1
|
Cheung G, Lin YC, Papadopoulos V. Translocator protein in the rise and fall of central nervous system neurons. Front Cell Neurosci 2023; 17:1210205. [PMID: 37416505 PMCID: PMC10322222 DOI: 10.3389/fncel.2023.1210205] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
Translocator protein (TSPO), a 18 kDa protein found in the outer mitochondrial membrane, has historically been associated with the transport of cholesterol in highly steroidogenic tissues though it is found in all cells throughout the mammalian body. TSPO has also been associated with molecular transport, oxidative stress, apoptosis, and energy metabolism. TSPO levels are typically low in the central nervous system (CNS), but a significant upregulation is observed in activated microglia during neuroinflammation. However, there are also a few specific regions that have been reported to have higher TSPO levels than the rest of the brain under normal conditions. These include the dentate gyrus of the hippocampus, the olfactory bulb, the subventricular zone, the choroid plexus, and the cerebellum. These areas are also all associated with adult neurogenesis, yet there is no explanation of TSPO's function in these cells. Current studies have investigated the role of TSPO in microglia during neuron degeneration, but TSPO's role in the rest of the neuron lifecycle remains to be elucidated. This review aims to discuss the known functions of TSPO and its potential role in the lifecycle of neurons within the CNS.
Collapse
|
2
|
Shoshan-Barmatz V, Pittala S, Mizrachi D. VDAC1 and the TSPO: Expression, Interactions, and Associated Functions in Health and Disease States. Int J Mol Sci 2019; 20:ijms20133348. [PMID: 31288390 PMCID: PMC6651789 DOI: 10.3390/ijms20133348] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The translocator protein (TSPO), located at the outer mitochondrial membrane (OMM), serves multiple functions and contributes to numerous processes, including cholesterol import, mitochondrial metabolism, apoptosis, cell proliferation, Ca2+ signaling, oxidative stress, and inflammation. TSPO forms a complex with the voltage-dependent anion channel (VDAC), a protein that mediates the flux of ions, including Ca2+, nucleotides, and metabolites across the OMM, controls metabolism and apoptosis and interacts with many proteins. This review focuses on the two OMM proteins TSPO and VDAC1, addressing their structural interaction and associated functions. TSPO appears to be involved in the generation of reactive oxygen species, proposed to represent the link between TSPO activation and VDAC, thus playing a role in apoptotic cell death. In addition, expression of the two proteins in healthy brains and diseased states is considered, as is the relationship between TSPO and VDAC1 expression. Both proteins are over-expressed in in brains from Alzheimer’s disease patients. Finally, TSPO expression levels were proposed as a biomarker of some neuropathological settings, while TSPO-interacting ligands have been considered as a potential basis for drug development.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Srinivas Pittala
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Dario Mizrachi
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
3
|
Selvaraj V, Tu LN. Current status and future perspectives: TSPO in steroid neuroendocrinology. J Endocrinol 2016; 231:R1-R30. [PMID: 27422254 DOI: 10.1530/joe-16-0241] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/15/2016] [Indexed: 12/21/2022]
Abstract
The mitochondrial translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), has received significant attention both as a diagnostic biomarker and as a therapeutic target for different neuronal disease pathologies. Recently, its functional basis believed to be mediating mitochondrial cholesterol import for steroid hormone production has been refuted by studies examining both in vivo and in vitro genetic Tspo-deficient models. As a result, there now exists a fundamental gap in the understanding of TSPO function in the nervous system, and its putative pharmacology in neurosteroid production. In this review, we discuss several recent findings in steroidogenic cells that are in direct contradiction to previous studies, and necessitate a re-examination of the purported role for TSPO in de novo neurosteroid biosynthesis. We critically examine the pharmacological effects of different TSPO-binding drugs with particular focus on studies that measure neurosteroid levels. We highlight the basis of key misconceptions regarding TSPO that continue to pervade the literature, and the need for interpretation with caution to avoid negative impacts. We also summarize the emerging perspectives that point to new directions that need to be investigated for understanding the molecular function of TSPO, only after which the true potential of this therapeutic target in medicine may be realized.
Collapse
Affiliation(s)
- Vimal Selvaraj
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| | - Lan N Tu
- Department of Animal ScienceCornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Tu LN, Zhao AH, Hussein M, Stocco DM, Selvaraj V. Translocator Protein (TSPO) Affects Mitochondrial Fatty Acid Oxidation in Steroidogenic Cells. Endocrinology 2016; 157:1110-21. [PMID: 26741196 PMCID: PMC4769361 DOI: 10.1210/en.2015-1795] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Translocator protein (TSPO), also known as the peripheral benzodiazepine receptor, is a highly conserved outer mitochondrial membrane protein present in specific subpopulations of cells within different tissues. In recent studies, the presumptive model depicting mammalian TSPO as a critical cholesterol transporter for steroidogenesis has been refuted by studies examining effects of Tspo gene deletion in vivo and in vitro, biochemical testing of TSPO cholesterol transport function, and specificity of TSPO-mediated pharmacological responses. Nevertheless, high TSPO expression in steroid-producing cells seemed to indicate an alternate function for this protein in steroidogenic mitochondria. To seek an explanation, we used CRISPR/Cas9-mediated TSPO knockout steroidogenic MA-10 Leydig cell (MA-10:TspoΔ/Δ) clones to examine changes to core mitochondrial functions resulting from TSPO deficiency. We observed that 1) MA-10:TspoΔ/Δ cells had a shift in substrate utilization for energy production from glucose to fatty acids with significantly higher mitochondrial fatty acid oxidation (FAO), and increased reactive oxygen species production; and 2) oxygen consumption rate, mitochondrial membrane potential, and proton leak were not different between MA-10:TspoΔ/Δ and MA-10:Tspo+/+ control cells. Consistent with this finding, TSPO-deficient adrenal glands from global TSPO knockout (Tspo(-/-)) mice also showed up-regulation of genes involved in FAO compared with the TSPO floxed (Tspo(fl/fl)) controls. These results demonstrate the first experimental evidence that TSPO can affect mitochondrial energy homeostasis through modulation of FAO, a function that appears to be consistent with high levels of TSPO expression observed in cell types active in lipid storage/metabolism.
