1
|
Leal-Galvan B, Kumar D, Karim S, Saelao P, Thomas DB, Oliva Chavez A. A glimpse into the world of microRNAs and their putative roles in hard ticks. Front Cell Dev Biol 2024; 12:1460705. [PMID: 39376631 PMCID: PMC11456543 DOI: 10.3389/fcell.2024.1460705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Ticks are important blood feeding ectoparasites that transmit pathogens to wildlife, domestic animals, and humans. Hard ticks can feed for several days to weeks, nevertheless they often go undetected. This phenomenon can be explained by a tick's ability to release analgesics, immunosuppressives, anticoagulants, and vasodilators within their saliva. Several studies have identified extracellular vesicles (EVs) as carriers of some of these effector molecules. Further, EVs, and their contents, enhance pathogen transmission, modulate immune responses, and delay wound healing. EVs are double lipid-membrane vesicles that transport intracellular cargo, including microRNAs (miRNAs) to recipient cells. miRNAs are involved in regulating gene expression post-transcriptionally. Interestingly, tick-derived miRNAs have been shown to enhance pathogen transmission and affect vital biological processes such as oviposition, blood digestion, and molting. miRNAs have been found within tick salivary EVs. This review focuses on current knowledge of miRNA loading into EVs and homologies reported in ticks. We also describe findings in tick miRNA profiles, including miRNAs packed within tick salivary EVs. Although no functional studies have been done to investigate the role of EV-derived miRNAs in tick feeding, we discuss the functional characterization of miRNAs in tick biology and pathogen transmission. Lastly, we propose the possible uses of tick miRNAs to develop management tools for tick control and to prevent pathogen transmission. The identification and functional characterization of conserved and tick-specific salivary miRNAs targeting important molecular and immunological pathways within the host could lead to the discovery of new therapeutics for the treatment of tick-borne and non-tick-borne human diseases.
Collapse
Affiliation(s)
- Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, United States
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Perot Saelao
- USDA-ARS Veterinary Pest Research Unit, Kerrville, TX, United States
| | - Donald B. Thomas
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Adela Oliva Chavez
- Department of Entomology, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
2
|
Gu X, Yang F, Wang C, Xu J, Li Y, Liang Y, Fan J, Wu F, He R, Wang H, Xie Y. A novel cystatin in Psoroptes ovis var. cuniculi: molecular characterization, serodiagnostic potential, and its anti-inflammatory property on rabbit peripheral blood mononuclear cells. Parasit Vectors 2024; 17:397. [PMID: 39300530 DOI: 10.1186/s13071-024-06483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND The ectoparasite Psoroptes ovis var. cuniculi causes substantial economic losses to the global rabbit industry. Currently, microscopy for identifying Psoroptes mite in skin scrapings, as the "diagnosis gold standard," remains a challenge owing to its poor sensitivity in detecting low-level and/or early stage mite infestations. Additionally, Psoroptes infestations rapidly trigger cutaneous inflammation, thus the mites might produce some molecules to deal with the harmful effects of inflammation for their long-time survival on the host skin, but these molecules are still mostly unknown. METHODS To seek a sensitive diagnostic method and illuminate the new antiinflammatory molecules, we characterized a novel cystatin of P. ovis var. cuniculi (PsoCys) using bioinformatics and molecular biology methods. RESULTS The results showed that PsoCys comprised the classical features of the type II cystatin superfamily including an N-terminal glycine residue, a central QXVXG motif, and a C-terminal LW motif. In mixed stages of mites, the transcription level of PsoCys was significantly higher in "fed" mites than in "starved" mites (P < 0.001), and among the different life-cycle stages of "fed" mites, the expression of PsoCys was higher in adult males than in larva, nymph, and adult females (P < 0.001). The established indirect ELISA based on recombinant PsoCys (rPsoCys-iELISA) presented 95.4% sensitivity and 95.7% specificity. The area under the receiver operating characteristic curve (AUC) for this method was 0.991, indicating its excellent diagnostic performance. Moreover, rPsoCys-iELISA had advantages over microscopy for detecting low-level and/or early stage mite infestations (90% versus 40% in artificial infestation cases at 3 weeks post-infestation; 61.9% versus 22.6% in clinical cases). In addition, rPsoCys could inhibit the activity of papain and cathepsin B in vitro, and significantly suppressed mRNA levels of toll-like receptors (TLR 1, 2, 4, and 6) and downstream molecules (NF-κB, p38, MyD88, IL-10, and IFN-γ) in LPS-stimulated rabbit PBMCs, indicating its anti-inflammatory property. CONCLUSIONS Our findings indicated that PsoCys was a novel type II cystatin of Psoroptes mites, and it served as a potential serological diagnostic antigen for detecting low-level and/or early stage mite infestations, as well as a novel anti-inflammatory molecule of Psoroptes mites.
Collapse
Affiliation(s)
- Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China.
| | - Fusheng Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Ce Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yane Li
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Youping Liang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Je Fan
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Fangyan Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Hui Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
3
|
Haque MS, Rahman MK, Islam MS, You MJ. Molecular cloning, identification, transcriptional analysis, and silencing of enolase on the life cycle of Haemaphysalis longicornis (Acari, Ixodidae) tick. PARASITES, HOSTS AND DISEASES 2024; 62:226-237. [PMID: 38835263 DOI: 10.3347/phd.24015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2024]
Abstract
Ticks, blood-sucking ectoparasites, spread diseases to humans and animals. Haemaphysalis longicornis is a significant vector for tick-borne diseases in medical and veterinary contexts. Identifying protective antigens in H. longicornis for an anti-tick vaccine is a key tick control strategy. Enolase, a multifunctional protein, significantly converts D-2-phosphoglycerate and phosphoenolpyruvate in glycolysis and gluconeogenesis in cell cytoplasm. This study cloned a complete open reading frame (ORF) of enolase from the H. longicornis tick and characterized its transcriptional and silencing effect. We amplified the full-length cDNA of the enolase gene using rapid amplification of cDNA ends. The complete cDNA, with an ORF of 1,297 nucleotides, encoded a 432-amino acid polypeptide. Enolase of the Jeju strain H. longicornis exhibited the highest sequence similarity with H. flava (98%), followed by Dermacentor silvarum (82%). The enolase motifs identified included N-terminal and C-terminal regions, magnesium binding sites, and several phosphorylation sites. Reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated that enolase mRNA transcripts were expressed across all developmental stages of ticks and organs such as salivary gland and midgut. RT-PCR showed higher transcript levels in syn-ganglia, suggesting that synganglion nerves influence enolase,s role in tick salivary glands. We injected enolase double-stranded RNA into adult unfed female ticks, after which they were subsequently fed with normal unfed males until they spontaneously dropped off. RNA interference significantly (P<0.05) reduced feeding and reproduction, along with abnormalities in eggs (no embryos) and hatching. These findings suggest enolase is a promising target for future tick control strategies.
Collapse
Affiliation(s)
- Md Samiul Haque
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Center, Jeonbuk National University, Iksan 54596, Korea
| | - Md Khalesur Rahman
- Department of Microbiology, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Mohammad Saiful Islam
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Center, Jeonbuk National University, Iksan 54596, Korea
- Department of Medicine Surgery & Obstetrics, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Myung-Jo You
- Laboratory of Veterinary Parasitology, College of Veterinary Medicine and Bio-Safety Research Center, Jeonbuk National University, Iksan 54596, Korea
| |
Collapse
|
4
|
Adegoke A, Ribeiro JMC, Smith R, Karim S. Tick innate immune responses to hematophagy and Ehrlichia infection at single-cell resolution. Front Immunol 2024; 14:1305976. [PMID: 38274813 PMCID: PMC10808623 DOI: 10.3389/fimmu.2023.1305976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Ticks rely on robust cellular and humoral responses to control microbial infection. However, several aspects of the tick's innate immune system remain uncharacterized, most notably that of the immune cells (called hemocytes), which are known to play a significant role in cellular and humoral responses. Despite the importance of hemocytes in regulating microbial infection, our understanding of their basic biology and molecular mechanisms remains limited. Therefore, we believe that a more detailed understanding of the role of hemocytes in the interactions between ticks and tick-borne microbes is crucial to illuminating their function in vector competence and to help identify novel targets for developing new strategies to block tick-borne pathogen transmission. Methods This study examined hemocytes from the lone star tick (Amblyomma americanum) at the transcriptomic level using the 10X genomics single-cell RNA sequencing platform to analyze hemocyte populations from unfed, partially blood-fed, and Ehrlichia chaffeensis-infected ticks. The functional role of differentially expressed hemocyte markers in hemocyte proliferation and Ehrlichia dissemination was determined using an RNA interference approach. Results and discussion Our data exhibit the identification of fourteen distinct hemocyte populations. Our results uncover seven distinct lineages present in uninfected and Ehrlichia-infected hemocyte clusters. The functional characterization of hemocytin, cystatin, fibronectin, and lipocalin demonstrate their role in hemocyte population changes, proliferation, and Ehrlichia dissemination. Conclusion Our results uncover the tick immune responses to Ehrlichia infection and hematophagy at a single-cell resolution. This work opens a new field of tick innate immunobiology to understand the role of hemocytes, particularly in response to prolonged blood-feeding (hematophagy), and tick-microbial interactions.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
5
|
Martins LA, Buša M, Chlastáková A, Kotál J, Beránková Z, Stergiou N, Jmel MA, Schmitt E, Chmelař J, Mareš M, Kotsyfakis M. Protease-bound structure of Ricistatin provides insights into the mechanism of action of tick salivary cystatins in the vertebrate host. Cell Mol Life Sci 2023; 80:339. [PMID: 37898573 PMCID: PMC11071917 DOI: 10.1007/s00018-023-04993-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Tick saliva injected into the vertebrate host contains bioactive anti-proteolytic proteins from the cystatin family; however, the molecular basis of their unusual biochemical and physiological properties, distinct from those of host homologs, is unknown. Here, we present Ricistatin, a novel secreted cystatin identified in the salivary gland transcriptome of Ixodes ricinus ticks. Recombinant Ricistatin inhibited host-derived cysteine cathepsins and preferentially targeted endopeptidases, while having only limited impact on proteolysis driven by exopeptidases. Determination of the crystal structure of Ricistatin in complex with a cysteine cathepsin together with characterization of structural determinants in the Ricistatin binding site explained its restricted specificity. Furthermore, Ricistatin was potently immunosuppressive and anti-inflammatory, reducing levels of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α and nitric oxide in macrophages; IL-2 and IL-9 levels in Th9 cells; and OVA antigen-induced CD4+ T cell proliferation and neutrophil migration. This work highlights the immunotherapeutic potential of Ricistatin and, for the first time, provides structural insights into the unique narrow selectivity of tick salivary cystatins determining their bioactivity.
Collapse
Affiliation(s)
- Larissa A Martins
- Institute of Parasitology, Branišovská 1160/31, 37005, Ceske Budejovice, Czech Republic
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo N. 2, 16610, Prague, Czech Republic
| | - Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, the University of South Bohemia in České Budějovice, Branišovská 1760C, 37005, Ceske Budejovice, Czech Republic
| | - Jan Kotál
- Institute of Parasitology, Branišovská 1160/31, 37005, Ceske Budejovice, Czech Republic
- Department of Medical Biology, Faculty of Science, the University of South Bohemia in České Budějovice, Branišovská 1760C, 37005, Ceske Budejovice, Czech Republic
| | - Zuzana Beránková
- Department of Medical Biology, Faculty of Science, the University of South Bohemia in České Budějovice, Branišovská 1760C, 37005, Ceske Budejovice, Czech Republic
| | - Natascha Stergiou
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Mohamed Amine Jmel
- Institute of Parasitology, Branišovská 1160/31, 37005, Ceske Budejovice, Czech Republic
| | - Edgar Schmitt
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, the University of South Bohemia in České Budějovice, Branišovská 1760C, 37005, Ceske Budejovice, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo N. 2, 16610, Prague, Czech Republic.
| | - Michail Kotsyfakis
- Institute of Parasitology, Branišovská 1160/31, 37005, Ceske Budejovice, Czech Republic.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
6
|
Yoon KA, Kim WJ, Lee S, Yang HS, Lee BH, Lee SH. Comparative analyses of the venom components in the salivary gland transcriptomes and saliva proteomes of some heteropteran insects. INSECT SCIENCE 2022; 29:411-429. [PMID: 34296820 DOI: 10.1111/1744-7917.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Salivary gland-specific transcriptomes of nine heteropteran insects with distinct feeding strategies (predaceous, hematophagous, and phytophagous) were analyzed and annotated to compare and identify the venom components as well as their expression profiles. The transcriptional abundance of venom genes was verified via quantitative real-time PCR. Hierarchical clustering of 30 representative differentially expressed venom genes from the nine heteropteran species revealed unique groups of salivary gland-specific genes depending on their feeding strategy. The commonly transcribed genes included a paralytic neurotoxin (arginine kinase), digestive enzymes (cathepsin and serine protease), an anti-inflammatory protein (cystatin), hexamerin, and an odorant binding protein. Both predaceous and hematophagous (bed bug) heteropteran species showed relatively higher transcription levels of genes encoding proteins involved in proteolysis and cytolysis, whereas phytophagous heteropterans exhibited little or no expression of these genes, but had a high expression of vitellogenin, a multifunctional allergen. Saliva proteomes from four representative species were also analyzed. All venom proteins identified via saliva proteome analysis were annotated using salivary gland transcriptome data. The proteomic expression profiles of venom proteins were in good agreement with the salivary gland-specific transcriptomic profiles. Our results indicate that profiling of the salivary gland transcriptome provides important information on the composition and evolutionary features of venoms depending on their feeding strategy.
