1
|
Tulsani NJ, Mishra P, Jakhesara SJ, Srivastava S, Jyotsana B, Dafale NA, Patil NV, Purohit HJ, Joshi CG. Isolation, purification and characterization of a novel esterase from camel rumen metagenome. Protein Expr Purif 2021; 187:105941. [PMID: 34273540 DOI: 10.1016/j.pep.2021.105941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Bacterial esterases are gaining the importance in pharmaceuticals and agrochemical industries due to their excellent biocatalytic properties and a wide range of applications. In the present study, a novel gene encoding an esterase (designated as Est-CR) was identified from shotgun metagenomic sequencing data of camel rumen (Camelus dromedarius) liquor. The open reading frame consisted of 1,224bp, which showed 84.03% sequence identity to Bacteroidales bacterium, corresponding to a protein of 407 amino acids and has a catalytic domain belonging to an esterase. Est-CR belonged to family V with GLSMG domain. The purified enzyme with a molecular mass of 62.64 kDa was checked on SDS-PAGE, and its expression was confirmed by western blotting. The enzyme was active and stable over a broad range of temperature (35-65 °C), displayed the maximum activity at 50 °C and pH 7.0. Individually all metal ions inhibited the enzyme activity, while in combination, K2+, Ca2+, Mg2+ and Mn2+ metal ions enhanced the enzyme activity. The detergents strongly inhibited the activity, while EDTA (10 mM) increased the activity of the Est-CR enzyme. The enzyme showed specificity to short-chain substrates and displayed an optimum activity against butyrate ester. This novel enzyme might serve as a promising candidate to meet some harsh industrial processes enzymatic needs.
Collapse
Affiliation(s)
- Nilam J Tulsani
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Priyaranjan Mishra
- Department of Animal Genetic and Breeding, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India
| | - Subhash J Jakhesara
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India.
| | - Shweta Srivastava
- Environmental Genomic Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
| | - Basanti Jyotsana
- ICAR-National Research Centre on Camel (NRCC) Jorbeer, Bikaner, Rajasthan, 334001, India
| | - Nishant A Dafale
- Environmental Genomic Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
| | - Niteen V Patil
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| | - Hemant J Purohit
- Environmental Genomic Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
| | - Chaitanya G Joshi
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, Gujarat, 388001, India; Gujarat Biotechnology Research Canter, MS Building, Block B & D, 6th Floor, GH Road, Sector-11, Gandhinagar, Gujarat, 382001, India
| |
Collapse
|
2
|
Jia ML, Zhong XL, Lin ZW, Dong BX, Li G. Expression and characterization of an esterase belonging to a new family via isolation from a metagenomic library of paper mill sludge. Int J Biol Macromol 2019; 126:1192-1200. [PMID: 30625356 DOI: 10.1016/j.ijbiomac.2019.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
Abstract
A new bacterial lipolytic enzyme Est903 was obtained from paper mill sludge via metagenomic approach. Est903 displayed moderate similarities to two lipolytic enzymes from Rhodopirellula islandica and contained a distinctive pentapeptide motif (GFSAG) that differed from those of all known fourteen families of bacterial lipolytic enzymes. Est903 was regarded as from a new bacterial lipolytic enzyme family through multiple sequence alignment and phylogenetic analysis. The recombinant Est903 showed the highest activity for ρ-nitrophenol butyrate. The pH optimum and temperature optimum of the recombinant enzyme was 9.0 and 51 °C, respectively. Also, this enzyme displayed moderate thermostability, high activity under alkaline conditions, and good tolerance against several organic solvents. In addition, the compatibility test and washing performance analysis revealed that Est903 had good compatibility with commercial laundry detergent and high cleaning ability of oil stains. These good properties make Est903 a potential candidate in organic synthesis or detergent industry.
Collapse
Affiliation(s)
- Mei-Lu Jia
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiao-Lin Zhong
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Zhi-Wei Lin
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Bing-Xue Dong
- School of Life Science and Technology, Nanyang Normal University, Nanyang 473061, PR China.
| | - Gang Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China.
| |
Collapse
|
3
|
Urbelienė N, Kutanovas S, Meškienė R, Gasparavičiūtė R, Tauraitė D, Koplūnaitė M, Meškys R. Application of the uridine auxotrophic host and synthetic nucleosides for a rapid selection of hydrolases from metagenomic libraries. Microb Biotechnol 2019; 12:148-160. [PMID: 30302933 PMCID: PMC6302743 DOI: 10.1111/1751-7915.13316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/23/2018] [Accepted: 08/28/2018] [Indexed: 12/01/2022] Open
Abstract
A high-throughput method (≥ 106 of clones can be analysed on a single agar plate) for the selection of ester-hydrolysing enzymes was developed based on the uridine auxotrophy of Escherichia coli strain DH10B ΔpyrFEC and the acylated derivatives 2',3',5'-O-tri-acetyluridine and 2',3',5'-O-tri-hexanoyluridine as the sole source of uridine. The proposed approach permits the selection of hydrolases belonging to different families and active towards different substrates. Moreover, the ester group of the substrate used for the selection, at least partly, determined the specificity of the selected enzymes.
Collapse
Affiliation(s)
- Nina Urbelienė
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySauletekio 7VilniusLT‐10257Lithuania
| | - Simonas Kutanovas
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySauletekio 7VilniusLT‐10257Lithuania
| | - Rita Meškienė
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySauletekio 7VilniusLT‐10257Lithuania
| | - Renata Gasparavičiūtė
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySauletekio 7VilniusLT‐10257Lithuania
| | - Daiva Tauraitė
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySauletekio 7VilniusLT‐10257Lithuania
| | - Martyna Koplūnaitė
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySauletekio 7VilniusLT‐10257Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and BiotechnologyInstitute of BiochemistryLife Sciences CenterVilnius UniversitySauletekio 7VilniusLT‐10257Lithuania
| |
Collapse
|
4
|
Ranjan R, Yadav MK, Suneja G, Sharma R. Discovery of a diverse set of esterases from hot spring microbial mat and sea sediment metagenomes. Int J Biol Macromol 2018; 119:572-581. [PMID: 30059741 DOI: 10.1016/j.ijbiomac.2018.07.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/18/2022]
Abstract
Esterases are an important group of biocatalysts for synthetic organic chemistry. Functional metagenomics allows discovery of novel biocatalysts by providing access to the gene pool of the microbial community of a habitat. Two metagenomic libraries representing the gene pool of sea sediment and hot spring microbial mat were constructed. Functional screening of these libraries resulted in the isolation of total 8 clones with tributyrin hydrolytic activity. Sequence analysis revealed 10 putative lipolytic proteins with 42-99% homology to the protein sequences in the databases, nine of which represented six known esterase families. Four of the encoded proteins represented Family V and amongst others, one each represented the Family VIII, pectin acetylesterase, enterobactin esterase, G-D-S-L family and OsmC domain containing esterase. One unusual lipolytic protein possessed poly-(3-hydroxybutyrate) depolymerase domain fused to lipase/esterase domain. Two phylogenetically related esterases (MLC3 and SLC5) belonging to family V were expressed and purified to homogeneity. The enzymes exhibited environment-adapted temperature optimum and thermostability. MLC3 was able to stereoselectively hydrolyze R-methyl mandelate to produce R-mandelic acid, an important chiral building block, which suggests MLC3 has potential commercial application.