Collapse
Affiliation(s)
- Lan N Tu
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Amy H Zhao
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Mahmoud Hussein
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Douglas M Stocco
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Vimal Selvaraj
- Department of Animal Science (L.N.T., A.H.Z., M.H., V.S.), College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853; and Department of Cell Biology and Biochemistry (D.M.S.), School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
5
|
Habicht KL, Singh NS, Indig FE, Wainer IW, Moaddel R, Shimmo R. The development of mitochondrial membrane affinity chromatography columns for the study of mitochondrial transmembrane proteins. Anal Biochem 2015; 484:154-61. [PMID: 26049098 DOI: 10.1016/j.ab.2015.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/18/2022]
Abstract
Mitochondrial membrane fragments from U-87 MG (U87MG) and HEK-293 cells were successfully immobilized onto immobilized artificial membrane (IAM) chromatographic support and surface of activated open tubular (OT) silica capillary, resulting in mitochondrial membrane affinity chromatography (MMAC) columns. Translocator protein (TSPO), located in mitochondrial outer membrane as well as sulfonylurea and mitochondrial permeability transition pore (mPTP) receptors, localized to the inner membrane, were characterized. Frontal displacement experiments with multiple concentrations of dipyridamole (DIPY) and PK-11195 were run on MMAC (U87MG) column, and the binding affinities (Kd) determined were 1.08±0.49 and 0.0086±0.0006μM, respectively, consistent with previously reported values. Furthermore, binding affinities (Ki) for DIPY binding site were determined for TSPO ligands, PK-11195, mesoporphyrin IX, protoporphyrin IX, and rotenone. In addition, the relative ranking of these TSPO ligands based on single displacement studies using DIPY as marker on MMAC (U87MG) was consistent with the obtained Ki values. The immobilization of mitochondrial membrane fragments was also confirmed by confocal microscopy.
Collapse
Affiliation(s)
- K-L Habicht
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, 10120 Tallinn, Estonia; Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - N S Singh
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - F E Indig
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - I W Wainer
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - R Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - R Shimmo
- Department of Natural Sciences, Institute of Mathematics and Natural Sciences, Tallinn University, 10120 Tallinn, Estonia.
| |
Collapse
|
6
|
Rasagiline prevents apoptosis induced by PK11195, a ligand of the outer membrane translocator protein (18 kDa), in SH-SY5Y cells through suppression of cytochrome c release from mitochondria. J Neural Transm (Vienna) 2013; 120:1539-51. [PMID: 23681678 DOI: 10.1007/s00702-013-1033-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022]
Abstract
Rasagiline protects neuronal cells from cell death caused by various lines of insults. Its neuroprotective function is due to suppression of mitochondrial apoptosis signaling and induction of neuroprotective genes, including Bcl-2 and neurotrophic factors. Rasagiline inhibits the mitochondrial membrane permeabilization, an initial stage in apoptosis, but the mechanism has been elusive. In this paper, it was investigated how rasagiline regulates mitochondrial death cascade in apoptosis induced in SH-SY5Y cells by PK11195, a ligand of the outer membrane translocator protein of 18 kDa. Rasagiline prevented release of cytochrome c (Cyt-c), and the following caspase 3 activation, ATP depletion and apoptosis, but did not inhibit the mitochondrial membrane potential collapse, in contrast to Bcl-2 overexpression. Rasagiline stabilized the mitochondrial contact site and suppressed Cyt-c release into cytoplasm, which should be the critical point for the regulation of apoptosis. Monoamine oxidase was not associated with anti-apoptotic activity of rasagiline in PK11195-induced apoptosis.
Collapse
|
7
|
Effects of 18-kDa translocator protein knockdown on gene expression of glutamate receptors, transporters, and metabolism, and on cell viability affected by glutamate. Pharmacogenet Genomics 2012; 22:606-19. [PMID: 22732722 DOI: 10.1097/fpc.0b013e3283544531] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Previously, several important roles for glutamate have been described for the biology of primary brain tumors. For example, glutamate has been suggested to promote glioma cell proliferation by the activation of the 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl)propanoic acid (AMPA) subtype of glutamate receptors. In the present study, we determined the potential regulatory roles of the 18-kDa translocator protein (TSPO) in the glutamatergic system in relation to cell death of brain tumor cells through knockdown of the TSPO by genetic manipulation. MATERIALS AND METHODS With microarray analysis and validation of gene expression of particular genes using real-time PCR, we found effects because of small inhibitory RNA knockdown of the TSPO in human U118MG glioblastoma cells on gene expression of glutamate receptors, glutamate transporters, and enzymes for glutamate metabolism. We also applied antisense RNA to silence TSPO in rat C6 glioblastoma cells and assayed the effects on DNA fragmentation, indicative of apoptosis, because of glutamate exposure. RESULTS In particular, the effects of TSPO silencing in human U118MG cells related to glutamate metabolism indicate a net effect of a reduction in glutamate levels, which may potentially protect the cells in question from cell death. The TSPO knockdown in C6 cells showed that TSPO is required for the induction of apoptosis because of glutamate exposure. CONCLUSION These findings show that interactions between the TSPO and the glutamatergic system may play a role in tumor development of glioblastoma cells. This may also have implications for our understanding of the involvement of the TSPO in secondary brain damage and neurodegenerative diseases.