Collapse
Affiliation(s)
- Kyungjae Andrew Yoon
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | | | - Seungki Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Hee-Sun Yang
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Si Hyeock Lee
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Department of Agricultural Biology, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Agwunobi DO, Wang N, Huang L, Zhang Y, Chang G, Wang K, Li M, Wang H, Liu J. Phosphoproteomic Analysis of Haemaphysalis longicornis Saliva Reveals the Influential Contributions of Phosphoproteins to Blood-Feeding Success. Front Cell Infect Microbiol 2022; 11:769026. [PMID: 35118006 PMCID: PMC8804221 DOI: 10.3389/fcimb.2021.769026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Tick saliva, an essential chemical secretion of the tick salivary gland, is indispensable for tick survival owing to the physiological influence it exerts on the host defence mechanisms via the instrumentality of its cocktail of pharmacologically active molecules (proteins and peptides). Much research about tick salivary proteome has been performed, but how most of the individual salivary proteins are utilized by ticks to facilitate blood acquisition and pathogen transmission is not yet fully understood. In addition, the phosphorylation of some proteins plays a decisive role in their function. However, due to the low phosphorylation level of protein, especially for a small amount of protein, it is more difficult to study phosphorylation. Maybe, for this reason, the scarcity of works on the phosphorylated tick salivary proteomes still abound. Here, we performed a phosphoproteomic analysis of Haemaphysalis longicornis tick saliva via TiO2 enrichment and the most advanced Thermo Fisher Orbitrap Exploris 480 mass spectrometer for identification. A total of 262 phosphorylated tick saliva proteins were identified and were subjected to functional annotation/enrichment analysis. Cellular and metabolic process terms accounted for the largest proportion of the saliva proteins, with the participation of these proteins in vital intracellular and extracellular transport-oriented processes such as vesicle-mediated transport, exocytic process, cell adhesion, and movement of cell/subcellular component. “Endocytosis”, “Protein processing in endoplasmic reticulum”, and “Purine metabolism” were the most significantly enriched pathways. The knockdown (RNAi) of Tudor domain-containing protein (TCP), actin-depolymerizing factors (ADF), programmed cell death protein (PD), and serine/threonine-protein kinase (SPK) resulted in the dissociation of collagen fibers and the pilosebaceous unit, increased inflammatory infiltrates/granulocytes (possibly heterophiles), and the depletion of the epithelium. Ticks injected with SPK dsRNA engorged normally but with a change in skin colour (possibly an autoimmune reaction) and the failure to produce eggs pointing to a possible role of SPK in reproduction and host immune modulation. Ticks injected with ADF dsRNA failed to acquire blood, underscoring the role of ADF in facilitating tick feeding. The results of this study showed the presence of phosphorylation in tick saliva and highlight the roles of salivary phosphoproteins in facilitating tick feeding.
Collapse
Affiliation(s)
- Desmond O. Agwunobi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ningmei Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Lei Huang
- Hebei Xiaowutai Mountain National Nature Reserve Management Center, Zhangjiakou, China
| | - Yefei Zhang
- Hebei Xiaowutai Mountain National Nature Reserve Management Center, Zhangjiakou, China
| | - Guomin Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Kuang Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Mengxue Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hui Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Jingze Liu, ; Hui Wang,
| | - Jingze Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
- *Correspondence: Jingze Liu, ; Hui Wang,
| |
Collapse
|
8
|
Fujisawa S, Murata S, Isezaki M, Ariizumi T, Sato T, Oishi E, Taneno A, Maekawa N, Okagawa T, Ichii O, Konnai S, Ohashi K. Characterization of a Novel Cysteine Protease Inhibitor from Poultry Red Mites: Potential Vaccine for Chickens. Vaccines (Basel) 2021; 9:1472. [PMID: 34960218 PMCID: PMC8706574 DOI: 10.3390/vaccines9121472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022] Open
Abstract
Poultry red mite (PRM; Dermanyssus gallinae) is a hazardous, blood-sucking ectoparasite of birds that constitutes a threat to poultry farming worldwide. Acaricides, commonly used in poultry farms to prevent PRMs, are not effective because of the rapid emergence of acaricide-resistant PRMs. However, vaccination may be a promising strategy to control PRM. We identified a novel cystatin-like molecule in PRMs: Dg-Cys. Dg-Cys mRNA expression was detected in the midgut and ovaries, in all stages of life. The PRM nymphs that were artificially fed with the plasma from chickens that were immunized with Dg-Cys in vitro had a significantly reduced reproductive capacity and survival rate. Moreover, combination of Dg-Cys with other antigen candidates, like copper transporter 1 or adipocyte plasma membrane-associated protein, enhanced vaccine efficacies. vaccination and its application as an antigen for cocktail vaccines could be an effective strategy to reduce the damage caused by PRMs in poultry farming.
Collapse
Affiliation(s)
- Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Masayoshi Isezaki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
| | - Takuma Ariizumi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
- Division of Molecular Pathology, International Institute of Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Takumi Sato
- Vaxxinova Japan K.K., Tokyo 105-0013, Japan; (T.S.); (E.O.); (A.T.)
| | - Eiji Oishi
- Vaxxinova Japan K.K., Tokyo 105-0013, Japan; (T.S.); (E.O.); (A.T.)
| | - Akira Taneno
- Vaxxinova Japan K.K., Tokyo 105-0013, Japan; (T.S.); (E.O.); (A.T.)
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Osamu Ichii
- Department of Basic Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan;
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan; (S.F.); (M.I.); (T.A.); (S.K.); (K.O.)
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan; (N.M.); (T.O.)
| |
Collapse
|
9
|
Park JM, Oliva Chávez AS, Shaw DK. Ticks: More Than Just a Pathogen Delivery Service. Front Cell Infect Microbiol 2021; 11:739419. [PMID: 34540723 PMCID: PMC8440996 DOI: 10.3389/fcimb.2021.739419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jason M Park
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Adela S Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Dana K Shaw
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
10
|
Oliva Chávez AS, Wang X, Marnin L, Archer NK, Hammond HL, Carroll EEM, Shaw DK, Tully BG, Buskirk AD, Ford SL, Butler LR, Shahi P, Morozova K, Clement CC, Lawres L, Neal AJO, Mamoun CB, Mason KL, Hobbs BE, Scoles GA, Barry EM, Sonenshine DE, Pal U, Valenzuela JG, Sztein MB, Pasetti MF, Levin ML, Kotsyfakis M, Jay SM, Huntley JF, Miller LS, Santambrogio L, Pedra JHF. Tick extracellular vesicles enable arthropod feeding and promote distinct outcomes of bacterial infection. Nat Commun 2021; 12:3696. [PMID: 34140472 PMCID: PMC8211691 DOI: 10.1038/s41467-021-23900-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Extracellular vesicles are thought to facilitate pathogen transmission from arthropods to humans and other animals. Here, we reveal that pathogen spreading from arthropods to the mammalian host is multifaceted. Extracellular vesicles from Ixodes scapularis enable tick feeding and promote infection of the mildly virulent rickettsial agent Anaplasma phagocytophilum through the SNARE proteins Vamp33 and Synaptobrevin 2 and dendritic epidermal T cells. However, extracellular vesicles from the tick Dermacentor andersoni mitigate microbial spreading caused by the lethal pathogen Francisella tularensis. Collectively, we establish that tick extracellular vesicles foster distinct outcomes of bacterial infection and assist in vector feeding by acting on skin immunity. Thus, the biology of arthropods should be taken into consideration when developing strategies to control vector-borne diseases.
Collapse
Affiliation(s)
- Adela S Oliva Chávez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Xiaowei Wang
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liron Marnin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Holly L Hammond
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erin E McClure Carroll
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Excerpta Medica, Doylestown, PA, USA
| | - Dana K Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | - Brenden G Tully
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Amanda D Buskirk
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Process and Facilities, Division of Microbiology Assessment, Microbiology Assessment Branch III, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Shelby L Ford
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Preeti Shahi
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kateryna Morozova
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cristina C Clement
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology and Physiology and Biophysics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Lauren Lawres
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Anya J O' Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Choukri Ben Mamoun
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Kathleen L Mason
- USDA, ARS, Animal Disease Research Unit, Washington State University, Pullman, WA, USA
| | - Brandi E Hobbs
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Glen A Scoles
- USDA, ARS, Animal Disease Research Unit, Washington State University, Pullman, WA, USA
- USDA, ARS, Invasive Insect Biocontrol and Behavior Laboratory, Beltsville, MD, USA
| | - Eileen M Barry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel E Sonenshine
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Marcelo B Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marcela F Pasetti
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael L Levin
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Steven M Jay
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Jason F Huntley
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Immunology, Janssen Research and Development, Spring House, PA, USA
| | - Laura Santambrogio
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology and Physiology and Biophysics, Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR, da Silva Vaz I, Mulenga A. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl Trop Dis 2020; 14:e0007758. [PMID: 32049966 PMCID: PMC7041860 DOI: 10.1371/journal.pntd.0007758] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/25/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Amblyomma americanum ticks transmit more than a third of human tick-borne disease (TBD) agents in the United States. Tick saliva proteins are critical to success of ticks as vectors of TBD agents, and thus might serve as targets in tick antigen-based vaccines to prevent TBD infections. We describe a systems biology approach to identify, by LC-MS/MS, saliva proteins (tick = 1182, rabbit = 335) that A. americanum ticks likely inject into the host every 24 h during the first 8 days of feeding, and towards the end of feeding. Searching against entries in GenBank grouped tick and rabbit proteins into 27 and 25 functional categories. Aside from housekeeping-like proteins, majority of tick saliva proteins belong to the tick-specific (no homology to non-tick organisms: 32%), protease inhibitors (13%), proteases (8%), glycine-rich proteins (6%) and lipocalins (4%) categories. Global secretion dynamics analysis suggests that majority (74%) of proteins in this study are associated with regulating initial tick feeding functions and transmission of pathogens as they are secreted within 24–48 h of tick attachment. Comparative analysis of the A. americanum tick saliva proteome to five other tick saliva proteomes identified 284 conserved tick saliva proteins: we speculate that these regulate critical tick feeding functions and might serve as tick vaccine antigens. We discuss our findings in the context of understanding A. americanum tick feeding physiology as a means through which we can find effective targets for a vaccine against tick feeding. The lone star tick, Amblyomma americanum, is a medically important species in US that transmits 5 of the 16 reported tick-borne disease agents. Most recently, bites of this tick were associated with red meat allergies in humans. Vaccination of animals against tick feeding has been shown to be a sustainable and an effective alternative to current acaricide based tick control method which has several limitations. The pre-requisite to tick vaccine development is to understand the molecular basis of tick feeding physiology. Toward this goal, this study has identified proteins that A. americanum ticks inject into the host at different phases of its feeding cycle. This data set has identified proteins that A. americanum inject into the host within 24–48 h of feeding before it starts to transmit pathogens. Of high importance, we identified 284 proteins that are present in saliva of other tick species, which we suspect regulate important role(s) in tick feeding success and might represent rich source target antigens for a tick vaccine. Overall, this study provides a foundation to understand the molecular mechanisms regulating tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, Californai, United States of America
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Martins LA, Kotál J, Bensaoud C, Chmelař J, Kotsyfakis M. Small protease inhibitors in tick saliva and salivary glands and their role in tick-host-pathogen interactions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140336. [DOI: 10.1016/j.bbapap.2019.140336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022]
|
13
|
Parizi LF, Rangel CK, Sabadin GA, Saggin BF, Kiio I, Xavier MA, da Silva Matos R, Camargo-Mathias MI, Seixas A, Konnai S, Ohashi K, Githaka NW, da Silva Vaz I. Rhipicephalus microplus cystatin as a potential cross-protective tick vaccine against Rhipicephalus appendiculatus. Ticks Tick Borne Dis 2020; 11:101378. [PMID: 31982372 DOI: 10.1016/j.ttbdis.2020.101378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 02/07/2023]
Abstract
Rhipicephalus appendiculatus, the brown ear tick, is an important disease vector of livestock in eastern, central and southern Africa. Rhipicephalus appendiculatus acaricide resistance requires the search for alternative methods for its control. Cystatins constitute a superfamily of cysteine peptidase inhibitors vital for tick blood feeding and development. These inhibitors were proposed as antigens in anti-tick vaccines. In this work, we applied structural and biochemical approaches to characterize a new cystatin named R. appendiculatus cystatin 2a (Racys2a). Structural modeling showed that this new protein possesses characteristic type 2 cystatin motifs, besides conservation of other structural patterns along the protein. Peptidase inhibitory assays with recombinant Racys2a showed modulation of tick and host cathepsins involved in blood digestion and immune system responses, respectively. A heterologous tick challenge with R. appendiculatus in rabbits immunized with recombinant Rhipicephalus microplus cystatin 2c (rBmcys2c) was performed to determine cross-reactivity. Histological staining showed that rBmcys2c vaccination caused damage to the gut, salivary gland and ovary tissues in R. appendiculatus. Furthermore, cystatin vaccine reduced the number of fully engorged adult females in 11.5 %. Consequently, strategies to increase the protection rate are necessary, including the selection of two or more antigens to compose a vaccine cocktail.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Carolina Konrdörfer Rangel
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Gabriela Alves Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Bianca Fagundes Saggin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Irene Kiio
- International Livestock Research Institute (ILRI), PO Box 30709-00100, Nairobi, Kenya; Department of Biochemistry, School of Medicine, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - Marina Amaral Xavier
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil
| | - Renata da Silva Matos
- Departamento de Biologia, Instituto de Biociências, UNESP-Universidade Estadual Paulista, Rio Claro, SP, Brazil
| | | | - Adriana Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, RS 90050-170, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil
| | - Satoru Konnai
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan
| | - Kazuhiko Ohashi
- Laboratory of Infectious Diseases, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan
| | | | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre 91540-000, RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Brazil.