Collapse
Affiliation(s)
- Ravi Ranjan
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mathura Road, New Delhi 110025, India
| | - Manish Kumar Yadav
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Mathura Road, New Delhi 110025, India
| | - Garima Suneja
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Mathura Road, New Delhi 110025, India
| | - Rakesh Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Mathura Road, New Delhi 110025, India.
| |
Collapse
|
5
|
Anupama R, Mukherjee A, Babu S. Gene-centric metegenome analysis reveals diversity of Pseudomonas aeruginosa biofilm gene orthologs in fresh water ecosystem. Genomics 2018; 110:89-97. [DOI: 10.1016/j.ygeno.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023]
|
6
|
Qian T, Wo J, Zhang Y, Song Q, Feng G, Luo R, Lin S, Wu G, Chen HF. Crystal Structure of StnA for the Biosynthesis of Antitumor Drug Streptonigrin Reveals a Unique Substrate Binding Mode. Sci Rep 2017; 7:40254. [PMID: 28074848 PMCID: PMC5225493 DOI: 10.1038/srep40254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/02/2016] [Indexed: 01/16/2023] Open
Abstract
Streptonigrin methylesterase A (StnA) is one of the tailoring enzymes that modify the aminoquinone skeleton in the biosynthesis pathway of Streptomyces species. Although StnA has no significant sequence homology with the reported α/β-fold hydrolases, it shows typical hydrolytic activity in vivo and in vitro. In order to reveal its functional characteristics, the crystal structures of the selenomethionine substituted StnA (SeMet-StnA) and the complex (S185A mutant) with its substrate were resolved to the resolution of 2.71 Å and 2.90 Å, respectively. The overall structure of StnA can be described as an α-helix cap domain on top of a common α/β hydrolase domain. The substrate methyl ester of 10'-demethoxystreptonigrin binds in a hydrophobic pocket that mainly consists of cap domain residues and is close to the catalytic triad Ser185-His349-Asp308. The transition state is stabilized by an oxyanion hole formed by the backbone amides of Ala102 and Leu186. The substrate binding appears to be dominated by interactions with several specific hydrophobic contacts and hydrogen bonds in the cap domain. The molecular dynamics simulation and site-directed mutagenesis confirmed the important roles of the key interacting residues in the cap domain. Structural alignment and phylogenetic tree analysis indicate that StnA represents a new subfamily of lipolytic enzymes with the specific binding pocket located at the cap domain instead of the interface between the two domains.
Collapse
Affiliation(s)
- Tianle Qian
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jing Wo
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Zhang
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, China
| | - Quanwei Song
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Key laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Guoqiang Feng
- Key laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical Engineering and Materials Science, and Biomedical Engineering, University of California, Irvine, California 92697-3900, USA
| | - Shuangjin Lin
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Geng Wu
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Shanghai Center for Bioinformation Technology, 1278 Keyuan Road, Shanghai, 200235, China
| |
Collapse
|
7
|
Faheem M, Martins-de-Sa D, Vidal JFD, Álvares ACM, Brandão-Neto J, Bird LE, Tully MD, von Delft F, Souto BM, Quirino BF, Freitas SM, Barbosa JARG. Functional and structural characterization of a novel putative cysteine protease cell wall-modifying multi-domain enzyme selected from a microbial metagenome. Sci Rep 2016; 6:38031. [PMID: 27934875 PMCID: PMC5146660 DOI: 10.1038/srep38031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/04/2016] [Indexed: 12/13/2022] Open
Abstract
A current metagenomics focus is to interpret and transform collected genomic data into biological information. By combining structural, functional and genomic data we have assessed a novel bacterial protein selected from a carbohydrate-related activity screen in a microbial metagenomic library from Capra hircus (domestic goat) gut. This uncharacterized protein was predicted as a bacterial cell wall-modifying enzyme (CWME) and shown to contain four domains: an N-terminal, a cysteine protease, a peptidoglycan-binding and an SH3 bacterial domain. We successfully cloned, expressed and purified this putative cysteine protease (PCP), which presented autoproteolytic activity and inhibition by protease inhibitors. We observed cell wall hydrolytic activity and ampicillin binding capacity, a characteristic of most bacterial CWME. Fluorimetric binding analysis yielded a Kb of 1.8 × 105 M-1 for ampicillin. Small-angle X-ray scattering (SAXS) showed a maximum particle dimension of 95 Å with a real-space Rg of 28.35 Å. The elongated molecular envelope corroborates the dynamic light scattering (DLS) estimated size. Furthermore, homology modeling and SAXS allowed the construction of a model that explains the stability and secondary structural changes observed by circular dichroism (CD). In short, we report a novel cell wall-modifying autoproteolytic PCP with insight into its biochemical, biophysical and structural features.
Collapse
Affiliation(s)
- Muhammad Faheem
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
- Programa de Pós Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Diogo Martins-de-Sa
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Julia F. D. Vidal
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - Alice C. M. Álvares
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - José Brandão-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, England
| | - Louise E. Bird
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, United Kingdom
| | - Mark D. Tully
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, England
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Didcot, OX11 0QX, England
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Betulia M. Souto
- Embrapa Agroenergia, Parque Estação Biológica - PqEB s/n°, Brasília, DF, 70770-901, Brazil
| | - Betania F. Quirino
- Programa de Pós Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
- Embrapa Agroenergia, Parque Estação Biológica - PqEB s/n°, Brasília, DF, 70770-901, Brazil
| | - Sonia M. Freitas
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
| | - João Alexandre R. G. Barbosa
- Laboratório de Biofísica Molecular, Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF, 70910-900, Brazil
- Programa de Pós Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| |
Collapse
|
8
|
Porwal S, Singh R. Cloning of merA Gene from Methylotenera Mobilis for Mercury Biotransformation. Indian J Microbiol 2016; 56:504-507. [PMID: 27784949 DOI: 10.1007/s12088-016-0613-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 07/22/2016] [Indexed: 10/21/2022] Open
Abstract
Mercury (Hg) is one of the most toxic heavy metal and is extremely harmful for the environment. The permissible limit of mercury in industrial effluents is 0.001 ppm, whereas there are various sites having very high levels of mercury contamination. In the present study, 10 different mercury (Hg) resistant bacterial strains were isolated from Ulhas Estuary, Mumbai (Hg concentration of 107 ppm). All the strains were subsequently grown on higher concentration of mercuric chloride (HgCl2), one of the isolate (USP5) showed significant growth at high concentration of Hg (40 ppm) and 16S rRNA gene sequencing revealed the identity of the bacterium as Methylotenera mobilis, (Accession no. KT714144). The mer operon was isolated and cloned in E.coli and checked for its ability to tolerate higher concentration of Hg. It has shown growth up to 70 ppm of Hg, also presence of merA gene indicated its ability to detoxify Hg into less toxic volatile form. The atomic absorption spectrophotometry confirmed the ability of clone to efficiently detoxify 60-90 % of the Hg (10-70 ppm) within 48-72 h. This clone can be used for effective volatilization of Hg from contaminated areas.