Collapse
|
8
|
de Lima CB, Tamura EK, Montero-Melendez T, Palermo-Neto J, Perretti M, Markus RP, Farsky SHP. Actions of translocator protein ligands on neutrophil adhesion and motility induced by G-protein coupled receptor signaling. Biochem Biophys Res Commun 2011; 417:918-23. [PMID: 22209795 DOI: 10.1016/j.bbrc.2011.12.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/15/2011] [Indexed: 01/13/2023]
Abstract
The 18 kDa translocator protein (TSPO) also known as the peripheral benzodiazepine receptor (PBR), mediates the transportation of cholesterol and anions from the outer to the inner mitochondrial membrane in different cells types. Although recent evidences indicate a potential role for TSPO in the development of inflammatory processes, the mechanisms involved have not been elucidated. The present study investigated the ability of the specific TSPO ligands, the isoquinoline carboxamide PK11195 and benzodiazepine Ro5-4864, on neutrophil recruitment promoted by the N-formylmethionyl-leucyl-phenylalanine peptide (fMLP), an agonist of G-protein coupled receptor (GPCR). Pre-treatment with Ro5-4864 abrograted fMLP-induced leukocyte-endothelial interactions in mesenteric postcapillary venules in vivo. Moreover, in vitro Ro5-4864 treatment prevented fMLP-induced: (i) L-selectin shedding and overexpression of PECAM-1 on the neutrophil cell surface; (ii) neutrophil chemotaxis and (iii) enhancement of intracellular calcium cations (iCa(+2)). Intriguingly, the two latter effects were augmented by cell treatment with PK11195. An allosteric agonist/antagonist relation may be suggested, as the effects of Ro5-4864 on fMLP-stimulated neutrophils were reverted by simultaneous treatment with PK11195. Taken together, these data highlight TSPO as a modulator of pathways of neutrophil adhesion and locomotion induced by GPCR, connecting TSPO actions and the onset of an innate inflammatory response.
Collapse
Affiliation(s)
- Camila Bento de Lima
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Effects of different doses and schedules of diazepam treatment on lymphocyte parameters in rats. Int Immunopharmacol 2010; 10:1335-43. [PMID: 20846531 DOI: 10.1016/j.intimp.2010.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 07/30/2010] [Accepted: 08/20/2010] [Indexed: 11/20/2022]
Abstract
Benzodiazepines (BZD) are widely used for the treatment of anxiety. They enhance GABA-ergic neurotransmission through the binding on specific BDZ recognition sites, within the GABA(A) receptor-ion channel complex. However, recent studies showed that BZD also act on peripheral benzodiazepine receptor sites (PBR) or translocator protein 18 kDa (TSPO). Evidence for a direct immunomodulatory action for BZD emerged from studies that demonstrated the presence of TSPO on immune/inflammatory cells. The present study was designed to analyze the effects of diazepam on rat lymphocyte parameters, specifically on phenotype, cell proliferation and cell death. The effects of both acute and long-term (21 days) diazepam (1 and 10 mg/kg/day) administrations were evaluated. Results showed that diazepam (1 mg/kg) treatment did not change the immune parameters analyzed. However, both diazepam (10 mg/kg) acute and long-term treatments decreased the number of apoptotic cells; they also increased the percentage of T cytotoxic cells; decreased the percentage of B cells and increased the corticosterone serum levels. The induction of functional tolerance was suggested for the highest dose of diazepam (10 mg/kg), but not for the smaller dose (1 mg/kg) used, at least for diazepam effects on corticosterone serum levels. Diazepam effects were discussed as being related to the number of TSPO sites present on immune cells and/or to the increased levels of serum corticosterone observed after the treatments used.
Collapse
|
10
|
Bertomeu T, Zvereff V, Ibrahim A, Zehntner SP, Aliaga A, Rosa-Neto P, Bedell BJ, Falardeau P, Gourdeau H. TLN-4601 peripheral benzodiazepine receptor (PBR/TSPO) binding properties do not mediate apoptosis but confer tumor-specific accumulation. Biochem Pharmacol 2010; 80:1572-9. [PMID: 20655882 DOI: 10.1016/j.bcp.2010.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/05/2010] [Accepted: 07/12/2010] [Indexed: 12/22/2022]
Abstract
TLN-4601 is a farnesylated dibenzodiazepinone isolated from Micromonospora sp. with an antiproliferative effect on several human cancer cell lines. Although the mechanism of action of TLN-4601 is unknown, our earlier work indicated that TLN-4601 binds the PBR (peripheral benzodiazepine receptor; more recently known as the translocator protein or TSPO), an 18 kDa protein associated with the mitochondrial permeability transition (mPT) pore. While the exact function of the PBR remains a matter of debate, it has been implicated in heme and steroid synthesis, cellular growth and differentiation, oxygen consumption and apoptosis. Using the Jurkat immortalized T-lymphocyte cell line, documented to have negligible PBR expression, and Jurkat cells stably transfected with a human PBR cDNA, the present study demonstrates that TLN-4601 induces apoptosis independently of PBR expression. As PBRs are overexpressed in brain tumors compared to normal brain, we examined if TLN-4601 would preferentially accumulate in tumors using an intra-cerebral tumor model. Our results demonstrate the ability of TLN-4601 to effectively bind the PBR in vivo as determined by competitive binding assay and receptor occupancy. Analysis of TLN-4601 tissue and plasma indicated that TLN-4601 preferentially accumulates in the tumor. Indeed, drug levels were 200-fold higher in the tumor compared to the normal brain. TLN-4601 accumulation in the tumor (176 μg/g) was also significant compared to liver (24.8 μg/g; 7-fold) and plasma (16.2 μg/mL; 11-fold). Taken together our data indicate that while PBR binding does not mediate cell growth inhibition and apoptosis, PBR binding may allow for the specific accumulation of TLN-4601 in PBR positive tumors.