| |
Collapse
|
14
|
Lu S, da Rocha LA, Torquato RJS, da Silva Vaz Junior I, Florin-Christensen M, Tanaka AS. A novel type 1 cystatin involved in the regulation of Rhipicephalus microplus midgut cysteine proteases. Ticks Tick Borne Dis 2020; 11:101374. [PMID: 32008997 DOI: 10.1016/j.ttbdis.2020.101374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 01/03/2020] [Accepted: 01/10/2020] [Indexed: 01/20/2023]
Abstract
Rhipicephalus microplus is a cattle ectoparasite found in tropical and subtropical regions around the world with great impact on livestock production. R. microplus can also harbor pathogens, such as Babesia sp. and Anaplasma sp. which further compromise cattle production. Blood meal acquisition and digestion are key steps for tick development. In ticks, digestion takes place inside midgut cells and is mediated by aspartic and cysteine peptidases and, therefore, regulated by their inhibitors. Cystatins are a family of cysteine peptidases inhibitors found in several organisms and have been associated in ticks with blood acquisition, blood digestion, modulation of host immune response and tick immunity. In this work, we characterized a novel R. microplus type 1 cystatin, named Rmcystatin-1b. The inhibitor transcripts were found to be highly expressed in the midgut of partially and fully engorged females and they appear to be modulated at different days post-detachment. Purified recombinant Rmcystatin-1b displayed inhibitory activity towards typical cysteine peptidases with high affinity. Moreover, rRmcystatin-1b was able to inhibit native R. microplus cysteine peptidases and RNAi-mediated knockdown of the cystatin transcripts resulted in increased proteolytic activity. Moreover, rRmcystatin-1b was able to interfere with B. bovis growth in vitro. Taken together our data strongly suggest that Rmcystatin-1b is a regulator of blood digestion in R. microplus midgut.
Collapse
Affiliation(s)
- Stephen Lu
- Department of Biochemistry, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Leticia A da Rocha
- Department of Biochemistry, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Ricardo J S Torquato
- Department of Biochemistry, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-em), RJ, Brazil
| | - Monica Florin-Christensen
- Instituto de Patobiologia Veterinaria, Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA), INTA-Castelar, Los Reseros y Nicolas Repetto s/n, Hurlingham 1686, Argentina; National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires C1033AAj, Argentina
| | - Aparecida S Tanaka
- Department of Biochemistry, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-em), RJ, Brazil.
| |
Collapse
|
15
|
Feng LL, Liu L, Cheng TY. Proteomic analysis of saliva from partially and fully engorged adult female Rhipicephalus microplus (Acari: Ixodidae). EXPERIMENTAL & APPLIED ACAROLOGY 2019; 78:443-460. [PMID: 31175473 DOI: 10.1007/s10493-019-00390-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Rhipicephalus microplus salivary gland secretes a number of complex bioactive proteins during feeding. These components are important in feeding and affect anti-coagulation, anti-inflammation and also have anti-microbial effects. In this study, tick saliva was collected from partially engorged female (PEF) and fully engorged female (FEF) ticks. Liquid chromatography tandem-mass spectrometry (LC-MS/MS) and isobaric tags for relative and absolute quantification (iTRAQ) were used to identify and quantify R. microplus salivary proteins. A total of 322 unique peptides were detected and 151 proteins were characterized in both PEF and FEF. Of these, 41 proteins are considered as high-confidence proteins. Fifteen high-confidence proteins were upregulated and six high-confidence proteins were downregulated (p < 0.05; PEF:FEF ratio ≥ 1.2 or PEF:FEF ratio ≤ 0.83); 17 high-confidence proteins are slightly changed (PEF:FEF ratio > 0.83 and < 1.2). These high-confidence proteins are involved in several physiological roles, including egg development, transportation of proteins, immunity and anti-microorganism, anti-coagulant, and adhesion. In comparison with PEF, the number of upregulated proteins exceeded the number of proteins downregulated. Salivary protein may be induced by the blood-meal and these proteins contribute to successful feeding.
Collapse
Affiliation(s)
- Li-Li Feng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
- Hunan Colaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Lei Liu
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
- Hunan Colaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China
| | - Tian-Yin Cheng
- College of Veterinary Medicine, Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
- Hunan Colaborative Innovation Center of Safety Production of Livestock and Poultry, Hunan Agricultural University, Changsha, 410128, Hunan, People's Republic of China.
| |
Collapse
|
16
|
Chávez ASO, O'Neal AJ, Santambrogio L, Kotsyfakis M, Pedra JHF. Message in a vesicle - trans-kingdom intercommunication at the vector-host interface. J Cell Sci 2019; 132:132/6/jcs224212. [PMID: 30886004 DOI: 10.1242/jcs.224212] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Vector-borne diseases cause over 700,000 deaths annually and represent 17% of all infectious illnesses worldwide. This public health menace highlights the importance of understanding how arthropod vectors, microbes and their mammalian hosts interact. Currently, an emphasis of the scientific enterprise is at the vector-host interface where human pathogens are acquired and transmitted. At this spatial junction, arthropod effector molecules are secreted, enabling microbial pathogenesis and disease. Extracellular vesicles manipulate signaling networks by carrying proteins, lipids, carbohydrates and regulatory nucleic acids. Therefore, they are well positioned to aid in cell-to-cell communication and mediate molecular interactions. This Review briefly discusses exosome and microvesicle biogenesis, their cargo, and the role that nanovesicles play during pathogen spread, host colonization and disease pathogenesis. We then focus on the role of extracellular vesicles in dictating microbial pathogenesis and host immunity during transmission of vector-borne pathogens.
Collapse
Affiliation(s)
- Adela S Oliva Chávez
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Laura Santambrogio
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Ceske Budejovice 37005, Czech Republic
| | - Joao H F Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Dissecting Flavivirus Biology in Salivary Gland Cultures from Fed and Unfed Ixodes scapularis (Black-Legged Tick). mBio 2019; 10:mBio.02628-18. [PMID: 30696737 PMCID: PMC6355982 DOI: 10.1128/mbio.02628-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tick-borne flaviviruses (TBFVs) are responsible for more than 15,000 human disease cases each year, and Powassan virus lineage 2 (POWV-L2) deer tick virus has been a reemerging threat in North America over the past 20 years. Rapid transmission of TBFVs in particular emphasizes the importance of preventing tick bites, the difficulty in developing countermeasures to prevent transmission, and the importance of understanding TBFV infection in tick salivary glands (SGs). Tick blood feeding is responsible for phenomenal physiological changes and is associated with changes in TBFV multiplication within the tick and in SGs. Using SG cultures from Ixodes scapularis female ticks, the primary aims of this study were to identify cellular localization of virus-like particles in acini of infected SGs from fed and unfed ticks, localization of TBFV infection in infected SGs from fed ticks, and a tick transcript (with associated metabolic function) involved in POWV-L2 infection in SG cultures. The Ixodes scapularis tick transmits a number of pathogens, including tick-borne flaviviruses (TBFVs). In the United States, confirmed human infections with the Powassan virus (POWV) TBFV have a fatality rate of ∼10% and are increasing in incidence. Tick salivary glands (SGs) serve as an organ barrier to TBFV transmission, and little is known regarding the location of TBFV infection in SGs from fed ticks. Previous studies showed I. scapularis vanin (VNN) involved with TBFV infection of I. scapularis ISE6 embryonic cells, suggesting a potential role for this gene. The overall goal of this study was to use SG cultures to compare data on TBFV biology in SGs from fully engorged, replete (fed) ticks and from unfed ticks. TBFV multiplication was higher in SGs from fed ticks than in those from unfed ticks. Virus-like particles were observed only in granular acini of SGs from unfed ticks. The location of TBFV infection of SGs from fed ticks was observed in cells lining lobular ducts and trachea but not observed in acini. Transcript knockdown of VNN decreased POWV multiplication in infected SG cultures from both fed and unfed ticks. This work was the first to identify localization of TBFV multiplication in SG cultures from a fed tick and a tick transcript important for POWV multiplication in the tick SG, an organ critical for TBFV transmission. This research exemplifies the use of SG cultures in deciphering TBFV biology in the tick and as a translational tool for screening and identifying potential tick genes as potential countermeasure targets.