Collapse
Affiliation(s)
- Shalini Porwal
- Amity Institute of Microbial Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201303 India
| | - Rajni Singh
- Amity Institute of Microbial Biotechnology, Amity University, Sector-125, Noida, Uttar Pradesh 201303 India
| |
Collapse
|
9
|
Vorapreeda T, Thammarongtham C, Laoteng K. Integrative computational approach for genome-based study of microbial lipid-degrading enzymes. World J Microbiol Biotechnol 2016; 32:122. [DOI: 10.1007/s11274-016-2067-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/05/2016] [Indexed: 01/19/2023]
|
10
|
Maester TC, Pereira MR, Machado Sierra EG, Balan A, de Macedo Lemos EG. Characterization of EST3: a metagenome-derived esterase with suitable properties for biotechnological applications. Appl Microbiol Biotechnol 2016; 100:5815-27. [DOI: 10.1007/s00253-016-7385-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 10/22/2022]
|
11
|
Gao W, Wu K, Chen L, Fan H, Zhao Z, Gao B, Wang H, Wei D. A novel esterase from a marine mud metagenomic library for biocatalytic synthesis of short-chain flavor esters. Microb Cell Fact 2016; 15:41. [PMID: 26892801 PMCID: PMC4758151 DOI: 10.1186/s12934-016-0435-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/01/2016] [Indexed: 11/13/2022] Open
Abstract
Background Marine mud is an abundant and largely unexplored source of enzymes with unique properties that may be useful for industrial and biotechnological purposes. However, since most microbes cannot be cultured in the laboratory, a cultivation-independent metagenomic approach would be advantageous for the identification of novel enzymes. Therefore, with the objective of screening novel lipolytic enzymes, a metagenomic library was constructed using the total genomic DNA extracted from marine mud. Results Based on functional heterologous expression, 34 clones that showed lipolytic activity were isolated. The five clones with the largest halos were identified, and the corresponding genes were successfully overexpressed in Escherichia coli. Molecular analysis revealed that these encoded proteins showed 48–79 % similarity with other proteins in the GenBank database. Multiple sequence alignment and phylogenetic tree analysis classified these five protein sequences as new members of known families of bacterial lipolytic enzymes. Among them, EST4, which has 316 amino acids with a predicted molecular weight of 33.8 kDa, was further studied in detail due to its strong hydrolytic activity. Characterization of EST4 indicated that it is an alkaline esterase that exhibits highest hydrolytic activity towards p-nitrophenyl butyrate (specific activity: 1389 U mg−1) at 45 °C and pH 8.0. The half-life of EST4 is 55 and 46 h at 40 and 45 °C, respectively, indicating a relatively high thermostability. EST4 also showed remarkable stability in organic solvents, retaining 90 % of its initial activity when incubated for 12 h in the presence of hydrophobic alkanes. Furthermore, EST4 was used as an efficient whole-cell biocatalyst for the synthesis of short-chain flavor esters, showing high conversion rate and good tolerance for high substrate concentrations (up to 3.0 M). These results demonstrate a promising potential for industrial scaling-up to produce short-chain flavor esters at high substrate concentrations in non-aqueous media. Conclusions This manuscript reports unprecedented alcohol tolerance and conversion of an esterase biocatalyst identified from a marine mud metagenomic library. The high organic solvent tolerance and thermostability of EST4 suggest that it has great potential as a biocatalyst. Electronic supplementary material The online version of this article (doi:10.1186/s12934-016-0435-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wenyuan Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Kai Wu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Lifeng Chen
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Haiyang Fan
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Zhiqiang Zhao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
12
|
López-López O, Knapik K, Cerdán ME, González-Siso MI. Metagenomics of an Alkaline Hot Spring in Galicia (Spain): Microbial Diversity Analysis and Screening for Novel Lipolytic Enzymes. Front Microbiol 2015; 6:1291. [PMID: 26635759 PMCID: PMC4653306 DOI: 10.3389/fmicb.2015.01291] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/04/2015] [Indexed: 01/23/2023] Open
Abstract
A fosmid library was constructed with the metagenomic DNA from the water of the Lobios hot spring (76°C, pH = 8.2) located in Ourense (Spain). Metagenomic sequencing of the fosmid library allowed the assembly of 9722 contigs ranging in size from 500 to 56,677 bp and spanning ~18 Mbp. 23,207 ORFs (Open Reading Frames) were predicted from the assembly. Biodiversity was explored by taxonomic classification and it revealed that bacteria were predominant, while the archaea were less abundant. The six most abundant bacterial phyla were Deinococcus-Thermus, Proteobacteria, Firmicutes, Acidobacteria, Aquificae, and Chloroflexi. Within the archaeal superkingdom, the phylum Thaumarchaeota was predominant with the dominant species “Candidatus Caldiarchaeum subterraneum.” Functional classification revealed the genes associated to one-carbon metabolism as the most abundant. Both taxonomic and functional classifications showed a mixture of different microbial metabolic patterns: aerobic and anaerobic, chemoorganotrophic and chemolithotrophic, autotrophic and heterotrophic. Remarkably, the presence of genes encoding enzymes with potential biotechnological interest, such as xylanases, galactosidases, proteases, and lipases, was also revealed in the metagenomic library. Functional screening of this library was subsequently done looking for genes encoding lipolytic enzymes. Six genes conferring lipolytic activity were identified and one was cloned and characterized. This gene was named LOB4Est and it was expressed in a yeast mesophilic host. LOB4Est codes for a novel esterase of family VIII, with sequence similarity to β-lactamases, but with unusual wide substrate specificity. When the enzyme was purified from the mesophilic host it showed half-life of 1 h and 43 min at 50°C, and maximal activity at 40°C and pH 7.5 with p-nitrophenyl-laurate as substrate. Interestingly, the enzyme retained more than 80% of maximal activity in a broad range of pH from 6.5 to 8.
Collapse
Affiliation(s)
- Olalla López-López
- Grupo EXPRELA, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas, Universidade da Coruña A Coruña, Spain
| | - Kamila Knapik
- Grupo EXPRELA, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas, Universidade da Coruña A Coruña, Spain
| | - Maria-Esperanza Cerdán
- Grupo EXPRELA, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas, Universidade da Coruña A Coruña, Spain
| | - María-Isabel González-Siso
- Grupo EXPRELA, Departamento de Bioloxía Celular e Molecular, Facultade de Ciencias, Centro de Investigacións Científicas Avanzadas, Universidade da Coruña A Coruña, Spain
| |
Collapse
|
13
|
Hu Y, Liu Y, Li J, Feng Y, Lu N, Zhu B, Xue S. Structural and functional analysis of a low-temperature-active alkaline esterase from South China Sea marine sediment microbial metagenomic library. J Ind Microbiol Biotechnol 2015; 42:1449-61. [PMID: 26350078 DOI: 10.1007/s10295-015-1653-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
A low-temperature-active alkaline esterase, Est12, from a marine sediment metagenomic fosmid library was identified. Est12 prefers short- and middle-chain p-nitrophenol esters as substrate with optimum temperature and pH value of 50 °C and 9.0, respectively, and nearly 50 % of maximum activity retained at 5 °C. The hydrolysis activity of Est12 was stable at 40 °C. Ca(2+) especially activated the activity of Est12 to about 151 % of the control. DEPC and PMSF inhibited the activity of Est12 to 34 and 25 %, respectively. In addition, Est12 was more tolerable to methanol compared to other organic solvents tested. The crystal structure of Est12 at 1.39 Å resolution showed that the cap domain which is composed of an α-helix and a flexible region resulted in a relatively wide spectrum of substrate, with p-nitrophenol caproate as the preferred one. Furthermore, the flexible cap domain and the high percentage of Gly, Ser, and Met may play important roles in the adaptation of Est12 to low temperature.