Collapse
Affiliation(s)
- T Bertomeu
- Thallion Pharmaceuticals Inc., 7150 Alexander-Fleming, Montréal, QC, H4S 2C8, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Saha B, Mukherjee A, Samanta S, Saha P, Ghosh AK, Santra CR, Karmakar P. Caffeine augments Alprazolam induced cytotoxicity in human cell lines. Toxicol In Vitro 2009; 23:1100-9. [DOI: 10.1016/j.tiv.2009.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 05/19/2009] [Accepted: 05/26/2009] [Indexed: 12/26/2022]
|
12
|
Bombalska A, Graczyk A. Interactions of protoporphyrin IX and its derivatives with benzodiazepine receptor. Photodiagnosis Photodyn Ther 2009; 6:46-51. [DOI: 10.1016/j.pdpdt.2009.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/15/2009] [Accepted: 01/20/2009] [Indexed: 11/30/2022]
|
13
|
|
14
|
Matsuki N, Ishikawa T, Imai Y, Yamaguchi T. Low voltage pulses can induce apoptosis. Cancer Lett 2008; 269:93-100. [DOI: 10.1016/j.canlet.2008.04.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 04/14/2008] [Accepted: 04/15/2008] [Indexed: 01/25/2023]
|
15
|
Soustiel JF, Zaaroor M, Vlodavsky E, Veenman L, Weizman A, Gavish M. Neuroprotective effect of Ro5-4864 following brain injury. Exp Neurol 2008; 214:201-8. [PMID: 18789929 DOI: 10.1016/j.expneurol.2008.08.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/21/2008] [Accepted: 08/09/2008] [Indexed: 10/21/2022]
Abstract
The 18 kDa translocator protein (TSPO) is a protein complex located at the outer mitochondrial membrane and interacting with the mitochondrial permeability transition pore (mPTP), indicating its involvement in the control of mPTP opening. We intended to explore the effect of TSPO ligands, PK 11195 and Ro5-4864 on apoptosis in a rat model of cortical injury. Sprague-Dawley rats received a daily intraperitoneal injection of dimethylsulfoxide (vehicle), PK 11195, or Ro5-4864, starting 2 days prior the injury and a third injection after the injury. At 6 weeks, immunohistochemistry analysis showed that Ro5-4864 resulted in a significant increase in the number of surviving neurons and in the density of the neurofilament network in the perilesional cortex in comparison with animals of the vehicle and PK 11195 groups. In tissue samples dissected from the injured area, Ro5-4864 caused a significant reduction in activation of caspases 3 and 9 but not of caspase 8 in comparison with the vehicle and PK 11195 groups. In addition, measurements of transmembrane mitochondrial potential of mitochondria (Deltapsi(M)) isolated from normal rat brain showed that loss of Deltapsi(M) induced by recombinant Bax could be significantly reduced by Ro5-4864 in a concentration-dependent manner. Our findings indicate that the neuroprotective effect shown by Ro5-4864 in the present model of brain injury involves the mitochondrial pathway of apoptosis modulation of mPTP.
Collapse
Affiliation(s)
- Jean F Soustiel
- Acute Brain Injury Research Laboratory, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | | | |
Collapse
|
16
|
Kim DH, Lee JT, Lee IK, Ha JH. Comparative anticancer effects of flavonoids and diazepam in cultured cancer cells. Biol Pharm Bull 2008; 31:255-9. [PMID: 18239283 DOI: 10.1248/bpb.31.255] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study examined the comparative anticancer effects of flavonoids and diazepam in the cultured cancer cells. In the SNU-C4 colorectal and MDA-MB-231 breast adenocarcinoma cells, apigenin and fisetin, flavonoids, and diazepam inhibited cancer cell survival concentration and incubation-time dependently. Diazepam consistently inhibited FAS activity, a known anticancer mechanism of flavonoids, in a concentration dependent manner. Unlike diazepam, in highly aggressive breast MDA-MB-231 cells known to have a nuclear/perinuclear located PBR, PK11195, a specific PBR ligand enhanced the proliferation of cells, and the proliferative effect of PK11195 was reversed by an addition of lovastatin, a HMG-CoA reductase inhibitor. Diazepam- and flavonoids-induced cytotoxic activity in both cancer cell lines was not reduced by the addition of 5-fluorouracil (5-FU), a chemotherapeutic agent. Like flavonoids, diazepam inhibited the release of vascular endothelial growth factor (VEGF) and granulocyte-macrophage-colony stimulating factor (GM-CSF) into supernatants of cultured in the SNU-C4 and MDA-MB-231 cells. In conclusion, this study provided in vitro information on the safe use of sedative in oncologic patients.