Collapse
|
18
|
Hackenberg M, Kotsyfakis M. Exosome-Mediated Pathogen Transmission by Arthropod Vectors. Trends Parasitol 2018; 34:549-552. [DOI: 10.1016/j.pt.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 10/17/2022]
|
19
|
Zotti M, Dos Santos EA, Cagliari D, Christiaens O, Taning CNT, Smagghe G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. PEST MANAGEMENT SCIENCE 2018; 74:1239-1250. [PMID: 29194942 DOI: 10.1002/ps.4813] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/09/2017] [Accepted: 11/22/2017] [Indexed: 05/03/2023]
Abstract
Scientists have made significant progress in understanding and unraveling several aspects of double-stranded RNA (dsRNA)-mediated gene silencing during the last two decades. Now that the RNA interference (RNAi) mechanism is well understood, it is time to consider how to apply the acquired knowledge to agriculture and crop protection. Some RNAi-based products are already available for farmers and more are expected to reach the market soon. Tailor-made dsRNA as an active ingredient for biopesticide formulations is considered a raw material that can be used for diverse purposes, from pest control and bee protection against viruses to pesticide resistance management. The RNAi mechanism works at the messenger RNA (mRNA) level, exploiting a sequence-dependent mode of action, which makes it unique in potency and selectivity compared with conventional agrochemicals. Furthermore, the use of RNAi in crop protection can be achieved by employing plant-incorporated protectants through plant transformation, but also by non-transformative strategies such as the use of formulations of sprayable RNAs as direct control agents, resistance factor repressors or developmental disruptors. In this review, RNAi is presented in an agricultural context (discussing products that have been launched on the market or will soon be available), and we go beyond the classical presentation of successful examples of RNAi in pest-insect control and comprehensively explore its potential for the control of plant pathogens, nematodes and mites, and to fight against diseases and parasites in beneficial insects. Moreover, we also discuss its use as a repressor for the management of pesticide-resistant weeds and insects. Finally, this review reports on the advances in non-transformative dsRNA delivery and the production costs of dsRNA, and discusses environmental considerations. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Moises Zotti
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Ericmar Avila Dos Santos
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Deise Cagliari
- Department of Crop Protection, Molecular Entomology, Federal University of Pelotas, Pelotas, Brazil
| | - Olivier Christiaens
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Clauvis Nji Tizi Taning
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
20
|
Bakshi M, Kim TK, Mulenga A. Disruption of blood meal-responsive serpins prevents Ixodes scapularis from feeding to repletion. Ticks Tick Borne Dis 2018; 9:506-518. [PMID: 29396196 PMCID: PMC5857477 DOI: 10.1016/j.ttbdis.2018.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/29/2022]
Abstract
Serine protease inhibitors (serpins) are thought to mediate the tick's evasion of the host's serine protease-mediated defense pathways such as inflammation and blood clotting. This study describes characterization and target validation of 11 blood meal-responsive serpins that are associated with nymph and adult Ixodes scapularis tick feeding as revealed by quantitative (q)RT-PCR and RNAi silencing analyses. Given the high number of targets, we used combinatorial (co) RNAi silencing to disrupt candidate serpins in two groups (G): seven highly identical and four non-identical serpins based on amino acid identities, here after called GI and GII respectively. We show that injection of both GI and GII co-dsRNA into unfed nymph and adult I. scapularis ticks triggered suppression of cognate serpin mRNA. We show that disruption of GII, but not GI serpins significantly reduced feeding efficiency of both nymph and adult I. scapularis ticks. Knockdown of GII serpin transcripts caused significant respective mortalities of ≤40 and 71% of nymphal and adult ticks that occurred within 24-48 h of attachment. This is significant, as the observed lethality preceded the tick feeding period when transmission of tick borne pathogens is predominant. We suspect that some of the GII serpins (S9, S17, S19 and S32) play roles in the tick detachment process in that upon detachment, mouthparts of GII co-dsRNA injected were covered with a whitish gel-like tissue that could be the tick cement cone. Normally, ticks do not retain tissue on their mouthparts upon detachment. Furthermore, disruption of GII serpins reduced tick blood meal sizes and the adult tick's ability to convert the blood meal to eggs. We discuss our data with reference to tick feeding physiology and conclude that some of the GII serpins are potential targets for anti-tick vaccine development.
Collapse
Affiliation(s)
- Mariam Bakshi
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 422 Raymond Stotzer, TAMU 4467, College Station, TX 77843, USA
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 422 Raymond Stotzer, TAMU 4467, College Station, TX 77843, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, 422 Raymond Stotzer, TAMU 4467, College Station, TX 77843, USA.
| |
Collapse
|
21
|
Cardoso TH, Lu S, Gonzalez BR, Torquato RJ, Tanaka AS. Characterization of a novel cystatin type 2 from Rhipicephalus microplus midgut. Biochimie 2017; 140:117-121. [DOI: 10.1016/j.biochi.2017.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 07/18/2017] [Indexed: 11/27/2022]
|
22
|
Grabowski JM, Tsetsarkin KA, Long D, Scott DP, Rosenke R, Schwan TG, Mlera L, Offerdahl DK, Pletnev AG, Bloom ME. Flavivirus Infection of Ixodes scapularis (Black-Legged Tick) Ex Vivo Organotypic Cultures and Applications for Disease Control. mBio 2017; 8:e01255-17. [PMID: 28830948 PMCID: PMC5565970 DOI: 10.1128/mbio.01255-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 07/25/2017] [Indexed: 12/21/2022] Open
Abstract
Ixodes scapularis ticks transmit many infectious agents that cause disease, including tick-borne flaviviruses (TBFVs). TBFV infections cause thousands of human encephalitis cases worldwide annually. In the United States, human TBFV infections with Powassan virus (POWV) are increasing and have a fatality rate of 10 to 30%. Additionally, Langat virus (LGTV) is a TBFV of low neurovirulence and is used as a model TBFV. TBFV replication and dissemination within I. scapularis organs are poorly characterized, and a deeper understanding of virus biology in this vector may inform effective countermeasures to reduce TBFV transmission. Here, we describe short-term, I. scapularis organ culture models of TBFV infection. Ex vivo organs were metabolically active for 9 to 10 days and were permissive to LGTV and POWV replication. Imaging and videography demonstrated replication and spread of green fluorescent protein-expressing LGTV in the organs. Immunohistochemical staining confirmed LGTV envelope and POWV protein synthesis within the infected organs. LGTV- and POWV-infected organs produced infectious LGTV and POWV; thus, the ex vivo cultures were suitable for study of virus replication in individual organs. LGTV- and POWV-infected midgut and salivary glands were subjected to double-stranded RNA (dsRNA) transfection with dsRNA to the LGTV 3' untranslated region (UTR), which reduced infectious LGTV and POWV replication, providing a proof-of-concept use of RNA interference in I. scapularis organ cultures to study the effects on TBFV replication. The results contribute important information on TBFV localization within ex vivo I. scapularis organs and provide a significant translational tool for evaluating recombinant, live vaccine candidates and potential tick transcripts and proteins for possible therapeutic use and vaccine development to reduce TBFV transmission.IMPORTANCE Tick-borne flavivirus (TBFV) infections cause neurological and/or hemorrhagic disease in humans worldwide. There are currently no licensed therapeutics or vaccines against Powassan virus (POWV), the only TBFV known to circulate in North America. Evaluating tick vector targets for antitick vaccines directed at reducing TBFV infection within the arthropod vector is a critical step in identifying efficient approaches to controlling TBFV transmission. This study characterized infection of female Ixodes scapularis tick organ cultures of midgut, salivary glands, and synganglion with the low-neurovirulence Langat virus (LGTV) and the more pathogenic POWV. Cell types of specific organs were susceptible to TBFV infection, and a difference in LGTV and POWV replication was noted in TBFV-infected organs. This tick organ culture model of TBFV infection will be useful for various applications, such as screening of tick endogenous dsRNA corresponding to potential control targets within midgut and salivary glands to confirm restriction of TBFV infection.
Collapse
Affiliation(s)
- Jeffrey M Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Konstantin A Tsetsarkin
- Neurotropic Flaviviruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Dan Long
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Dana P Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Rebecca Rosenke
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Tom G Schwan
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Danielle K Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| | - Alexander G Pletnev
- Neurotropic Flaviviruses Section, Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID, NIH, Hamilton, Montana, USA
| |
Collapse
|
23
|
Chmelař J, Kotál J, Langhansová H, Kotsyfakis M. Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front Cell Infect Microbiol 2017; 7:216. [PMID: 28611951 PMCID: PMC5447049 DOI: 10.3389/fcimb.2017.00216] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/11/2017] [Indexed: 11/23/2022] Open
Abstract
The publication of the first tick sialome (salivary gland transcriptome) heralded a new era of research of tick protease inhibitors, which represent important constituents of the proteins secreted via tick saliva into the host. Three major groups of protease inhibitors are secreted into saliva: Kunitz inhibitors, serpins, and cystatins. Kunitz inhibitors are anti-hemostatic agents and tens of proteins with one or more Kunitz domains are known to block host coagulation and/or platelet aggregation. Serpins and cystatins are also anti-hemostatic effectors, but intriguingly, from the translational perspective, also act as pluripotent modulators of the host immune system. Here we focus especially on this latter aspect of protease inhibition by ticks and describe the current knowledge and data on secreted salivary serpins and cystatins and their role in tick-host-pathogen interaction triad. We also discuss the potential therapeutic use of tick protease inhibitors.
Collapse
Affiliation(s)
- Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České BudějoviceČeské Budějovice, Czechia
| | - Jan Kotál
- Faculty of Science, University of South Bohemia in České BudějoviceČeské Budějovice, Czechia.,Institute of Parasitology, Biology Center, Czech Academy of SciencesČeské Budějovice, Czechia
| | - Helena Langhansová
- Faculty of Science, University of South Bohemia in České BudějoviceČeské Budějovice, Czechia.,Institute of Parasitology, Biology Center, Czech Academy of SciencesČeské Budějovice, Czechia
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center, Czech Academy of SciencesČeské Budějovice, Czechia
| |
Collapse
|
24
|
Porter LM, Radulović ŽM, Mulenga A. A repertoire of protease inhibitor families in Amblyomma americanum and other tick species: inter-species comparative analyses. Parasit Vectors 2017; 10:152. [PMID: 28330502 PMCID: PMC5361777 DOI: 10.1186/s13071-017-2080-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 03/06/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Protease inhibitors (PIs) are important regulators of physiology and represent anti-parasitic druggable and vaccine targets. We conducted bioinformatic analyses of genome and transcriptome data to determine the protease inhibitor (PI) repertoire in Amblyomma americanum and in 25 other ixodid tick species. For A. americanum, we compared the PI repertoires in fed and unfed, male and female A. americanum ticks. We also analyzed PI repertoires of female 48, 96 and 120 h-fed midgut (MG) and salivary gland (SG) tissues. RESULTS We found 1,595 putative non-redundant PI sequences across 26 ixodid tick species. Ticks express PIs from at least 18 different families: I1, I2, I4, I8, I21, I25, I29, I31, I32, I35, I39, I43, I51, I53, I63, I68, I72 and I74 (MEROPS). The largest PI families were I2, I4 and I8 and lowest in I21, I31, I32, I35 and I68. The majority (75%) of tick PIs putatively inhibit serine proteases, with ~11 and 9% putatively regulating cysteine or metalloprotease-mediated pathways, respectively, and ~4% putatively regulating multiple/mixed protease types. In A. americanum, we found 370 PIs in female and 354 in male ticks. In A. americanum we found 231 and 442 in unfed and fed ticks, respectively. In females, we found 206 and 164 PIs in SG and MG, respectively. The majority of highly cross-tick species conserved PIs were in families I1, I2, I8, I21, I25, I29, I39 and I43. CONCLUSIONS Ticks appear to express large and diverse repertoires of PIs that primarily target serine protease-mediated pathways. We speculate that PI families with the highest repertoires may contain functionally redundant members while those with the lowest repertoires are functionally non-redundant PIs. We found some highly conserved PIs in the latter category, which we propose as potential candidates for broad-spectrum anti-tick vaccine candidates or druggable targets in tick control.
Collapse
Affiliation(s)
- Lindsay M Porter
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, 4647 TAMU, College Station, TX, 77843, USA
| | - Željko M Radulović
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, 4647 TAMU, College Station, TX, 77843, USA
| | - Albert Mulenga
- Department of Veterinary Pathobiology, Texas A&M University College of Veterinary Medicine and Biomedical Sciences, 4647 TAMU, College Station, TX, 77843, USA.
| |
Collapse
|
25
|
Wang Y, Yu X, Cao J, Zhou Y, Gong H, Zhang H, Li X, Zhou J. Characterization of a secreted cystatin from the tick Rhipicephalus haemaphysaloides. EXPERIMENTAL & APPLIED ACAROLOGY 2015; 67:289-298. [PMID: 26188856 DOI: 10.1007/s10493-015-9946-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
A novel cystatin, designated RHcyst-2, was isolated from the tick Rhipicephalus haemaphysaloides. The full-length cDNA of RHcyst-2 is 773 bp, including an intact open reading frame encoding an expected protein of 139 amino acids and consisting of a 23 amino acids signal peptide. Predicted RHcyst-2 mature protein molecular weight is about 13 kDa, isoelectric point is 4.96. A sequence analysis showed that it has significant homology with the known type 2 cystatins. The recombinant protein of RHcyst-2 was expressed in a glutathione S-transferase-fused soluble form in Escherichia coli, and its inhibitory activity against cathepsin L, B, C, H, and S, as well as papain, was identified by fluorogenic substrate analysis. The results showed that rRHcyst-2 can effectively inhibit the six cysteine proteases' enzyme activities. An investigation of the RHcyst-2 genes' expression profile by quantitative reverse transcription-PCR demonstrated that it was more richly transcribed in the embryo (egg) stage and mainly distributed in the mid-gut of adult ticks. Western blot analysis confirmed that RHcyst-2 was secreted into tick saliva.