Collapse
Affiliation(s)
- Yongfei Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, 100101, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Yinghui Liu
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, 100101, China
| | - Yanbin Feng
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Na Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, 100101, China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Key Laboratory of Microbial Drug Resistance and Resistome, Beijing, 100101, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China.
| | - Song Xue
- Marine Bioengineering Group, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
14
|
Molecular cloning of rhodanese gene from soil metagenome of cold desert of North-West Himalayas: sequence and structural features of the rhodanese enzyme. 3 Biotech 2015; 5:513-521. [PMID: 28324556 PMCID: PMC4522728 DOI: 10.1007/s13205-014-0249-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022] Open
Abstract
Rhodanese is a multifunctional, sulfur transferase that catalyzes the detoxification of cyanide by sulphuration in a double displacement (ping pong) mechanistic reaction. In the present study, small-insert metagenomic library from soil sample collected from Ladakh (3,000–3,600 m.a.s.l) in northwestern Himalayas, India was constructed. Function-driven screening of ~8,500 colonies led to the isolation of one esterase-positive clone (clone-est) harboring 2.43 kb insert. Sequence analysis of the insert identified two ORF’s, phosM encoding phosphoesterase and rodM encoding rhodanese. The 800 bp rodM gene encoded a polypeptide of 227 amino acids (RodM). The RodM showed maximum homology with the rhodanese-like protein from Cyanobacterium synechococcus species with a score identity of only 51 %. Putative 3D structure of RodM developed by homology modeling resembles to homodimeric protein of SUD sulfur transferase of Wolinellasuccinogenes with properly structured active-site cysteine (Cys) residue. Rhodanese has been reported from few culturable microorganisms.
Collapse
|
15
|
De Santi C, Ambrosino L, Tedesco P, Zhai L, Zhou C, Xue Y, Ma Y, de Pascale D. Identification and characterization of a novel salt-tolerant esterase from a Tibetan glacier metagenomic library. Biotechnol Prog 2015; 31:890-9. [PMID: 25920073 DOI: 10.1002/btpr.2096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/23/2015] [Indexed: 12/12/2022]
Abstract
A salt-tolerant esterase, designated H9Est, was identified from a metagenomic library of the Karuola glacier. H9Est gene comprised 1071 bp and encoded a polypeptide of 357 amino acids with a molecular mass of 40 kDa. Sequence analysis revealed that H9Est belonged to the family IV of bacterial lypolitic enzyme. H9Est was overexpressed in Escherichia coli and the purified enzyme showed hydrolytic activity towards p-nitrophenyl esters with carbon chain from 2 to 8. The optimal esterase activity was at 40°C and pH 8.0 and the enzyme retained its activity towards some miscible organic solvents such as polyethylene glycol. A three-dimensional model of H9Est revealed that S200, D294, and H324 formed the H9Est catalytic triad. Circular Dichroism spectra and molecular dynamic simulation indicated that the esterase had a wide denaturation temperature range and flexible loops that would be beneficial for H9Est performance at low temperatures while retaining heat-resistant features.
Collapse
Affiliation(s)
- Concetta De Santi
- Inst. of Protein Biochemistry, National Research Council, Naples, I-80131, Italy
| | - Luca Ambrosino
- Inst. of Protein Biochemistry, National Research Council, Naples, I-80131, Italy
| | - Pietro Tedesco
- Inst. of Protein Biochemistry, National Research Council, Naples, I-80131, Italy
| | | | | | | | - Yanhe Ma
- State Key Laboratory of Microbial Resources and National Engineering Laboratory for Industrial Enzymes, Inst. of Microbiology, CAS, Beijing, 100101, China
| | | |
Collapse
|
16
|
Su J, Zhang F, Sun W, Karuppiah V, Zhang G, Li Z, Jiang Q. A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World J Microbiol Biotechnol 2015; 31:1093-102. [PMID: 25921581 DOI: 10.1007/s11274-015-1859-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 04/23/2015] [Indexed: 11/24/2022]
Abstract
Microorganisms associated with marine sponges are potential resources for marine enzymes. In this study, culture-independent metagenomic approach was used to isolate lipases from the complex microbiome of the sponge Ircinia sp. obtained from the South China Sea. A metagenomic library was constructed, containing 6568 clones, and functional screening on 1 % tributyrin agar resulted in the identification of a positive lipase clone (35F4). Following sequence analysis 35F4 clone was found to contain a putative lipase gene lipA. Sequence analysis of the predicted amino acid sequence of LipA revealed that it is a member of subfamily I.1 of lipases, with 63 % amino acid similarity to the lactonizing lipase from Aeromonas veronii (WP_021231793). Based on the predicted secondary structure, LipA was predicted to be an alkaline enzyme by sequence/structure analysis. Heterologous expression of lipA in E. coli BL21 (DE3) was performed and the characterization of the recombinant enzyme LipA showed that it is an alkaline enzyme with high tolerance to organic solvents. The isolated lipase LipA was active in the broad alkaline range, with the highest activity at pH 9.0, and had a high level of stability over a pH range of 7.0-12.0. The activity of LipA was increased in the presence of 5 mM Ca(2+) and some organic solvents, e.g. methanol, acetone and isopropanol. The optimum temperature for the activity of LipA is 40 °C and the molecular weight of LipA was determined to be ~30 kDa by SDS-PAGE. LipA is an alkaline lipase and shows good tolerance to some organic solvents, which make it of potential utility in the detergent industry and enzyme mediated organic synthesis. The result of this study has broadened the diversity of known lipolytic genes and demonstrated that marine sponges are an important source for new enzymes.
