|
47
|
Knothe Tate ML, Falls TD, McBride SH, Atit R, Knothe UR. Mechanical modulation of osteochondroprogenitor cell fate. Int J Biochem Cell Biol 2008; 40:2720-38. [PMID: 18620888 DOI: 10.1016/j.biocel.2008.05.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 05/01/2008] [Accepted: 05/04/2008] [Indexed: 12/27/2022]
Abstract
Mesenchymal cells are natural tissue builders. They exhibit an extraordinary capacity to metamorphize into differentiated cells, using extrinsic spatial and temporal inputs and intrinsic algorithms, as well as to build and adapt their own habitat. In addition to providing a habitat for osteoprogenitor cells, tissues of the skeletal system provide mechanical support and protection for the multiple organs of vertebrate organisms. This review examines the role of mechanics on determination of cell fate during pre-, peri- and postnatal development of the skeleton as well as during tissue genesis and repair in postnatal life. The role of cell mechanics is examined and brought into context of intrinsic cues during mesenchymal condensation. Remarkable new insights regarding structure function relationships in mesenchymal stem cells, and their influence on determination of cell fate are integrated in the context of de novo tissue generation and postnatal repair. Key differences in the formation of osteogenic and chondrogenic condensations are discussed in relation to direct intramembranous and indirect endochondral ossification. New approaches are discussed to elucidate and exploit extrinsic cues to generate tissues in the laboratory and in the clinic.
Collapse
Affiliation(s)
- Melissa L Knothe Tate
- Department of Biomedical Engineering, Wickenden 307, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | | | | | | | | |
Collapse
|
48
|
Abstract
Wnt regulation of muscle development is thought to be mediated by the beta-catenin-TCF/LEF-dependent canonical pathway. Here we demonstrate that beta-catenin, not TCF/LEF, is required for muscle differentiation. We showed that beta-catenin interacts directly with MyoD, a basic helix-loop-helix transcription factor essential for muscle differentiation and enhances its binding to E box elements and transcriptional activity. MyoD-mediated transactivation is inhibited in muscle cells when beta-catenin is deficient or the interaction between MyoD and beta-catenin is disrupted. These results demonstrate that beta-catenin is necessary for MyoD function, identifying MyoD as an effector in the Wnt canonical pathway.
Collapse
|
49
|
Guo W, Flanagan J, Jasuja R, Kirkland J, Jiang L, Bhasin S. The effects of myostatin on adipogenic differentiation of human bone marrow-derived mesenchymal stem cells are mediated through cross-communication between Smad3 and Wnt/beta-catenin signaling pathways. J Biol Chem 2008; 283:9136-45. [PMID: 18203713 DOI: 10.1074/jbc.m708968200] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The effects of myostatin on adipogenic differentiation are poorly understood, and the underlying mechanisms are unknown. We determined the effects of human recombinant myostatin protein on adipogenesis of bone marrow-derived human mesenchymal stem cells (hMSCs) and adipose tissue-derived preadipocytes. For both progenitor cell types, differentiation in the presence of myostatin caused a dose-dependent reduction of lipid accumulation and diminished incorporation of exogenous fatty acid into cellular lipids. Myostatin significantly down-regulated the expression of adipocyte markers PPARgamma, C/EBPalpha, leptin, and aP2, but not C/EBPbeta. Overexpression of PPARgamma, but not C/EBPbeta, blocked the inhibitory effects of myostatin on adipogenesis. Myostatin induced phosphorylation of Smad3 in hMSCs; knockdown of Smad3 by RNAi or inhibition of its upstream kinase by an Alk5 inhibitor blocked the inhibitory effect of myostatin on adipogenesis in hMSCs, implying an important role of Smad3 activation in this event. Furthermore, myostatin enhanced nuclear translocation of beta-catenin and formation of the Smad3-beta-catenin-TCF4 complex, together with the altered expression of a number of Wnt/beta-catenin pathway genes in hMSCs. The inhibitory effects of myostatin on adipogenesis were blocked by RNAi silencing of beta-catenin and diminished by overexpression of dominant-negative TCF4. The conclusion is that myostatin inhibited adipogenesis in human bone marrow-derived mesenchymal stem cells and preadipocytes. These effects were mediated, in part, by activation of Smad3 and cross-communication of the TGFbeta/Smad signal to Wnt/beta-catenin/TCF4 pathway, leading to down-regulation of PPARgamma.
Collapse
Affiliation(s)
- Wen Guo
- Section of Endocrinology, Diabetes, and Nutrition, Boston University School of Medicine, Boston Medical Center, 670 Albany Street, Boston, MA 02118, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Anderson EJ, Knothe Tate ML. Design of Tissue Engineering Scaffolds as Delivery Devices for Mechanical and Mechanically Modulated Signals. ACTA ACUST UNITED AC 2007; 13:2525-38. [PMID: 17822359 DOI: 10.1089/ten.2006.0443] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
New approaches to tissue engineering aim to exploit endogenous strategies such as those occurring in prenatal development and recapitulated during postnatal healing. Defining tissue template specifications to mimic the environment of the condensed mesenchyme during development allows for exploitation of tissue scaffolds as delivery devices for extrinsic cues, including biochemical and mechanical signals, to drive the fate of mesenchymal stem cells seeded within. Although a variety of biochemical signals that modulate stem cell fate have been identified, the mechanical signals conducive to guiding pluripotent cells toward specific lineages are less well characterized. Furthermore, not only is spatial and temporal control of mechanical stimuli to cells challenging, but also tissue template geometries vary with time due to tissue ingrowth and/or scaffold degradation. Hence, a case study was carried out to analyze flow regimes in a testbed scaffold as a first step toward optimizing scaffold architecture. A pressure gradient was applied to produce local (nm-micron) flow fields conducive to migration, adhesion, proliferation, and differentiation of cells seeded within, as well as global flow parameters (micron-mm), including flow velocity and permeability, to enhance directed cell infiltration and augment mass transport. Iterative occlusion of flow channel dimensions was carried out to predict virtually the effect of temporal geometric variation (e.g., due to tissue development and growth) on delivery of local and global mechanical signals. Thereafter, insights from the case study were generalized to present an optimization scheme for future development of scaffolds to be implemented in vitro or in vivo. Although it is likely that manufacture and testing will be required to finalize design specifications, it is expected that the use of the rational design optimization will reduce the number of iterations required to determine final prototype geometries and flow conditions. As the range of mechanical signals conducive to guiding cell fate in situ is further elucidated, these refined design criteria can be integrated into the general optimization rubric, providing a technological platform to exploit nature's endogenous tissue engineering strategies for targeted tissue generation in the lab or the clinic.
Collapse
Affiliation(s)
- Eric J Anderson
- Department of Mechanical and Aerospace Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|