Collapse
Affiliation(s)
- Yujian Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Tirloni L, Islam MS, Kim TK, Diedrich JK, Yates JR, Pinto AFM, Mulenga A, You MJ, Da Silva Vaz I. Saliva from nymph and adult females of Haemaphysalis longicornis: a proteomic study. Parasit Vectors 2015; 8:338. [PMID: 26104117 PMCID: PMC4484640 DOI: 10.1186/s13071-015-0918-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Haemaphysalis longicornis is a major vector of Theileria spp., Anaplasma phagocytophilum, Babesia spp. and Coxiella burnetti in East Asian countries. All life stages of ixodid ticks have a destructive pool-feeding style in which they create a pool-feeding site by lacerating host tissue and secreting a variety of biologically active compounds that allows the tick to evade host responses, enabling the uptake of a blood meal. The identification and functional characterization of tick saliva proteins can be useful to elucidate the molecular mechanisms involved in tick development and to conceive new anti-tick control methods. METHODS H. longicornis tick saliva was collected from fully engorged nymphs and fully engorged adults induced by dopamine or pilocarpine, respectively. Saliva was digested with trypsin for LC-MS/MS sequencing and peptides were searched against tick and rabbit sequences. RESULTS A total of 275 proteins were identified, of which 135 were tick and 100 were rabbit proteins. Of the tick proteins, 30 proteins were identified exclusively in fully engorged nymph saliva, 74 in fully engorged adult females, and 31 were detected in both stages. The identified tick proteins include heme/iron metabolism-related proteins, oxidation/detoxification proteins, enzymes, proteinase inhibitors, tick-specific protein families, and cytoskeletal proteins. Proteins involved in signal transduction, transport and metabolism of carbohydrate, energy, nucleotide, amino acids and lipids were also detected. Of the rabbit proteins, 13 were present in nymph saliva, 48 in adult saliva, and 30 were present in both. The host proteins include immunoglobulins, complement system proteins, antimicrobial proteins, serum albumin, peroxiredoxin, serotransferrin, apolipoprotein, hemopexin, proteinase inhibitors, and hemoglobin/red blood cells-related products. CONCLUSIONS This study allows the identification of H. longicornis saliva proteins. In spontaneously detached tick saliva various proteins were identified, although results obtained with saliva of fully engorged ticks need to be carefully interpreted. However, it is interesting to note that proteins identified in this study were also described in other tick saliva proteomes using partially engorged tick saliva, including hemelipoprotein, proteases, protease inhibitors, proteins related to structural functions, transporter activity, metabolic processes, and others. In conclusion, these data can provide a deeper understanding to the biology of H. longicornis.
Collapse
Affiliation(s)
- Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Mohammad Saiful Islam
- Department of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Centre, Chonbuk National University, Jeonju, Republic of Korea.
- Department of Medicine, Surgery and Obstetrics, Faculty of Veterinary and Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh.
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | - Jolene K Diedrich
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Antônio F M Pinto
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA.
- Centro de Pesquisas em Biologia Molecular e Funcional, Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil.
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | - Myung-Jo You
- Department of Veterinary Parasitology, College of Veterinary Medicine and Bio-safety Research Centre, Chonbuk National University, Jeonju, Republic of Korea.
| | - Itabajara Da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
27
|
Lewis LA, Radulović ŽM, Kim TK, Porter LM, Mulenga A. Identification of 24h Ixodes scapularis immunogenic tick saliva proteins. Ticks Tick Borne Dis 2015; 6:424-34. [PMID: 25825233 PMCID: PMC4415496 DOI: 10.1016/j.ttbdis.2015.03.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/19/2015] [Accepted: 03/09/2015] [Indexed: 12/13/2022]
Abstract
Ixodes scapularis is arguably the most medically important tick species in the United States. This tick transmits 5 of the 14 human tick-borne disease (TBD) agents in the USA: Borrelia burgdorferi, Anaplasma phagocytophilum, B. miyamotoi, Babesia microti, and Powassan virus disease. Except for the Powassan virus disease, I. scapularis-vectored TBD agents require more than 24h post attachment to be transmitted. This study describes identification of 24h immunogenic I. scapularis tick saliva proteins, which could provide opportunities to develop strategies to stop tick feeding before transmission of the majority of pathogens. A 24h fed female I. scapularis phage display cDNA expression library was biopanned using rabbit antibodies to 24h fed I. scapularis female tick saliva proteins, subjected to next generation sequencing, de novo assembly, and bioinformatic analyses. A total of 182 contigs were assembled, of which ∼19% (35/182) are novel and did not show identity to any known proteins in GenBank. The remaining ∼81% (147/182) of contigs were provisionally identified based on matches in GenBank including ∼18% (27/147) that matched protein sequences previously annotated as hypothetical and putative tick saliva proteins. Others include proteases and protease inhibitors (∼3%, 5/147), transporters and/or ligand binding proteins (∼6%, 9/147), immunogenic tick saliva housekeeping enzyme-like (17%, 25/147), ribosomal protein-like (∼31%, 46/147), and those classified as miscellaneous (∼24%, 35/147). Notable among the miscellaneous class include antimicrobial peptides (microplusin and ricinusin), myosin-like proteins that have been previously found in tick saliva, and heat shock tick saliva protein. Data in this study provides the foundation for in-depth analysis of I. scapularis feeding during the first 24h, before the majority of TBD agents can be transmitted.
Collapse
Affiliation(s)
- Lauren A Lewis
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Željko M Radulović
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Tae K Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Lindsay M Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
28
|
Parizi LF, Sabadin GA, Alzugaray MF, Seixas A, Logullo C, Konnai S, Ohashi K, Masuda A, da Silva Vaz I. Rhipicephalus microplus and Ixodes ovatus cystatins in tick blood digestion and evasion of host immune response. Parasit Vectors 2015; 8:122. [PMID: 25889092 PMCID: PMC4340882 DOI: 10.1186/s13071-015-0743-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cystatins are a group of cysteine protease inhibitors responsible for physiological proteolysis regulation and present in a wide range of organisms. Studies about this class of inhibitors in parasites have contributed to clarify their roles in important physiological processes, like blood digestion and modulation of host immune response during blood feeding. Thus, cystatins are a subject of research on the development of new parasite control methods. Additionally, the characterization of proteins shared by different parasite species represents a valuable strategy to find potential targets in multi-species control methods. However, cystatin functions in ticks remain undetermined, especially in Rhipicephalus microplus and Ixodes ovatus, two species that affect livestock and human health, respectively. METHODS Here we report the inhibitory profile of two R. microplus (BrBmcys2b and BrBmcys2c) and one I. ovatus (JpIocys2a) cystatins to commercial cathepsins B, C, and L. The presence of native cystatins in R. microplus tissues was analyzed using sera against recombinant BrBmcys2b and BrBmcys2c. Also, a peptide from JpIocys2a was synthesized for rabbit immunization, and this serum was used to analyze the cross antigenicity between R. microplus and I. ovatus cystatins. RESULTS Enzymatic inhibition profile of tick cystatins shows a distinct modulation for cathepsins related to tick blood digestion and evasion of host immune response. Furthermore, BrBmcys2b was detected in saliva and different tissues along tick stages, while BrBmcys2c was detected mainly in gut from partially engorged R. microplus females, demonstrating a distinct pattern of cystatin expression, secretion and traffic between tick tissues. Moreover, phylogenetic analysis suggests that JpIocys2a belongs to the group of tick gut secreted cystatins. Finally, cross-antigenicity assays revealed that antibodies against the JpIocys2a peptide recognize native and recombinant R. microplus cystatins. CONCLUSION The presence of these proteins in different tissues and their ability to differentially inhibit cathepsins suggest distinct roles for JpIocys2a, BrBmcys2b, and BrBmcys2c in blood digestion, egg and larvae development, and modulation of host immune response in tick physiology. The cross-antigenicity between native and recombinant cystatins supports further experiments using JpIocys2a, BrBmcys2b, and BrBmcys2c as vaccine antigens.
Collapse
Affiliation(s)
- Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
| | - Gabriela Alves Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
| | - María Fernanda Alzugaray
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
- Departamento de Ciencias Microbiológicas, Laboratorio de Inmunología, Facultad de Veterinaria, UDELAR, Montevideo, Uruguay.
| | - Adriana Seixas
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, Porto Alegre, 90050-170, , RS, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Carlos Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos-CBB-UENF and Unidade de Experimentação Animal, Avenida Alberto Lamego, 2000, Horto, Campos dos Goytacazes, 28015-620, , RJ, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Satoru Konnai
- Department of Disease Control, Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan.
| | - Kazuhiko Ohashi
- Department of Disease Control, Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, 060-0818, Sapporo, Hokkaido, Japan.
| | - Aoi Masuda
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre, 91501-970, , RS, Brazil.
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9090, Porto Alegre, 91540-000, , RS, Brazil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil.
| |
Collapse
|
29
|
Bifano TD, Ueti MW, Esteves E, Reif KE, Braz GRC, Scoles GA, Bastos RG, White SN, Daffre S. Knockdown of the Rhipicephalus microplus cytochrome c oxidase subunit III gene is associated with a failure of Anaplasma marginale transmission. PLoS One 2014; 9:e98614. [PMID: 24878588 PMCID: PMC4039488 DOI: 10.1371/journal.pone.0098614] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 05/06/2014] [Indexed: 01/20/2023] Open
Abstract
Rhipicephalus microplus is an obligate hematophagous ectoparasite of cattle and an important biological vector of Anaplasma marginale in tropical and subtropical regions. The primary determinants for A. marginale transmission are infection of the tick gut, followed by infection of salivary glands. Transmission of A. marginale to cattle occurs via infected saliva delivered during tick feeding. Interference in colonization of either the tick gut or salivary glands can affect transmission of A. marginale to naïve animals. In this study, we used the tick embryonic cell line BME26 to identify genes that are modulated in response to A. marginale infection. Suppression-subtractive hybridization libraries (SSH) were constructed, and five up-regulated genes {glutathione S-transferase (GST), cytochrome c oxidase sub III (COXIII), dynein (DYN), synaptobrevin (SYN) and phosphatidylinositol-3,4,5-triphosphate 3-phosphatase (PHOS)} were selected as targets for functional in vivo genomic analysis. RNA interference (RNAi) was used to determine the effect of tick gene knockdown on A. marginale acquisition and transmission. Although RNAi consistently knocked down all individually examined tick genes in infected tick guts and salivary glands, only the group of ticks injected with dsCOXIII failed to transmit A. marginale to naïve calves. To our knowledge, this is the first report demonstrating that RNAi of a tick gene is associated with a failure of A. marginale transmission.