Collapse
Affiliation(s)
- Jing Su
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, People's Republic China
| | | | | | | | | | | | | |
Collapse
|
17
|
Gu X, Wang S, Wang S, Zhao LX, Cao M, Feng Z. Identification and Characterization of Two Novel Esterases from a Metagenomic Library. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2015. [DOI: 10.3136/fstr.21.649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Xinqi Gu
- College of Food Science and Technology, Nanjing Agricultural University
| | - Shilin Wang
- College of Food Science and Technology, Nanjing Agricultural University
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University
| | - Li-Xing Zhao
- Key Laboratory of Medicinal chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University
| |
Collapse
|
18
|
Narihiro T, Suzuki A, Yoshimune K, Hori T, Hoshino T, Yumoto I, Yokota A, Kimura N, Kamagata Y. The combination of functional metagenomics and an oil-fed enrichment strategy revealed the phylogenetic diversity of lipolytic bacteria overlooked by the cultivation-based method. Microbes Environ 2014; 29:154-61. [PMID: 24859309 PMCID: PMC4103521 DOI: 10.1264/jsme2.me14002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Metagenomic screening and conventional cultivation have been used to exploit microbial lipolytic enzymes in nature. We used an indigenous forest soil (NS) and oil-fed enriched soil (OS) as microbial and genetic resources. Thirty-four strains (17 each) of lipolytic bacteria were isolated from the NS and OS microcosms. These isolates were classified into the (sub)phyla Betaproteobacteria, Gammaproteobacteria, Firmicutes, and Actinobacteria, all of which are known to be the main microbial resources of commercially available lipolytic enzymes. Seven and 39 lipolytic enzymes were successfully retrieved from the metagenomic libraries of the NS and OS microcosms, respectively. The screening efficiency (a ratio of positive lipolytic clones to the total number of environmental clones) was markedly higher in the OS microcosm than in the NS microcosm. Moreover, metagenomic clones encoding the lipolytic enzymes associated with Alphaproteobacteria, Deltaproteobacteria, Acidobacteria, Armatimonadetes, and Planctomycetes and hitherto-uncultivated microbes were recovered from these libraries. The results of the present study indicate that functional metagenomics can be effectively used to capture as yet undiscovered lipolytic enzymes that have eluded the cultivation-based method, and these combined approaches may be able to provide an overview of lipolytic organisms potentially present in nature.
Collapse
Affiliation(s)
- Takashi Narihiro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Peng Q, Wang X, Shang M, Huang J, Guan G, Li Y, Shi B. Isolation of a novel alkaline-stable lipase from a metagenomic library and its specific application for milkfat flavor production. Microb Cell Fact 2014; 13:1. [PMID: 24387764 PMCID: PMC3880967 DOI: 10.1186/1475-2859-13-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 12/29/2013] [Indexed: 12/01/2022] Open
Abstract
Background Lipolytic enzymes are commonly used to produce desired flavors in lipolyzed milkfat (LMF) manufacturing processes. However, the choice of enzyme is critical because it determines the final profile of fatty acids released and the consequent flavor of the product. We previously constructed a metagenomic library from marine sediments, to explore the novel enzymes which have unique properties useful in flavor-enhancing LMF. Results A novel lipase Est_p6 was isolated from a metagenomic library and was expressed highly in E.coli. Bioinformatic analysis indicated that Est_p6 belongs to lipolytic enzyme family IV, the molecular weight of purified Est_p6 was estimated at 36 kDa by SDS-PAGE. The hydrolytic activity of the enzyme was stable under alkaline condition and the optimal temperature was 50°C. It had a high specific activity (2500 U/mg) toward pNP butyrate (pNP-C4), with Km and Vmax values of 1.148 mM and 3497 μmol∙min-1∙mg-1, respectively. The enzyme activity was enhanced by DTT and was not significantly inhibited by PMSF, EDTA or SDS. This enzyme also showed high hydrolysis specificity for myristate (C14) and palmitate (C16). It seems that Est_p6 has safety for commercial LMF flavor production and food manufacturing processes. Conclusions The ocean is a vast and largely unexplored resource for enzymes. According the outstanding alkaline-stability of Est_p6 and it produced myristic acid and palmitic acid more efficiently than other free fatty acids in lipolyzed milkfat. This novel lipase may be used to impart a distinctive and desirable flavor and odor in milkfat flavor production.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Li
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing 100193, P, R, China.
| | | |
Collapse
|
20
|
Shao H, Xu L, Yan Y. Isolation and characterization of a thermostable esterase from a metagenomic library. J Ind Microbiol Biotechnol 2013; 40:1211-22. [PMID: 23934105 DOI: 10.1007/s10295-013-1317-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
Abstract
A novel esterase gene was isolated by functional screening of a metagenomic library prepared from an activated sludge sample. The gene (est-XG2) consists of 1,506 bp with GC content of 74.8 %, and encodes a protein of 501 amino acids with a molecular mass of 53 kDa. Sequence alignment revealed that Est-XG2 shows a maximum amino acid identity (47 %) with the carboxylesterase from Thermaerobacter marianensis DSM 12885 (YP_004101478). The catalytic triad of Est-XG2 was predicted to be Ser₁₉₂-Glu₃₁₃-His₄₁₂ with Ser₉₂ in a conserved pentapeptide (GXSXG), and further confirmed by site-directed mutagenesis. Phylogenetic analysis suggested Est-XG2 belongs to the bacterial lipase/esterase family VII. The recombinant Est-XG2, expressed and purified from Escherichia coli, preferred to hydrolyze short and medium length p-nitrophenyl esters with the best substrate being p-nitrophenyl acetate (K(m) and k(cat) of 0.33 mM and 36.21 s⁻¹, respectively). The purified enzyme also had the ability to cleave sterically hindered esters of tertiary alcohols. Biochemical characterization of Est-XG2 revealed that it is a thermophilic esterase that exhibits optimum activity at pH 8.5 and 70 °C. Est-XG2 had moderate tolerance to organic solvents and surfactants. The unique properties of Est-XG2, high thermostability and stability in the presence of organic solvents, may render it a potential candidate for industrial applications.
Collapse
Affiliation(s)
- Hua Shao
- Key Lab of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | | | | |
Collapse
|
21
|
Isolation of cold-active, acidic endocellulase from Ladakh soil by functional metagenomics. Extremophiles 2013; 17:229-39. [DOI: 10.1007/s00792-012-0510-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/17/2012] [Indexed: 10/27/2022]
|
22
|
Biver S, Vandenbol M. Characterization of three new carboxylic ester hydrolases isolated by functional screening of a forest soil metagenomic library. J Ind Microbiol Biotechnol 2012; 40:191-200. [PMID: 23160923 DOI: 10.1007/s10295-012-1217-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/04/2012] [Indexed: 11/25/2022]
Abstract
Three new lipolytic genes were isolated from a forest soil metagenomic library by functional screening on tributyrin agar plates. The genes SBLip1, SBLip2 and SBLip5.1 respectively encode polypeptides of 445, 346 and 316 amino acids. Phylogenetic analyses revealed that SBLip2 and SBLip5.1 belong to bacterial esterase/lipase family IV, whereas SBLip1 shows similarity to class C β-lactamases and is thus related to esterase family VIII. The corresponding genes were overexpressed and their products purified by affinity chromatography for characterization. Analyses of substrate specificity with different p-nitrophenyl esters showed that all three enzymes have a preference for short-acyl-chain p-nitrophenyl esters, a feature of carboxylesterases as opposed to lipases. The β-lactamase activity of SBLip1, measured with the chromogenic substrate nitrocefin, was very low. The three esterases have the same optimal pH (pH 10) and remain active across a relatively broad pH range, displaying more than 60 % activity between pH 6 and 10. The temperature optima determined were 35 °C for SBLip1, 45 °C for SBLip2 and 50 °C for SBLip5.1. The three esterases displayed different levels of tolerance to salts, solvents and detergents, SBLip2 being overall more tolerant to high concentrations of solvent and SBLip5.1 less affected by detergents.