Collapse
Affiliation(s)
- Dae-Hyun Kim
- Nuclear Medicine, School of Medicine, Kyungpook National University, Jung-Gu, Daegu, Republic of Korea
| | | | | | | |
Collapse
|
17
|
Ostuni MA, Ducroc R, Péranzi G, Tonon MC, Papadopoulos V, Lacapere JJ. Translocator protein (18 kDa) ligand PK 11195 induces transient mitochondrial Ca2+ release leading to transepithelial Cl- secretion in HT-29 human colon cancer cells. Biol Cell 2008; 99:639-47. [PMID: 17561806 DOI: 10.1042/bc20070048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION TSPO (translocator protein), known previously as PBR (peripheral-type benzodiazepine receptor), is a 18 kDa protein expressed in the mitochondrial membrane of a variety of tissues. TSPO has been reported to be over-expressed in human colorectal tumours and cancer cell lines, but its function is not well characterized. RESULTS We investigated the expression and function of TSPO in the human colon cancer cells HT-29. Immunohistochemical studies revealed that TSPO is localized in mitochondria, and its endogenous ligand, the polypeptide diazepam-binding inhibitor, in the cytosol. Radioligand binding studies using the specific high-affinity drug ligand [(3)H]PK 11195 and membrane fraction demonstrated saturable binding, with K(d) and B(max) values of 13.5+/-1.5 nM and 10.1+/-1.0 pmol/mg respectively. PK 11195 induced a rapid and transient dose-dependent rise in intracellular [Ca(2+)], which was unaffected by extracellular Ca(2+), but was blocked by the PTP (permeability transition pore) inhibitor, cyclosporin A, and by the TSPO partial agonist, flunitrazepam. Using HT-29 clone 19A cell line, which forms cell monolayers, we demonstrated that TSPO ligand stimulated a Ca(2+)-dependent transepithelial Cl(-) secretion. This secretion was inhibited: (i) after removal of extracellular Cl(-); (ii) by apical addition of the Cl(-) channel blocker NPPB [5-nitro-2-(3-phenylpropylamino)-benzoate]; and (iii) by basolateral addition of the Na(+)-K(+)-2Cl(-) co-transporter inhibitor bumetanide. Furthermore, the intracellular Ca(2+) chelator BAPTA/AM [bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis(acetoxymethyl ester)] and cyclosporin A abolished the rise in PK 11195-induced Cl(-) secretion. CONCLUSIONS These findings indicate that TSPO is located in mitochondrial membranes of HT-29 and reveal that its activation induces a rise in cytosolic Ca(2+), leading to the stimulation of Cl(-) secretion.
Collapse
Affiliation(s)
- Mariano A Ostuni
- Inserm U773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Université Paris 7 Denis Diderot, F-75018 Paris, France
| | | | | | | | | | | |
Collapse
|
18
|
Soustiel JF, Palzur E, Vlodavsky E, Veenman L, Gavish M. The effect of oxygenation level on cerebral post-traumatic apoptotsis is modulated by the 18-kDa translocator protein (also known as peripheral-type benzodiazepine receptor) in a rat model of cortical contusion. Neuropathol Appl Neurobiol 2007; 34:412-23. [PMID: 17973904 DOI: 10.1111/j.1365-2990.2007.00906.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS Hyperbaric hyperoxia has been shown to reduce apoptosis in brain injury. As the 18-kDa translocator protein (TSPO), also known as peripheral-type benzodiazepine receptor, is closely associated with the mitochondrial transition pore and because of its role in mitochondrial respiration and apoptosis, we hypothesized that reduction of apoptosis by hyperoxia may involve the TSPO. METHODS TSPO and transferase-mediated dUTP nick end labelling (TUNEL) immunopositivity was first assessed in cortical contusion, created by dynamic cortical deformation, by immunohistochemistry in rats exposed to normoxia [(dynamic cortical deformation (DCD)], normobaric hyperoxia or hyperbaric hyperoxia [hyperbaric oxygen therapy (HBO)]. In a second step, transmembrane mitochondrial potential (Deltapsi(M)) and caspase 9 activity were assessed in the injured area in comparison with the noninjured hemisphere. Measurements were performed in DCD and HBO groups. A third group receiving both HBO and the TSPO ligand PK11195 was investigated as well. RESULTS TSPO correlated quantitatively and regionally with TUNEL immunopositivity in the perilesional area. Hyperoxia reduced both the number of TSPO expressing and TUNEL positive cells in the perilesional area, and this effect proved to be pressure dependent. After contusion, we demonstrated a dissipation of Deltapsi(M) in isolated mitochondria and an elevation of caspase 9 activity in tissue homogenates from the contused area, both of which could be substantially reversed by hyperbaric hyperoxia. This protective effect of hyperoxia was reversed by PK11195. CONCLUSIONS The present findings suggest that the protective effect of hyperoxia may be due to a negative regulation of the proapoptotic function of mitochondrial TSPO, including conservation of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- J F Soustiel
- Acute Brain Injury Research Laboratory, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | | | | | | | | |
Collapse
|
19
|
Chen D, Huang X, Liu L, Shi N. Deltamethrin induces mitochondrial membrane permeability and altered expression of cytochrome C in rat brain. J Appl Toxicol 2007; 27:368-72. [PMID: 17304643 DOI: 10.1002/jat.1215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Deltamethrin is a type II synthetic pyrethroid insecticide and is used extensively. Numerous studies have demonstrated that deltamethrin can cause severe central nervous system symptoms. The mechanism of neuro-toxicity caused by deltamethrin is still poorly understood. This study investigated the effect of deltamethrin on the mitochondria-mediated apoptosis pathway in rat brain. The cortex and hippocampus mitochondrial membrane potential, permeability transition, expression of cytochrome c and activity of cytochrome c oxidase was assayed at 5, 24, 48 and 72 h following deltamethrin treatment. The study observed that the membrane potential, change of absorbance at 540 nm (A(540)), intensities of cytochrome c in mitochondria and activity of cytochrome c oxidase in the cortex and hippocampus of treated groups were significantly lower than those of the control group. The results of the study demonstrated that deltamethrin induced a decreased mitochondrial membrane potential and increased permeability, and reduced the expression of cytochrome c, thus depressing the activity of cytochrome c oxidase significantly. It indicates that deltamethrin may have an effect on mitochondria-mediated apoptosis of nerve cells in the rat brain.