Collapse
Affiliation(s)
- Thais D. Bifano
- Department of Parasitology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - Massaro W. Ueti
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington United States of America
| | - Eliane Esteves
- Department of Parasitology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kathryn E. Reif
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Glória R. C. Braz
- Department of Biochemistry, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - Glen A. Scoles
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington United States of America
| | - Reginaldo G. Bastos
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Stephen N. White
- Animal Diseases Research Unit, USDA-ARS, Pullman, Washington United States of America
| | - Sirlei Daffre
- Department of Parasitology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
30
|
Tirloni L, Reck J, Terra RMS, Martins JR, Mulenga A, Sherman NE, Fox JW, Yates JR, Termignoni C, Pinto AFM, da Silva Vaz I. Proteomic analysis of cattle tick Rhipicephalus (Boophilus) microplus saliva: a comparison between partially and fully engorged females. PLoS One 2014; 9:e94831. [PMID: 24762651 PMCID: PMC3998978 DOI: 10.1371/journal.pone.0094831] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/19/2014] [Indexed: 01/10/2023] Open
Abstract
The cattle tick Rhipicephalus (Boophilus) microplus is one of the most harmful parasites affecting bovines. Similarly to other hematophagous ectoparasites, R. microplus saliva contains a collection of bioactive compounds that inhibit host defenses against tick feeding activity. Thus, the study of tick salivary components offers opportunities for the development of immunological based tick control methods and medicinal applications. So far, only a few proteins have been identified in cattle tick saliva. The aim of this work was to identify proteins present in R. microplus female tick saliva at different feeding stages. Proteomic analysis of R. microplus saliva allowed identifying peptides corresponding to 187 and 68 tick and bovine proteins, respectively. Our data confirm that (i) R. microplus saliva is complex, and (ii) that there are remarkable differences in saliva composition between partially engorged and fully engorged female ticks. R. microplus saliva is rich mainly in (i) hemelipoproteins and other transporter proteins, (ii) secreted cross-tick species conserved proteins, (iii) lipocalins, (iv) peptidase inhibitors, (v) antimicrobial peptides, (vii) glycine-rich proteins, (viii) housekeeping proteins and (ix) host proteins. This investigation represents the first proteomic study about R. microplus saliva, and reports the most comprehensive Ixodidae tick saliva proteome published to date. Our results improve the understanding of tick salivary modulators of host defense to tick feeding, and provide novel information on the tick-host relationship.
Collapse
Affiliation(s)
- Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - José Reck
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Renata Maria Soares Terra
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - João Ricardo Martins
- Instituto de Pesquisas Veterinárias Desidério Finamor, Fundação Estadual de Pesquisa Agropecuária, Eldorado do Sul, RS, Brazil
| | - Albert Mulenga
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas E. Sherman
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jay W. Fox
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Antônio F. M. Pinto
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Department of Microbiology, University of Virginia, Charlottesville, Virginia, United States of America
- CAPES, Ministério da Educação do Brasil, Brasília, DF, Brasil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Mercado-Curiel RF, Ávila-Ramírez ML, Palmer GH, Brayton KA. Identification of Rhipicephalus microplus genes that modulate the infection rate of the rickettsia Anaplasma marginale. PLoS One 2014; 9:e91062. [PMID: 24608654 PMCID: PMC3946687 DOI: 10.1371/journal.pone.0091062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/07/2014] [Indexed: 01/09/2023] Open
Abstract
Arthropod vectors transmit a diversity of animal and human pathogens, ranging from RNA viruses to protozoal parasites. Chemotherapeutic control of pathogens has classically focused either on insecticides that kill the vector itself or antimicrobials for infected patients. The limitation of the former is that it targets both infected and uninfected vectors and selects for resistant populations while the latter requires prompt and accurate diagnosis. An alternative strategy is to target vector molecules that permit the pathogen to establish itself, replicate, and/or develop within the vector. Using the rickettsial pathogen Anaplasma marginale and its tropical tick vector, Rhipicephalus microplus, as a model, we tested whether silencing specific gene targets would affect tick infection rates (the % of fed ticks that are infected with the pathogen) and pathogen levels within infected ticks. Silencing of three R. microplus genes, CK187220, CV437619 and TC18492, significantly decreased the A. marginale infection rate in salivary glands, whereas gene silencing of TC22382, TC17129 and TC16059 significantly increased the infection rate in salivary glands. However in all cases of significant difference in the infection rate, the pathogen levels in the ticks that did become infected, were not significantly different. These results are consistent with the targeted genes affecting the pathogen at early steps in infection of the vector rather than in replication efficiency. Identifying vector genes and subsequent determination of the encoded functions are initial steps in discovery of new targets for inhibiting pathogen development and subsequent transmission.
Collapse
Affiliation(s)
- Ricardo F. Mercado-Curiel
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - María L. Ávila-Ramírez
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Guy H. Palmer
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Kelly A. Brayton
- Program in Vector-Borne Diseases, Department of Veterinary Microbiology and Pathology and Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| |
Collapse
|
32
|
Parizi LF, Githaka NW, Acevedo C, Benavides U, Seixas A, Logullo C, Konnai S, Ohashi K, Masuda A, da Silva Vaz I. Sequence characterization and immunogenicity of cystatins from the cattle tick Rhipicephalus (Boophilus) microplus. Ticks Tick Borne Dis 2013; 4:492-9. [PMID: 24035585 DOI: 10.1016/j.ttbdis.2013.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 06/28/2013] [Accepted: 06/29/2013] [Indexed: 11/17/2022]
Abstract
Various classes of endopeptidases and their inhibitors facilitate blood feeding and digestion in ticks. Cystatins, a family of tight-binding and reversible inhibitors of cysteine endopeptidases, have recently been found in several tick tissues. Moreover, vaccine trials using tick cystatins have been found to induce protective immune responses against tick infestation. However, the mode of action of tick cystatins is still poorly understood, limiting the elucidation of their physiological role. Against this background, we have investigated sequence characteristics and immunogenic properties of 5 putative cystatins from Rhipicephalus (Boophilus) microplus from Brazil and Uruguay. The similarity of the deduced amino acid sequences among cystatins from the Brazilian tick strain was 27-42%, all of which had a secretory signal peptide. The cystatin motif (QxVxG), a glycine in the N-terminal region, and the PW motif in the second hairpin loop in the C-terminal region are highly conserved in all 5 cystatins identified in this study. Four cysteine residues in the C terminus characteristic of type 2 cystatins are also present. qRT-PCR revealed differential expression patterns among the 5 cystatins identified, as well as variation in mRNA transcripts present in egg, larva, gut, salivary glands, ovary, and fat body tissues. One R. microplus cystatin showed 97-100% amino acid similarity between Brazilian and Uruguayan isolates. Furthermore, by in silico analysis, antigenic amino acid regions from R. microplus cystatins showed high degrees of homology (54-92%) among Rhipicephalus spp. cystatins. Three Brazilian R. microplus cystatins were expressed in Escherichia coli, and immunogenicity of the recombinant proteins were determined by vaccinating mice. Western blotting using mice sera indicated cross-reactivity between the cystatins, suggesting shared epitopes. The present characterization of Rhipicephalus spp. cystatins represents an empirical approach in an effort to evaluate the physiological role of cystatins in a larger context of targeting them for use in future tick control strategies.
Collapse
Affiliation(s)
- Luís F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, Porto Alegre 91501-970, RS, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Browning R, Karim S. RNA interference-mediated depletion of N-ethylmaleimide sensitive fusion protein and synaptosomal associated protein of 25 kDa results in the inhibition of blood feeding of the Gulf Coast tick, Amblyomma maculatum. INSECT MOLECULAR BIOLOGY 2013; 22:245-57. [PMID: 23437815 PMCID: PMC3644323 DOI: 10.1111/imb.12017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The signalling pathways in tick salivary glands that control 'sialo-secretome' secretion at the tick-host interface remain elusive; however, this complex process is essential for successful feeding and manipulation of the host haemostatic response. Exocytosis of the sialo-secretome in the salivary glands requires a core of soluble N-ethylmaleimide-sensitive fusion (NSF) attachment proteins (SNAPs) and receptor proteins (SNAREs). SNAREs have been identified as the key components in regulating the sialo-secretome in the salivary gland cells. In this study, we utilized RNA interference to investigate the functional role of two Amblyomma maculatum SNARE complex proteins, AmNSF and AmSNAP-25, in the tick salivary glands during extended blood feeding on the vertebrate host. Knock-down of AmNSF and AmSNAP-25 resulted in death, impaired feeding on the host, lack of engorgement and inhibited oviposition in ticks. Depletion also led to important morphological changes in the collapse of the Golgi apparatus in the salivary gland cells. Our results imply a functional significance of AmNSF and AMSNAP-25 in prolonged tick feeding, and survival on the host. Further characterization of the factors that regulate exocytosis may lead to novel approaches to prevent tick-borne diseases.
Collapse
Affiliation(s)
| | - Shahid Karim
- Corresponding author: Shahid Karim, 118 College Drive #5018, Hattiesburg, MS 39406, , Phone: 601.266.6232, Fax: 601.266.5797
| |
Collapse
|
34
|
Villarreal AM, Adamson SW, Browning RE, Khem Raj B, Sajid MS, Karim S. Molecular characterization and functional significance of the Vti family of SNARE proteins in tick salivary glands. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:483-93. [PMID: 23499931 PMCID: PMC3633690 DOI: 10.1016/j.ibmb.2013.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/25/2013] [Accepted: 03/04/2013] [Indexed: 05/12/2023]
Abstract
Exocytosis involves membrane fusion between secretory vesicles and the plasma membrane. The Soluble N-ethylmaleimide-sensitive factor attachment proteins (SNAPs) and their receptor proteins (SNAREs) interact to fuse vesicles with the membrane and trigger the release of their sialosecretome out of the tick salivary gland cells. In this study, we examined the functional significance of the Vti family of SNARE proteins of blood-feeding Amblyomma maculatum and Amblyomma americanum. Vti1A and Vti1B have been implicated in multiple functional roles in vesicle transport. QRT-PCR studies demonstrated that the highest transcriptional expression of vti1a and vti1b genes occurs in unfed salivary glands, suggesting that elevated secretory vesicle formation occurs prior to feeding but continues at low rates after blood feeding commences. Vti1A and Vti1B localize to the secretory vesicles in unfed tick salivary glands in immunofluorescence microscopy studies. Knockdown of vti1a and vti1b by RNA interference resulted in a significant decrease in the engorged tick weight compared to the control during prolonged blood-feeding on the host. RNA interference of vti1a or vti1b impaired oviposition and none of the ticks produced eggs masses. Surprisingly, the double knockdown did not produce a strong phenotype and ticks fed normally on the host and produced egg masses, suggesting a compensatory mechanism exists within the secretory system which may have been activated in the double knockdown. These results suggest an important functional role of the Vti family of SNARE proteins in tick blood feeding and ultimately oviposition. Understanding the basic functions of the Vti family of SNARE proteins in salivary glands may lead to better ways to prevent tick attachment and transmission of tick-borne diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Shahid Karim
- Corresponding author: Shahid Karim, 118 College Drive #5018, Hattiesburg, MS 39406 Phone: 601.266.6232 Fax: 601.266.5797
| |
Collapse
|
35
|
Ibelli AMG, Hermance MM, Kim TK, Gonzalez CL, Mulenga A. Bioinformatics and expression analyses of the Ixodes scapularis tick cystatin family. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 60:41-53. [PMID: 23053911 PMCID: PMC4058331 DOI: 10.1007/s10493-012-9613-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/13/2012] [Indexed: 06/01/2023]
Abstract
The cystatins are inhibitors of papain- and legumain-like cysteine proteinases, classified in MEROPS subfamilies I25A-I25C. This study shows that 84 % (42/50) of tick cystatins are putatively extracellular in subfamily I25B and the rest are putatively intracellular in subfamily I25A. On the neighbor joining phylogeny guide tree, subfamily I25A members cluster together, while subfamily I25B cystatins segregate among prostriata or metastriata ticks. Two Ixodes scapularis cystatins, AAY66864 and ISCW011771 that show 50-71 % amino acid identity to metastriata tick cystatins may be linked to pathways that are common to all ticks, while ISCW000447 100 % conserved in I. ricinus is important among prostriata ticks. Likewise metastriata tick cystatins, Dermacentor variabilis-ACF35512, Rhipicephalus microplus-ACX53850, A. americanum-AEO36092, R. sanguineus-ACX53922, D. variabilis-ACF35514, R. sanguineus-ACX54033 and A. maculatum-AEO35155 that show 73-86 % amino acid identity may be essential to metastriata tick physiology. RT-PCR expression analyses revealed that I. scapularis cystatins were constitutively expressed in the salivary glands, midguts and other tissues of unfed ticks and ticks that were fed for 24-120 h, except for ISCW017861 that are restricted to the 24 h feeding time point. On the basis of mRNA expression patterns, I. scapularis cystatins, ISCW017861, ISCW011771, ISCW002215 and ISCW0024528 that are highly expressed at 24 h are likely involved in regulating early stage tick feeding events such as tick attachment onto host skin and creation of the feeding lesion. Similarly, ISCW018602, ISCW018603 and ISCW000447 that show 2-3 fold transcript increase by 120 h of feeding are likely associated with blood meal up take, while those that maintain steady state expression levels (ISCW018600, ISCW018601 and ISCW018604) during feeding may not be associated with tick feeding regulation. We discuss our findings in the context of advancing our knowledge of tick molecular biology.