Collapse
Affiliation(s)
- Sophie Biver
- Unité de Microbiologie et Génomique, Gembloux Agro-Bio Tech, Université de Liège, Avenue Maréchal Juin 6, 5030 Gembloux, Belgium.
| | | |
Collapse
|
23
|
|
24
|
Identification and characterization of a novel cold-adapted esterase from a metagenomic library of mountain soil. ACTA ACUST UNITED AC 2012; 39:681-9. [DOI: 10.1007/s10295-011-1080-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/29/2011] [Indexed: 12/12/2022]
Abstract
Abstract
A novel lipolytic enzyme was isolated from a metagenomic library after demonstration of lipolytic activity on an LB agar plate containing 1% (w/v) tributyrin. A novel esterase gene (estIM1), encoding a lipolytic enzyme (EstIM1), was cloned using a shotgun method from a pFosEstIM1 clone of the metagenomic library, and the enzyme was characterized. The estIM1 gene had an open reading frame (ORF) of 936 base pairs and encoded a protein of 311 amino acids with a molecular mass 34 kDa and a pI value of 4.32. The deduced amino acid sequence was 62% identical to that of an esterase from an uncultured bacterium (ABQ11271). The amino acid sequence indicated that EstIM1 was a member of the family IV of lipolytic enzymes, all of which contain a GDSAG motif shared with similar enzymes of lactic acid microorganisms. EstIM1 was active over a temperature range of 1–50°C, at alkaline pH. The activation energy for hydrolysis of p-nitrophenyl propionate was 1.04 kcal/mol, within a temperature range of 1–40°C. The activity of EstIM1 was about 60% of maximal even at 1°C, suggesting that EstIM1 is efficiently cold-adapted. Further characterization of this cold-adapted enzyme indicated that the esterase may be very valuable in industrial applications.
Collapse
|
25
|
Expression and purification of organic solvent stable lipase from soil metagenomic library. World J Microbiol Biotechnol 2012; 28:2417-24. [DOI: 10.1007/s11274-012-1051-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 03/26/2012] [Indexed: 10/28/2022]
|
26
|
Sharma N, Tanksale H, Kapley A, Purohit HJ. Mining the metagenome of activated biomass of an industrial wastewater treatment plant by a novel method. Indian J Microbiol 2012; 52:538-43. [PMID: 24293707 DOI: 10.1007/s12088-012-0263-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/01/2012] [Indexed: 12/01/2022] Open
Abstract
Metagenomic libraries herald the era of magnifying the microbial world, tapping into the vast metabolic potential of uncultivated microbes, and enhancing the rate of discovery of novel genes and pathways. In this paper, we describe a method that facilitates the extraction of metagenomic DNA from activated sludge of an industrial wastewater treatment plant and its use in mining the metagenome via library construction. The efficiency of this method was demonstrated by the large representation of the bacterial genome in the constructed metagenomic libraries and by the functional clones obtained. The BAC library represented 95.6 times the bacterial genome, while, the pUC library represented 41.7 times the bacterial genome. Twelve clones in the BAC library demonstrated lipolytic activity, while four clones demonstrated dioxygenase activity. Four clones in pUC library tested positive for cellulase activity. This method, using FTA cards, not only can be used for library construction, but can also store the metagenome at room temperature.
Collapse
Affiliation(s)
- Nandita Sharma
- Environmental Genomics Division, National Environmental Engineering Research Institute, CSIR, Nehru Marg, Nagpur, 440020 Maharashtra India
| | | | | | | |
Collapse
|
27
|
Fan X, Liu X, Huang R, Liu Y. Identification and characterization of a novel thermostable pyrethroid-hydrolyzing enzyme isolated through metagenomic approach. Microb Cell Fact 2012; 11:33. [PMID: 22409882 PMCID: PMC3317823 DOI: 10.1186/1475-2859-11-33] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/13/2012] [Indexed: 11/21/2022] Open
Abstract
Background Pyrethroid pesticides are broad-spectrum pest control agents in agricultural production. Both agricultural and residential usage is continuing to grow, leading to the development of insecticide resistance in the pest and toxic effects on a number of nontarget organisms. Thus, it is necessary to hunt suitable enzymes including hydrolases for degrading pesticide residues, which is an efficient "green" solution to biodegrade polluting chemicals. Although many pyrethroid esterases have consistently been purified and characterized from various resources including metagenomes and organisms, the thermostable pyrethroid esterases have not been reported up to the present. Results In this study, we identified a novel pyrethroid-hydrolyzing enzyme Sys410 belonging to familyV esterases/lipases with activity-based functional screening from Turban Basin metagenomic library. Sys410 contained 280 amino acids with a predicted molecular mass (Mr) of 30.8 kDa and was overexpressed in Escherichia coli BL21 (DE3) in soluble form. The optimum pH and temperature of the recombinant Sys410 were 6.5 and 55°C, respectively. The enzyme was stable in the pH range of 4.5-8.5 and at temperatures below 50°C. The activity of Sys410 decreased a little when stored at 4°C for 10 weeks, and the residual activity reached 94.1%. Even after incubation at 25°C for 10 weeks, it kept 68.3% of its activity. The recombinant Sys410 could hydrolyze a wide range of ρ-nitrophenyl esters, but its best substrate is ρ-nitrophenyl acetate with the highest activity (772.9 U/mg). The enzyme efficiently degraded cyhalothrin, cypermethrin, sumicidin, and deltamethrin under assay conditions of 37°C for 15 min, with exceeding 95% hydrolysis rate. Conclusion This is the first report to construct metagenomic libraries from Turban Basin to obtain the thermostable pyrethroid-hydrolyzing enzyme. The recombinant Sys410 with broad substrate specificities and high activity was the most thermostable one of the pyrethroid-hydrolyzing esterases studied before, which made it an ideal candidate for the detoxification of pyrethroids.
Collapse
Affiliation(s)
- Xinjiong Fan
- School of life sciences, Sun Yat-sen University, Guangzhou 510275, P R China
| | | | | | | |
Collapse
|
28
|
Jiang CJ, Chen G, Huang J, Huang Q, Jin K, Shen PH, Li JF, Wu B. A novel β-glucosidase with lipolytic activity from a soil metagenome. Folia Microbiol (Praha) 2011; 56:563-70. [PMID: 22116645 DOI: 10.1007/s12223-011-0083-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 10/25/2011] [Indexed: 11/25/2022]
Abstract
Moonlighting proteins have two different functions within a single polypeptide chain. Exploring moonlighting enzymes from the environment using the metagenomic approach is interesting. In the present study, a novel β-glucosidase gene, designated as bgl1D, with lipolytic activity (renamed Lip1C) was cloned through function-based screening of a metagenomic library from uncultured soil microorganisms. The deduced amino acid sequence comparison and phylogenetic analysis also indicated that Lip1C and other putative lipases are closely related. Biochemical characterization demonstrated that the maximum activity of the recombinant Lip1C protein occurs at pH 8.0 and 30°C using 4-nitrophenyl butyrate as substrate. The putative lipase had an apparent K(m) value of 0.88 mmol/L, a k(cat) value of 212/min, and a k(cat)/K(m) value of 241 L/mmol/min. Lip1C exhibited habitat-specific characteristics with 5 mmol/L AlCl(3), CuCl(2), and LiCl. The characterization of the biochemical properties of Lip1C enhances our understanding of this novel moonlighting enzyme isolated from a soil metagenome.