Collapse
Affiliation(s)
- Dan Chen
- Department of Toxicology, MOE Key Laboratory of Environmental and Health, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, Hubei, China
| | | | | | | |
Collapse
|
20
|
Hu S, Chen SM, Li XK, Qin R, Mei ZN. Antitumor effects of chi-shen extract from Salvia miltiorrhiza and Paeoniae radix on human hepatocellular carcinoma cells. Acta Pharmacol Sin 2007; 28:1215-23. [PMID: 17640485 DOI: 10.1111/j.1745-7254.2007.00606.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIM To investigate the antihepatocellular carcinoma effects of chi-shen extract (CSE) from the water-soluble compounds of Salvia miltiorrhiza and Paeoniae radix. METHODS The effect of CSE on the growth of HepG2 cells (hepatocellular carcinoma cell line) was studied by 3-(4,5)-2,5-diphenyltetrazolium bromide assay. Apoptosis were detected through acridine orange (AO) and ethylene dibromide (EB) staining and DNA fragmentation assay. The effect of CSE on the cell cycle of HepG2 cells was studied by the propidium iodide staining method. The activation of caspases-3, -8 and -9 was examined by immunoassay kits. The transcription of the Bcl-2 family and p53 was detected by RT-PCR. RESULTS Our data revealed that CSE strongly induced HepG2 cell death in a dose- and time-dependent manner. CSE-induced cell death was considered to be apoptotic by observing the typical apoptotic morphological change by AO/EB staining and DNA fragmentation assay. The induction of HepG2 cell death was caused by an induction of apoptosis for the sub-G1 proportion increase, the downregulation of Bcl-2, the upregulation of Bax and p53, and the activation of the caspases-3 and -9 pathways. CONCLUSION These results clearly demonstrated that CSE was able to inhibit the proliferation of HepG2 cells and cause apoptosis. Moreover, the anticancer effects of CSE were related to the Bcl-2 family pathway and the activation of caspases-3 and -9 in HepG2 cells.
Collapse
Affiliation(s)
- Sheng Hu
- Institute of Materia Media, South-Central University for Nationalities, Wuhan, China
| | | | | | | | | |
Collapse
|
21
|
Königsrainer I, Vogel UF, Beckert S, Sotlar K, Coerper S, Braun A, Lembert N, Steurer W, Königsrainer A, Kupka S. Increased Translocator Protein (TSPO) mRNA Levels in Colon but Not in Rectum Carcinoma. Eur Surg Res 2007; 39:359-63. [PMID: 17652962 DOI: 10.1159/000106380] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/25/2007] [Indexed: 11/19/2022]
Abstract
BACKGROUND The peripheral-type benzodiazepine receptor or translocator protein (TSPO) is an 18-kDa protein involved in cell proliferation and apoptosis. TSPO was shown to be overexpressed in malignant tumors and cancer cell lines, correlating with enhanced malignant behavior. The present study analyzed the role of TSPO in patients with colorectal carcinomas. METHODS Tumor tissues and corresponding normal mucosa from 55 patients who underwent resection for colorectal carcinomas were analyzed for TSPO expression in correlation to GAPDH expression(glyceraldehyde-3-phosphate dehydrogenase) using a multiplex RT-PCR assay. RESULTS TSPO was overexpressed in 67% of the tumors in comparison to corresponding normal mucosa, and positivity as well as expression levels in colon carcinomas were significantly higher than in the rectum carcinomas. In contrast, TSPO expression was not different in intermediate versus high-grade tumors or in lymph node-positive versus -negative patients. CONCLUSION The differences in TSPO expression between colon and rectum carcinoma may imply that these tumors are of different biological behavior.
Collapse
Affiliation(s)
- I Königsrainer
- Department of General, Visceral and Transplant Surgery, Tübingen University Hospital, Tübingen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Scatena R, Bottoni P, Botta G, Martorana GE, Giardina B. The role of mitochondria in pharmacotoxicology: a reevaluation of an old, newly emerging topic. Am J Physiol Cell Physiol 2007; 293:C12-21. [PMID: 17475665 DOI: 10.1152/ajpcell.00314.2006] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In addition to their well-known critical role in energy metabolism, mitochondria are now recognized as the location where various catabolic and anabolic processes, calcium fluxes, various oxygen-nitrogen reactive species, and other signal transduction pathways interact to maintain cell homeostasis and to mediate cellular responses to different stimuli. It is important to consider how pharmacological agents affect mitochondrial biochemistry, not only because of toxicological concerns but also because of potential therapeutic applications. Several potential targets could be envisaged at the mitochondrial level that may underlie the toxic effects of some drugs. Recently, antiviral nucleoside analogs have displayed mitochondrial toxicity through the inhibition of DNA polymerase-γ (pol-γ). Other drugs that target different components of mitochondrial channels can disrupt ion homeostasis or interfere with the mitochondrial permeability transition pore. Many known inhibitors of the mitochondrial electron transfer chain act by interfering with one or more of the respiratory chain complexes. Nonsteroidal anti-inflammatory drugs (NSAIDs), for example, may behave as oxidative phosphorylation uncouplers. The mitochondrial toxicity of other drugs seems to depend on free radical production, although the mechanisms have not yet been clarified. Meanwhile, drugs targeting mitochondria have been used to treat mitochondrial dysfunctions. Importantly, drugs that target the mitochondria of cancer cells have been developed recently; such drugs can trigger apoptosis or necrosis of the cancer cells. Thus the aim of this review is to highlight the role of mitochondria in pharmacotoxicology, and to describe whenever possible the main molecular mechanisms underlying unwanted and/or therapeutic effects.