Collapse
Affiliation(s)
- Adriana Mércia Guaratini Ibelli
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA; Graduate Program in Genetics and Evolution, Federal University of São Carlos, São Carlos, Brazil
| | - Meghan M. Hermance
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Tae Kwon Kim
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Cassandra Lee Gonzalez
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| | - Albert Mulenga
- Department of Entomology, Texas A & M University AgriLife Research, 2475 TAMU, College Station, TX 77843, USA
| |
Collapse
|
36
|
Imamura S, Konnai S, Yamada S, Parizi LF, Githaka N, Vaz IDS, Murata S, Ohashi K. Identification and partial characterization of a gut Rhipicephalus appendiculatus cystatin. Ticks Tick Borne Dis 2012; 4:138-44. [PMID: 23265949 DOI: 10.1016/j.ttbdis.2012.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/08/2012] [Accepted: 11/08/2012] [Indexed: 11/29/2022]
Abstract
Vaccines are among the alternative tick control methods expected to replace at least in part the volumes of chemical acaricides currently used worldwide. However, a vaccination approach depends on a host immune response against proteins that are essential to tick physiology. The cystatin family is a protein class recently investigated to compose an effective antigen in a tick vaccine. In this study, a cDNA from Rhipicephalus appendiculatus with high sequence similarity to cystatins type 2 was identified by random sequencing analysis and called R. appendiculatus cystatin 1 (Ra-cyst-1). DNA sequence analysis showed that the cloned Ra-cyst-1 has a 423-bp open reading frame and codified to a 140-amino acid polypeptide. The putative mature protein consists of 115 amino acid residues with a deduced molecular weight of 12.8kDa. The highly conserved G (P-I), QxVxG (P-II), and PW (P-III) type 2 cystatins motifs are present in Ra-cyst-1 cDNA. RT-PCR analysis showed that the Ra-cyst-1 gene is expressed in nymph, male, and female midgut following blood feeding, but not in the salivary glands of fed females. In addition, Western blot revealed that recombinant Ra-cyst-1 was not recognized by sera derived from rabbits infested with ticks, suggesting that this cystatin is not secreted into the host during infestation. We hypothesize that Ra-cyst-1 may play a role in the tick feeding process and could be a concealed antigen candidate in further anti-tick vaccination trials.
Collapse
Affiliation(s)
- Saiki Imamura
- Department of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Alim MA, Islam MK, Miyoshi T, Hatta T, Yamaji K, Matsubayashi M, Fujisaki K, Tsuji N. A hemocyte-derived Kunitz-BPTI-type chymotrypsin inhibitor, HlChI, from the ixodid tick Haemaphysalis longicornis, plays regulatory functions in tick blood-feeding processes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2012; 42:925-934. [PMID: 23017545 DOI: 10.1016/j.ibmb.2012.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 08/10/2012] [Accepted: 09/16/2012] [Indexed: 06/01/2023]
Abstract
Inhibitors of proteases play key roles in the biological processes of vertebrate and invertebrate animals, including arthropod parasites. Here, we describe a cDNA that encodes a functionally active chymotrypsin inhibitor of the BPTI/Kunitz family of serine protease inhibitors from the hemocytes of the ixodid tick, Haemaphysalis longicornis, herein called HlChI. HlChI sequence is evolutionarily conserved and contains six cysteine residues and three disulfide bonds with a calculated molecular weight of 9.1 kDa. HlChI-specific mRNA was expressed in all developmental stages of ticks and the expression was up-regulated by host's blood-feeding processes. Endogenous HlChI was localized mainly in the hemocytes. HlChI potently inhibited bovine pancreatic α-chymotrypsin for hydrolyzing the fluorogenic substrate (IC(50) 8.32 nM, K(d) 5.35 ± 1.01 nM) and bovine casein digestion. However, HlChI weakly inhibited bovine pancreatic trypsin and could not affect the porcine elastase activity, suggesting its narrow specificity to chymotrypsin. HlChI was stable over the pH range 2-11 and heating up to 70 °C at pH 8. HlChI was highly stable to 8 M urea and 2% SDS at pH 8.0, when treated for 24 h at 37 °C. However, 0.2 M 2-mercaptoethanol caused complete but reversible inactivation of HlChI. Knockdown of HlChI gene by RNA interference (RNAi) caused death of the feeding ticks, failure of ticks to engorge and significantly reduced body weight gain. RNAi also resulted in significantly decreased egg conversion ratio and fecundity. These results suggest that HlChI is a chymotrypsin-specific inhibitor with high stability and may play regulatory functions in host's blood-feeding processes and tick reproduction.
Collapse
Affiliation(s)
- M Abdul Alim
- Laboratory of Parasitic Diseases, National Institute of Animal Health, National Agricultural and Food Research Organization, Tsukuba, Ibaraki 305-0856, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Schwarz A, Valdés JJ, Kotsyfakis M. The role of cystatins in tick physiology and blood feeding. Ticks Tick Borne Dis 2012; 3:117-27. [PMID: 22647711 DOI: 10.1016/j.ttbdis.2012.03.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 03/03/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
Ticks, as obligate hematophagous ectoparasites, impact greatly on animal and human health because they transmit various pathogens worldwide. Over the last decade, several cystatins from different hard and soft ticks were identified and biochemically analyzed for their role in the physiology and blood feeding lifestyle of ticks. All these cystatins are potent inhibitors of papain-like cysteine proteases, but not of legumain. Tick cystatins were either detected in the salivary glands and/or the midgut, key tick organs responsible for blood digestion and the expression of pharmacologically potent salivary proteins for blood feeding. For example, the transcription of two cystatins named HlSC-1 and Sialostatin L2 was highly upregulated in these tick tissues during feeding. Vaccinating hosts against Sialostatin L2 and Om-cystatin 2 as well as silencing of a cystatin gene from Amblyomma americanum significantly inhibited the feeding ability of ticks. Additionally, Om-cystatin 2 and Sialostatin L possessed strong host immunosuppressive properties by inhibiting dendritic cell maturation due to their interaction with cathepsin S. These two cystatins, together with Sialostatin L2 are the first tick cystatins with resolved three-dimensional structure. Sialostatin L, furthermore, showed preventive properties against autoimmune diseases. In the case of the cystatin Hlcyst-2, experimental evidence showed its role in tick innate immunity, since increased Hlcyst-2 transcript levels were detected in Babesia gibsoni-infected larval ticks and the protein inhibited Babesia growth. Other cystatins, such as Hlcyst-1 or Om-cystatin 2 are assumed to be involved in regulating blood digestion. Only for Bmcystatin was a role in tick embryogenesis suggested. Finally, all the biochemically analyzed tick cystatins are powerful protease inhibitors, and some may be novel antigens for developing anti-tick vaccines and drugs of medical importance due to their stringent target specificity.
Collapse
Affiliation(s)
- Alexandra Schwarz
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre, AS CR v.v.i., Ceske Budejovice, Czech Republic.
| | | | | |
Collapse
|
39
|
Abstract
Parasitic diseases cause important losses in public and veterinary health worldwide. Novel drugs, more reliable diagnostic techniques and vaccine candidates are urgently needed. Due to the complexity of parasites and the intricate relationship with their hosts, development of successful tools to fight parasites has been very limited to date. The growing information on individual parasite genomes is now allowing the use of a broader range of potential strategies to gain deeper insights into the host-parasite relationship and has increased the possibilities to develop molecular-based tools in the field of parasitology. Nevertheless, functional studies of respective genes are still scarce. The RNA interference phenomenon resulting in the regulation of protein expression through the specific degradation of defined mRNAs, and more specifically the possibility of artificially induce it, has shown to be a powerful tool for the investigation of proteins function in many organisms. Recent advances in the design and delivery of targeting molecules allow efficient and highly specific gene silencing in different types of parasites, pointing out this technology as a powerful tool for the identification of novel vaccine candidates or drug targets at the high-throughput level in the near future, and could enable researchers to functionally annotate parasite genomes. The aim of this review is to provide a comprehensive overview on the current advances and pitfalls in gene silencing mechanisms, techniques, applications and prospects in animal parasites.
Collapse
|
40
|
Buarque DS, Spindola LMN, Martins RM, Braz GRC, Tanaka AS. Tigutcystatin, a cysteine protease inhibitor from Triatoma infestans midgut expressed in response to Trypanosoma cruzi. Biochem Biophys Res Commun 2011; 413:241-7. [PMID: 21875578 DOI: 10.1016/j.bbrc.2011.08.078] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 08/13/2011] [Indexed: 11/29/2022]
Abstract
The insect Triatoma infestans is a vector of Trypanosoma cruzi, the etiological agent of Chagas disease. A cDNA library was constructed from T. infestans anterior midgut, and 244 clones were sequenced. Among the EST sequences, an open reading frame (ORF) with homology to a cystatin type 2 precursor was identified. Then, a 288-bp cDNA fragment encoding mature cystatin (lacking signal peptide) named Tigutcystatin was cloned fused to a N-terminal His tag in pET-14b vector, and the protein expressed in Escherichia coli strain Rosetta gami. Tigutcystatin purified and cleaved by thrombin to remove His tag presented molecular mass of 11 kDa and 10,137 Da by SDS-PAGE and MALDI-TOF mass spectrometry, respectively. Purified Tigutcystatin was shown to be a tight inhibitor towards cruzain, a T. cruzi cathepsin L-like enzyme (K(i)=3.29 nM) and human cathepsin L (K(i)=3.78 nM). Tissue specific expression analysis showed that Tigutcystatin was mostly expressed in anterior midgut, although amplification in small intestine was also detected by semi quantitative RT-PCR. qReal time PCR confirmed that Tigutcystatin mRNA is significantly up-regulated in anterior midgut when T. infestans is infected with T. cruzi. Together, these results indicate that Tigutcystatin may be involved in modulation of T. cruzi in intestinal tract by inhibiting parasite cysteine proteases, which represent the virulence factors of this protozoan.
Collapse
Affiliation(s)
- Diego S Buarque
- Department of Biochemistry, Universidade Federal de São Paulo, Escola Paulista de Medicina, 04044-020 São Paulo, SP, Brazil
| | | | | | | | | |
Collapse
|
41
|
|
42
|
Zhou J, Liao M, Gong H, Xuan X, Fujisaki K. Characterization of Hlcyst-3 as a member of cystatins from the tick Haemaphysalis longicornis. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 51:327-333. [PMID: 20107871 DOI: 10.1007/s10493-010-9336-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 01/09/2010] [Indexed: 05/28/2023]
Abstract
The gene encoding cystatin from the tick Haemaphysalis longicornis has been reported previously. In the study reported here, we characterized a member of cystatins and designated it as Hlcyst-3 (H. longicornis cystatin-3). Its full-length cDNA is 602 bp, and it encodes a putative 129 amino acid protein with an obvious signal peptide. Sequence analysis revealed that it has significant homology with the known secreted cystatin. The recombinant protein was expressed in a GST-fused soluble form in Escherichia coli and was purified by affinity chromatography. The inhibitory activity of the recombinant protein against papain and cathepsin L was identified by fluorogenic substrate analysis. Real-time PCR revealed that Hlcyst-3 was mostly expressed in the tick midgut.