Collapse
Affiliation(s)
- Cheng-Jian Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, The Key Laboratory of Ministry of Education for Microbial and Plant Genetic Engineering, and College of Life Science and Technology, Guangxi University, 100 Daxue East Road, Nanning, Guangxi 530004, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Peng Q, Zhang X, Shang M, Wang X, Wang G, Li B, Guan G, Li Y, Wang Y. A novel esterase gene cloned from a metagenomic library from neritic sediments of the South China Sea. Microb Cell Fact 2011; 10:95. [PMID: 22067554 PMCID: PMC3226443 DOI: 10.1186/1475-2859-10-95] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/09/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Marine microbes are a large and diverse group, which are exposed to a wide variety of pressure, temperature, salinity, nutrient availability and other environmental conditions. They provide a huge potential source of novel enzymes with unique properties that may be useful in industry and biotechnology. To explore the lipolytic genetic resources in the South China Sea, 23 sediment samples were collected in the depth < 100 m marine areas. RESULTS A metagenomic library of South China Sea sediments assemblage in plasmid vector containing about 194 Mb of community DNA was prepared. Screening of a part of the unamplified library resulted in isolation of 15 unique lipolytic clones with the ability to hydrolyze tributyrin. A positive recombinant clone (pNLE1), containing a novel esterase (Est_p1), was successfully expressed in E. coli and purified. In a series of assays, Est_p1 displayed maximal activity at pH 8.57, 40°C, with ρ-Nitrophenyl butyrate (C4) as substrate. Compared to other metagenomic esterases, Est_p1 played a notable role in specificity for substrate C4 (kcat/Km value 11,500 S-1m M-1) and showed no inhibited by phenylmethylsulfonyl fluoride, suggested that the substrate binding pocket was suitable for substrate C4 and the serine active-site residue was buried at the bottom of substrate binding pocket which sheltered by a lid structure. CONCLUSIONS Esterase, which specificity towards short chain fatty acids, especially butanoic acid, is commercially available as potent flavoring tools. According the outstanding activity and specificity for substrate C4, Est_p1 has potential application in flavor industries requiring hydrolysis of short chain esters.
Collapse
Affiliation(s)
- Qing Peng
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences, China Agricultural University, Beijing, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Fan X, Liu X, Wang K, Wang S, Huang R, Liu Y. Highly soluble expression and molecular characterization of an organic solvent-stable and thermotolerant lipase originating from the metagenome. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2011.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Isolation and characterization of a novel α-amylase from a metagenomic library of Western Ghats of Kerala, India. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0126-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
A novel cold active esterase derived from Colombian high Andean forest soil metagenome. World J Microbiol Biotechnol 2011; 28:361-70. [PMID: 22806812 DOI: 10.1007/s11274-011-0828-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
In order to search new lipolytic enzymes and conduct bioprospecting of microbial communities from high Andean forest soil, a metagenomic library of approximately 20,000 clones was constructed in Escherichia coli using plasmid p-Bluescript II SK+. The library covered 80 Mb of the metagenomic DNA mainly from Proteobacteria, Actinobacteria and Acidobacteria. Two clones with lipolytic activity in tributyrin as a substrate were recovered. Clone BAA3G2 (pSK-estGX1) was selected and the entire 4.6 Kb insert sequence was determined. The sequence had a GC content of 70.6% and could be derived from an undescribed Actinobacteria genome. One open reading frame encoded a polypeptide of 210 amino acids (gene estGX1) with a molecular mass of 22.4 kDa that contained the pentapeptide G-P-S-G-G near the N-terminus essential for lipase activity and the putative catalytic triad was identified, also a putative ribosomal binding site located 18 bp upstream the estGX1 ATG start codon was identified. The phylogenetic analysis suggested that the protein belonged to a new lipase family. The secreted enzyme showed a preference for short length fatty acids, with specific activity against p-nitrophenyl-butyrate (0.142 U/mg of total protein), it was cold active with relative activity of 30% at 10°C and moderately thermo active with relative activity of 80% at 50°C and had a pH optimum of 8.0 at 40°C.
Collapse
|
33
|
Isolation of a Leptothrix strain, OUMS1, from ocherous deposits in groundwater. Curr Microbiol 2011; 63:173-80. [PMID: 21643851 DOI: 10.1007/s00284-011-9957-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/17/2011] [Indexed: 10/18/2022]
Abstract
Leptothrix species in aquatic environments produce uniquely shaped hollow microtubules composed of aquatic inorganic and bacterium-derived organic hybrids. Our group termed this biologically derived iron oxide as "biogenous iron oxide (BIOX)". The artificial synthesis of most industrial iron oxides requires massive energy and is costly while BIOX from natural environments is energy and cost effective. The BIOX microtubules could potentially be used as novel industrial functional resources for catalysts, adsorbents and pigments, among others if effective and efficient applications are developed. For these purposes, a reproducible system to regulate bacteria and their BIOX productivity must be established to supply a sufficient amount of BIOX upon industrial demand. However, the bacterial species and the mechanism of BIOX microtubule formation are currently poorly understood. In this study, a novel Leptothrix sp. strain designated OUMS1 was successfully isolated from ocherous deposits in groundwater by testing various culture media and conditions. Morphological and physiological characters and elemental composition were compared with those of the known strain L. cholodnii SP-6 and the differences between these two strains were shown. The successful isolation of OUMS1 led us to establish a basic system to accumulate biological knowledge of Leptothrix and to promote the understanding of the mechanism of microtubule formation. Additional geochemical studies of the OUMS1-related microstructures are expected provide an attractive approach to study the broad industrial application of bacteria-derived iron oxides.
Collapse
|
34
|
Isolation and characterization of a family VII esterase derived from alluvial soil metagenomic library. J Microbiol 2011; 49:178-85. [PMID: 21538236 DOI: 10.1007/s12275-011-1102-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
A novel esterase gene, estDL30, was isolated from an alluvial metagenomic library using function-driven screening. estDL30 consisted of 1,524 nucleotides and encoded a 507-amino acid protein. Sequence analysis revealed that EstDL30 is similar to many type B carboxylesterases, containing a G-E-S-A-G pentapeptide with a catalytic Ser residue. Phylogenetic analysis suggested that EstDL30 belongs to the family VII lipases, together with esterases from Bacillus subtilis (P37967), Streptomyces coelicolor A3(2) (CAA22794), and Arthrobacter oxydans (Q01470). Purified EstDL30 showed its highest catalytic efficiency toward p-nitrophenyl butyrate, with a k (cat) of 2293 s(-1) and k (cat)/K (m) of 176.4 s(-1)mM(-1); however, little activity was detected when the acyl chain length exceeded C(8). Biochemical characterization of EstDL30 revealed that it is an alkaline esterase that possesses maximal activity at pH 8 and 40° C. The effects of denaturants and divalent cations were also investigated. EstDL30 tolerated well the presence of methanol and Tween 20. Its activity was strongly inhibited by 1 mM Cu(2+) and Zn(2+), but stimulated by Fe(2+). The unique properties of EstDL30, its high activity under alkaline conditions and stability in the presence of organic solvents, may render it applicable to organic synthesis.