Collapse
Affiliation(s)
- Roberto Scatena
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy.
| | | | | | | | | |
Collapse
|
23
|
Neuzil J, Dong LF, Ramanathapuram L, Hahn T, Chladova M, Wang XF, Zobalova R, Prochazka L, Gold M, Freeman R, Turanek J, Akporiaye ET, Dyason JC, Ralph SJ. Vitamin E analogues as a novel group of mitocans: anti-cancer agents that act by targeting mitochondria. Mol Aspects Med 2007; 28:607-45. [PMID: 17499351 DOI: 10.1016/j.mam.2007.02.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 12/12/2022]
Abstract
Mitochondria have recently emerged as new and promising targets for cancer prevention and therapy. One of the reasons for this is that mitochondria are instrumental to many types of cell death and often lie downstream from the initial actions of anti-cancer drugs. Unlike the tumour suppressor gene encoding p53 that is notoriously prone to inactivating mutations but whose function is essential for induction of apoptosis by DNA-targeting agents (such as doxorubicin or 5-fluorouracil), mitochondria present targets that are not so compromised by genetic mutation and whose targeting overcomes problems with mutations of upstream targets such as p53. We have recently proposed a novel class of anti-cancer agents, mitocans that exert their anti-cancer activity by destabilising mitochondria, promoting the selective induction of apoptotic death in tumour cells. In this communication, we review recent findings on mitocans and propose a common basis for their mode of action in inducing apoptosis of cancer cells. We use as an example the analogues of vitamin E that are proving to be cancer cell-specific and may soon be developed into efficient anti-cancer drugs.
Collapse
Affiliation(s)
- Jiri Neuzil
- Apoptosis Research Group, School of Medical Science, Griffith University, Southport, Qld, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cleary J, Johnson KM, Opipari AW, Glick GD. Inhibition of the mitochondrial F1F0-ATPase by ligands of the peripheral benzodiazepine receptor. Bioorg Med Chem Lett 2007; 17:1667-70. [PMID: 17251020 DOI: 10.1016/j.bmcl.2006.12.102] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Accepted: 12/22/2006] [Indexed: 11/25/2022]
Abstract
Although PK11195 binds to the peripheral benzodiazepine receptor with nanomolar affinity, significant data exist which suggest that it has another cellular target distinct from the PBR. Here we demonstrate that PK11195 inhibits F(1)F(0)-ATPase activity in an OSCP-dependent manner, similar to the pro-apoptotic benzodiazepine Bz-423. Importantly, our data indicate that cellular responses observed with micromolar concentrations of PK11195, which are commonly attributed to modulation of the PBR, are likely a direct result of mitochondrial F(1)F(0)-ATPase inhibition.
Collapse
Affiliation(s)
- Joanne Cleary
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, MI 48109-1055, USA
| | | | | | | |
Collapse
|
25
|
Li W, Hardwick MJ, Rosenthal D, Culty M, Papadopoulos V. Peripheral-type benzodiazepine receptor overexpression and knockdown in human breast cancer cells indicate its prominent role in tumor cell proliferation. Biochem Pharmacol 2006; 73:491-503. [PMID: 17126818 DOI: 10.1016/j.bcp.2006.10.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 10/20/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
The peripheral-type benzodiazepine receptor (PBR), an 18-kDa high affinity drug and cholesterol binding protein, is expressed at high levels in various cancers. Its expression is positively correlated with aggressive metastatic behavior in human breast cancer cells. To determine the role of PBR in tumor progression, two human mammary carcinoma cell lines were utilized: the non-aggressive MCF-7 cell line, which expresses extremely low PBR levels, and the highly aggressive MDA-MB-231 cell line, which has much higher PBR levels. We have generated stably transfected lines of the tetracycline-repressible MCF-7 cell line (MCF-7 Tet-Off) with inducible human PBR cDNA. Induction of PBR expression in MCF-7 Tet-Off cells increased PBR ligand binding and cell proliferation. Transfection of MDA-MB-231 cells with multiple siRNAs complementary to PBR (PBR-siRNAs) led to different levels of PBR mRNA knockdown. Lentiviral-mediated PBR RNA interference in MDA-MB-231 cells decreased PBR levels by 50%. Decreased PBR expression was associated with cell cycle arrest at G2 phase, decreased cell proliferation, and significant increases in the protein levels of the cyclin-dependent kinase inhibitor p21(WAF/CIP1). These changes were accompanied by p53 activation seen as increased p53 phosphorylation (Ser15). In parallel, increased proteolytic activation of caspase-3 was also observed. Taken together these results suggest that PBR protein expression is directly involved in regulating cell survival and proliferation in human breast cancer cells by influencing signaling mechanisms involved in cell cycle control and apoptosis.