Collapse
Affiliation(s)
- Jinlin Zhou
- Department of Frontier Veterinary Medicine, Kagoshima University, Korimoto, Japan.
| | | | | | | | | |
Collapse
|
43
|
Salát J, Paesen GC, Řezáčová P, Kotsyfakis M, Kovářová Z, Šanda M, Majtán J, Grunclová L, Horká H, Andersen JF, Brynda J, Horn M, Nunn MA, Kopáček P, Kopecký J, Mareš M. Crystal structure and functional characterization of an immunomodulatory salivary cystatin from the soft tick Ornithodoros moubata. Biochem J 2010; 429:103-12. [PMID: 20545626 PMCID: PMC3523712 DOI: 10.1042/bj20100280] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The saliva of blood-feeding parasites is a rich source of peptidase inhibitors that help to overcome the host's defence during host-parasite interactions. Using proteomic analysis, the cystatin OmC2 was demonstrated in the saliva of the soft tick Ornithodoros moubata, an important disease vector transmitting African swine fever virus and the spirochaete Borrelia duttoni. A structural, biochemical and biological characterization of this peptidase inhibitor was undertaken in the present study. Recombinant OmC2 was screened against a panel of physiologically relevant peptidases and was found to be an effective broad-specificity inhibitor of cysteine cathepsins, including endopeptidases (cathepsins L and S) and exopeptidases (cathepsins B, C and H). The crystal structure of OmC2 was determined at a resolution of 2.45 A (1 A=0.1 nm) and was used to describe the structure-inhibitory activity relationship. The biological impact of OmC2 was demonstrated both in vitro and in vivo. OmC2 affected the function of antigen-presenting mouse dendritic cells by reducing the production of the pro-inflammatory cytokines tumour necrosis factor alpha and interleukin-12, and proliferation of antigen-specific CD4+ T-cells. This suggests that OmC2 may suppress the host's adaptive immune response. Immunization of mice with OmC2 significantly suppressed the survival of O. moubata in infestation experiments. We conclude that OmC2 is a promising target for the development of a novel anti-tick vaccine to control O. moubata populations and combat the spread of associated diseases.
Collapse
Affiliation(s)
- Jiří Salát
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Guido C. Paesen
- Centre for Ecology and Hydrology, Mansfield Road, Oxford, OX1 3SR, UK
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
| | - Michalis Kotsyfakis
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Zuzana Kovářová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 12843 Praha 2, Czech Republic
| | - Miloslav Šanda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
| | - Juraj Majtán
- Centre for Ecology and Hydrology, Mansfield Road, Oxford, OX1 3SR, UK
| | - Lenka Grunclová
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Helena Horká
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - John F. Andersen
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
| | - Miles A. Nunn
- Centre for Ecology and Hydrology, Mansfield Road, Oxford, OX1 3SR, UK
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jan Kopecký
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic and Faculty of Sciences, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Praha 6, Czech Republic
| |
Collapse
|
44
|
Lew-Tabor AE, Moolhuijzen PM, Vance ME, Kurscheid S, Valle MR, Jarrett S, Minchin CM, Jackson LA, Jonsson NN, Bellgard MI, Guerrero FD. Suppressive subtractive hybridization analysis of Rhipicephalus (Boophilus) microplus larval and adult transcript expression during attachment and feeding. Vet Parasitol 2010; 167:304-20. [DOI: 10.1016/j.vetpar.2009.09.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
45
|
Kongsuwan K, Josh P, Zhu Y, Pearson R, Gough J, Colgrave ML. Exploring the midgut proteome of partially fed female cattle tick (Rhipicephalus (Boophilus) microplus). JOURNAL OF INSECT PHYSIOLOGY 2010; 56:212-226. [PMID: 19840806 DOI: 10.1016/j.jinsphys.2009.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/21/2009] [Accepted: 10/09/2009] [Indexed: 05/28/2023]
Abstract
The continued development of effective anti-tick vaccines remains the most promising prospect for the control of the cattle tick, Rhipicephalus (Boophilus) microplus. A vaccine based on midgut proteins could interfere with successful tick feeding and additionally interfere with midgut developmental stages of Babesia parasites, providing opportunities for the control of both the tick and the pathogens it transmits. Midgut proteins from partially fed adult female cattle ticks were analysed using a combination of 2-DE and gel-free LC-MS/MS. Analysis of the urea-soluble protein fraction resulted in the confident identification of 105 gut proteins, while the PBS-soluble fraction yielded an additional 37 R. microplus proteins. The results show an abundance of proteins involved in mitochondrial ATP synthesis, electron transport chain, protein synthesis, chaperone, antioxidant and protein folding and transport activities in midgut tissues of adult female ticks. Among the novel products identified were clathrin-adaptor protein, which is involved in the assembly of clathrin-coated vesicles, and membrane-associated trafficking proteins such as syntaxin 6 and surfeit 4. The observations allow the formulation of hypotheses regarding midgut physiology and will serve as a basis for future vaccine development and tick-host interaction research.
Collapse
Affiliation(s)
- Kritaya Kongsuwan
- CSIRO Livestock Industries, Queensland Bioscience Precinct, 306 Carmody Road, Brisbane, St Lucia QLD 4072, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
Yamaji K, Tsuji N, Miyoshi T, Hatta T, Alim MA, Anisuzzaman, Kushibiki S, Fujisaki K. Hlcyst-1 and Hlcyst-2 are potential inhibitors of HlCPL-A in the midgut of the ixodid tick Haemaphysalis longicornis. J Vet Med Sci 2010; 72:599-604. [PMID: 20103991 DOI: 10.1292/jvms.09-0561] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the actions of cysteine proteases are controlled in part by endogenous tight-binding cysteine protease inhibitors from the cystatin superfamily, regulatory mechanisms used by ticks to control protease activities are unknown. We report here the interaction of 2 endogenous midgut cysteine protease inhibitors, Hlcyst-1 and Hlcyst-2, with an endogenous midgut cysteine protease, HlCPL-A in Haemaphysalis longicornis. In vitro inhibition assays demonstrated that the hydrolytic activity of HlCPL-A was inhibited by Hlcyst-1 and Hlcyst-2 in dose dependent manner. Immunofluorescent studies revealed that Hlcyst-1 and Hlcyst-2 are co-localized with HlCPL-A in the epithelial cells of the midgut. The hemoglobin degradation activity of HlCPL-A was dose-dependently inhibited by Hlcyst-1 and Hlcyst-2. These results strongly indicate that, Hlcyst-1 and Hlcyst-2 are possible inhibitor of HlCPL-A and play a key role in regulatory mechanisms of hemoglobin degradation process in ticks.
Collapse
Affiliation(s)
- Kayoko Yamaji
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-8572
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Functional genomics tool: gene silencing in Ixodes scapularis eggs and nymphs by electroporated dsRNA. BMC Biotechnol 2010; 10:1. [PMID: 20074328 PMCID: PMC2823657 DOI: 10.1186/1472-6750-10-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Accepted: 01/14/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ticks are blood-sucking arthropods responsible for transmitting a wide variety of disease-causing agents, and constitute important public health threats globally. Ixodes scapularis is the primary vector of the Lyme disease agent in the eastern and central U.S. RNAi is a mechanism by which gene-specific double-stranded RNA (dsRNA) triggers degradation of homologous mRNA transcripts. Here, we describe an optimized protocol for effectively suppressing gene expression in the egg and nymphal stages of I. scapularis by electroporation. RESULTS The genes encoding the putative Phospholipase A2 (PLA2), cytoplasmic Cystatin, Syntaxin-5, beta-Actin and Calreticulin were targeted by delivering the dsRNA encoding the specific gene coding regions in the unfed nymphs. Silencing was measured using real time qRT-PCR. Electroporation as a mode of dsRNA delivery appears to be substantially efficient and less traumatic to the tick than dsRNA microinjection in the unfed nymphs. Using Cy3-labeled dsRNA to monitor the movement, electroporated dsRNA entered the nymphs and spread to salivary glands and other tissues. The significant disruption of beta-actin and cytoplasmic Cystatin transcripts in tick eggs demonstrate the applicability of this technique. The PLA2, cytoplasmic Cystatin, Syntaxin-5, beta-Actin and Calreticulin genes were also significantly silenced, suggesting that this method has the potential to introduce dsRNA in eggs and unfed nymphs. CONCLUSIONS Our study demonstrates that electroporation can be used as a simple dsRNA delivery tool in assessing the functional role of tick genes in the vector-host interactions. This technique represents a novel approach for specific gene suppression in immature stages of ticks.
Collapse
|
48
|
Yamaji K, Tsuji N, Miyoshi T, Islam MK, Hatta T, Alim MA, Anisuzzaman M, Kushibiki S, Fujisaki K. A salivary cystatin, HlSC-1, from the ixodid tick Haemaphysalis longicornis play roles in the blood-feeding processes. Parasitol Res 2009; 106:61-8. [DOI: 10.1007/s00436-009-1626-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 09/03/2009] [Indexed: 11/29/2022]
|
49
|
Tarasuk M, Vichasri Grams S, Viyanant V, Grams R. Type I cystatin (stefin) is a major component of Fasciola gigantica excretion/secretion product. Mol Biochem Parasitol 2009; 167:60-71. [PMID: 19416741 DOI: 10.1016/j.molbiopara.2009.04.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 04/27/2009] [Accepted: 04/27/2009] [Indexed: 10/20/2022]
Abstract
In the present study we describe type 1 cystatin, a cysteine protease inhibitor, as a major released antigen of the tropical liver fluke Fasciola gigantica (FgStefin-1). Immunohistochemical analysis showed that FgStefin-1 is abundant in (a) tissue of tegumental type, including oral and ventral sucker, pharynx, genital atrium, metraterm, cirrus and (b) the intestinal epithelium. Faint staining was observed in the epithelia of ovary and proximal uterus. Immunoblots showed the presence of FgStefin-1 in the parasite's excretion/secretion (ES) product and immunodepletion demonstrated that FgStefin-1 herein is partially complexed with cathepsin L. Furthermore, quantitation of FgStefin-1 in comparison to cathepsin L in ES product and crude worm extract of adults supports a major external function of FgStefin-1 with an estimated 50% being released in at least equimolar amounts to cathepsin L. Sera of an experimentally infected rabbit reacted with recombinant FgStefin-1 starting 8 weeks postinfection. Activity analyses of recombinant FgStefin-1 showed nanomolar inhibition constants for mammalian cathepsin B, L, and S cysteine proteases and released cysteine proteases of the parasite. The protein is active over a wide pH range and is heat stable. Our results suggest protective functions of FgStefin-1, regulating intracellular cysteine protease activity, and possibly protection against extracellular proteolytic damage to the parasite's intestinal and tegumental surface proteins. Considering inhibition kinetics and previously demonstrated immunomodulatory properties of cystatin in parasitic nematodes a comparable function of FgStefin-1 is suggested and is at present under investigation.
Collapse
Affiliation(s)
- Mayuri Tarasuk
- Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | | | | | | |
Collapse
|
50
|
Gong H, Umemiya R, Zhou J, Liao M, Zhang H, Jia H, Nishikawa Y, Xuan X, Fujisaki K. Blocking the secretion of saliva by silencing the HlYkt6 gene in the tick Haemaphysalis longicornis. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:372-381. [PMID: 19328851 DOI: 10.1016/j.ibmb.2009.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 12/14/2008] [Accepted: 03/02/2009] [Indexed: 05/27/2023]
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) have been identified as the key components of the protein complexes that facilitate vesicle traffic, of which Ykt6 (from Saccharomyces cerevisiae, v-SNARE) is proved to be a multifunctional protein in the membrane fusion. In the present study, a tick homologue of Ykt6 (HlYkt6, predicted 22.6 kDa), was isolated from the ixodid tick Haemaphysalis longicornis. RT-PCR and Western blot analysis indicated that the gene and the encoded protein were expressed ubiquitously in different tissues of the partially fed adult tick. Silencing of the HlYkt6 gene resulted in a significant decrease of the engorged body weight (82.9 +/- 26.8 mg vs. 232.17 +/- 59.1 mg in the PBS-injected control group and 178.7 +/- 57.0 mg in the GFP dsRNA-injected control group) and high mortality of replete ticks (100% in tested group vs. 4.8% in the PBS and 20.4% in GFP dsRNA-injected control groups). Disruption of HlYkt6 mRNA led to the suppression of saliva secretion, and a lower anticoagulant activity of the released liquid from the glands (APTT time: 25.25 +/- 1.50 s) than that of the control groups (39.25 +/- 0.50 s in the PBS-treated group and 40.0 +/- 1.41 s in the GFP dsRNA-treated group). These results suggest the vital role of the HlYkt6 protein in the exocytosis of saliva proteins, the feeding and survival of ticks.
Collapse
Affiliation(s)
- Haiyan Gong
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Hokkaido, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|