Collapse
MESH Headings
- Apoptosis/drug effects
- Apoptosis/physiology
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Caspase 3/metabolism
- Cell Line
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival/drug effects
- Cell Survival/physiology
- Cyclin A/metabolism
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Dose-Response Relationship, Drug
- Doxycycline/pharmacology
- G1 Phase/drug effects
- Humans
- Immunohistochemistry
- Models, Biological
- Proliferating Cell Nuclear Antigen/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Radioligand Assay
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Receptors, GABA-A/physiology
- Retinoblastoma Protein/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transfection
- Vimentin/biosynthesis
Collapse
Affiliation(s)
- Wenping Li
- Department of Biochemistry & Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
26
|
Abstract
The permeability transition pore (PTP) is a multi-protein complex at contact sites of the inner with the outer mitochondrial membrane. Research over the past years has led to the concept that the PTP occupies a central role in cell death induction. Numerous apoptosis signals convert this protein aggregate into an unspecific pore, thus activating mitochondria for the cellular self-destruction process. Here, we describe the evidence for this and the various approaches being undertaken to elucidate its subunit composition and mode of regulation. In particular, we review data that indicate a role of specific PTP subunits for apoptosis inhibition during tumorigenesis.
Collapse
Affiliation(s)
- C Brenner
- University of Versailles/St Quentin, CNRS UMR 8159, Versailles, France.
| | | |
Collapse
|
27
|
Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development. Pharmacol Ther 2006; 110:503-24. [PMID: 16337685 DOI: 10.1016/j.pharmthera.2005.09.007] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 09/27/2005] [Indexed: 11/16/2022]
Abstract
Peripheral-type benzodiazepine receptors (PBRs) are abundant in the cardiovascular system. In the cardiovascular lumen, PBRs are present in platelets, erythrocytes, lymphocytes, and mononuclear cells. In the walls of the cardiovascular system, PBR can be found in the endothelium, the striated cardiac muscle, the vascular smooth muscles, and the mast cells. The subcellular location of PBR is primarily in mitochondria. The PBR complex includes the isoquinoline binding protein (IBP), voltage-dependent anion channel (VDAC), and adenine nucleotide transporter (ANT). Putative endogenous ligands for PBR include protoporphyrin IX, diazepam binding inhibitor (DBI), triakontatetraneuropeptide (TTN), and phospholipase A2 (PLA2). Classical synthetic ligands for PBR are the isoquinoline 1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide (PK 11195) and the benzodiazepine 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4-benzodiazepin-2-one (Ro5 4864). Novel PBR ligands include N,N-di-n-hexyl 2-(4-fluorophenyl)indole-3-acetamide (FGIN-1-27) and 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575), both possessing steroidogenic properties, but while FGIN-1-27 is pro-apoptotic, SSR180575 is anti-apoptotic. Putative PBR functions include regulation of steroidogenesis, apoptosis, cell proliferation, the mitochondrial membrane potential, the mitochondrial respiratory chain, voltage-dependent calcium channels, responses to stress, and microglial activation. PBRs in blood vessel walls appear to take part in responses to trauma such as ischemia. The irreversible PBR antagonist, SSR180575, was found to reduce damage correlated with ischemia. Stress, anxiety disorders, and neurological disorders, as well as their treatment, can affect PBR levels in blood cells. PBRs in blood cells appear to play roles in several aspects of the immune response, such as phagocytosis and the secretion of interleukin-2, interleukin-3, and immunoglobulin A (IgA). Thus, alterations in PBR density in blood cells may have immunological consequences in the affected person. In conclusion, PBR in the cardiovascular system may represent a new target for drug development.
Collapse
Affiliation(s)
- Leo Veenman
- Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Department of Pharmacology, Ephron Street, P.O. Box 9649, Bat-Galim, Haifa 31096, Israel
| | | |
Collapse
|
28
|
Yang SA, Paek SH, Kozukue N, Lee KR, Kim JA. Alpha-chaconine, a potato glycoalkaloid, induces apoptosis of HT-29 human colon cancer cells through caspase-3 activation and inhibition of ERK 1/2 phosphorylation. Food Chem Toxicol 2006; 44:839-46. [PMID: 16387404 DOI: 10.1016/j.fct.2005.11.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2005] [Revised: 10/19/2005] [Accepted: 11/08/2005] [Indexed: 12/21/2022]
Abstract
Although alpha-chaconine, one of the two major potato trisaccharide glycoalkaloids, have shown cytotoxic effects on human cancer cells, the exact mechanism of this action of alpha-chaconine is not completely understood. In this study, we found that alpha-chaconine induced apoptosis of HT-29 cells in a time- and concentration-dependent manner by using flow cytometric analysis. We also found that caspase-3 activity and the active form of caspase-3 were increased 12 h after alpha-chaconine treatment. Caspase inhibitors, N-Ac-DEVD-CHO and Z-VAD-fmk, prevented alpha-chaconine-induced apoptosis, whereas alpha-chaconine-induced apoptosis was potentiated by PD98059, an extracellular signal-regulated kinase (ERK) inhibitor. However, pretreatment of the cells with LY294002 and SB203580, inhibitors of PI3K and p38, respectively, BAPTA-AM, an intracellular Ca(2+) chelator, and antioxidants such as N-acetylcysteine (NAC) and Trolox had no effect on the alpha-chaconine-induced cell death. In addition, phosphorylation of ERK was reduced by the treatment with alpha-chaconine. Moreover, alpha-chaconine-induced caspase-3 activity was further increased by the pretreatment with PD98059. Thus, the results indicate that alpha-chaconine induces apoptosis of HT-29 cells through inhibition of ERK and, in turn, activation of caspase-3.
Collapse
Affiliation(s)
- Seun-Ah Yang
- Institute for Drug Research, Yeungnam University, Gyeongsan 712-749, South Korea
| | | | | | | | | |
Collapse
|