Collapse
|
35
|
Verma D, Satyanarayana T. An improved protocol for DNA extraction from alkaline soil and sediment samples for constructing metagenomic libraries. Appl Biochem Biotechnol 2011; 165:454-64. [PMID: 21519906 DOI: 10.1007/s12010-011-9264-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 04/11/2011] [Indexed: 11/25/2022]
Abstract
An improved single-step protocol has been developed for extracting pure community humic substance-free DNA from alkaline soils and sediments. The method is based on direct cell lysis in the presence of powdered activated charcoal and polyvinylpolypyrrolidone followed by precipitation with polyethyleneglycol and isopropanol. The strategy allows simultaneous isolation and purification of DNA while minimizing the loss of DNA with respect to other available protocols for metagenomic DNA extraction. Moreover, the purity levels are significant, which are difficult to attain with any of the methods reported in the literature for DNA extraction from soils. The DNA thus extracted was free from humic substances and, therefore, could be processed for restriction digestion, PCR amplification as well as for the construction of metagenomic libraries.
Collapse
Affiliation(s)
- Digvijay Verma
- Department of Microbiology, University of Delhi South Campus, New Delhi 110 021, India
| | | |
Collapse
|
36
|
Nacke H, Will C, Herzog S, Nowka B, Engelhaupt M, Daniel R. Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiol Ecol 2011; 78:188-201. [PMID: 21395625 DOI: 10.1111/j.1574-6941.2011.01088.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Microbial metagenomes derived from soils are rich sources for the discovery of novel genes and biocatalysts. Fourteen environmental plasmid and seven fosmid libraries obtained from 10 German forest soils (A horizons) and six grassland soils (A and B horizons) were screened for genes conferring lipolytic activity. The libraries comprised approximately 29.3 Gb of cloned soil DNA. Partial activity-based screening of the constructed libraries resulted in the identification of 37 unique lipolytic clones. The amino acid sequences of the 37 corresponding lipolytic gene products shared 29-90% identity to other lipolytic enzymes, which were mainly uncharacterized or derived from uncultured microorganisms. Multiple sequence alignments and phylogenetic tree analysis revealed that 35 of the predicted proteins were new members of known families of lipolytic enzymes. The remaining two gene products represent two putatively new families. In addition, sequence analysis indicated that two genes encode true lipases, whereas the other genes encode esterases. The determination of substrate specificity and chain-length selectivity using different triacylglycerides and p-nitrophenyl esters of fatty acids as substrates supported the classification of the esterases.
Collapse
Affiliation(s)
- Heiko Nacke
- Department of Genomic and Applied Microbiology, Institute of Microbiology and Genetics, Georg-August University Göttingen, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
37
|
JunGang L, KeGui Z, WenJun H. Cloning and biochemical characterization of a novel lipolytic gene from activated sludge metagenome, and its gene product. Microb Cell Fact 2010; 9:83. [PMID: 21054894 PMCID: PMC2987919 DOI: 10.1186/1475-2859-9-83] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Accepted: 11/07/2010] [Indexed: 11/10/2022] Open
Abstract
In this study, a putative esterase, designated EstMY, was isolated from an activated sludge metagenomic library. The lipolytic gene was subcloned and expressed in Escherichia coli BL21 using the pET expression system. The gene estMY contained a 1,083 bp open reading frame (ORF) encoding a polypeptide of 360 amino acids with a molecular mass of 38 kDa. Sequence analysis indicated that it showed 71% and 52% amino acid identity to esterase/lipase from marine metagenome (ACL67845) and Burkholderia ubonensis Bu (ZP_02382719), respectively; and several conserved regions were identified, including the putative active site, GDSAG, a catalytic triad (Ser203, Asp301, and His327) and a HGGG conserved motif (starting from His133). The EstMY was determined to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤C8). This EstMY exhibited the highest activity at 35°C and pH 8.5 respectively, by hydrolysis of p-NP caprylate. It also exhibited the same level of activity over wide temperature and pH spectra and in the presence of metal ions or detergents. The high level of stability of esterase EstMY with unique substrate specificities makes it highly valuable for downstream biotechnological applications.
Collapse
|
38
|
Schmidt M, Larsen DM, Stougaard P. A lipase with broad temperature range from an alkaliphilic gamma-proteobacterium isolated in Greenland. ENVIRONMENTAL TECHNOLOGY 2010; 31:1091-1100. [PMID: 20718291 DOI: 10.1080/09593331003770289] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A gamma-proteobacterium related to the genera Alteromonadales and Pseudomonadales, isolated from a cold and alkaline environment in Greenland, has been shown to produce a lipase active between 5 degrees C and 80 degrees C, with optimal activity at 55 degrees C and pH 8. PCR-based screening of genomic DNA from the isolated bacterium, followed by genome walking, resulted in two complete open reading frames, which were predicted to encode a lipase and its helper protein, a lipase foldase. The amino acid sequence derived for the lipase showed resemblance to lipases from Pseudomonas, Rhodoferax, Aeromonas and Vibrio. The two genes were cloned into different expression systems in E. coli with or without a putative secretion sequence, but despite the fact that both recombinant lipase and lipase foldase were observed on SDS-PAGE, no recombinant lipase activity was detected. Attempts to refold the recombinant lipase in vitro using a purified lipase foldase remained unsuccessful.
Collapse
Affiliation(s)
- Mariane Schmidt
- Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark
| | | | | |
Collapse
|
39
|
Kapardar RK, Ranjan R, Puri M, Sharma R. Sequence analysis of a salt tolerant metagenomic clone. Indian J Microbiol 2010; 50:212-5. [PMID: 23100830 PMCID: PMC3450326 DOI: 10.1007/s12088-010-0041-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/17/2010] [Indexed: 11/26/2022] Open
Abstract
Metagenome represent an unlimited resource for discovery of novel genes. Here we report, sequence analysis of a salt tolerant metagenomic clone (6B4) from a pond water metagenomic library. Clone 6B4 had an insert of 2254 bp with G+C composition of 64.06%. DNA sequence from 6B4 showed homology to DNA sequences from pro-teobacteria indicating origin of 6B4 metagenomic insert from a yet uncharacterized proteobacteria. Two encoded proteins from clone 6B4 showed match with ATP-depen-dent Clp protease adaptor protein (ClpS) and phasin, while two truncated encoded proteins showed match with poly-3-hydroxybutyrate synthase and permease. Clp complex is known to play a role in stress tolerance. Expression of ClpS from metagenomic clone is proposed to be responsible for salt tolerance of the metagenomic clone 6B4.
Collapse
Affiliation(s)
- Raj Kishor Kapardar
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110 007 India
- Fermentation and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147 002 India
| | - Ravi Ranjan
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110 007 India
| | - Munish Puri
- Fermentation and Protein Biotechnology Laboratory, Department of Biotechnology, Punjabi University, Patiala, 147 002 India
| | - Rakesh Sharma
- Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110 007 India
| |
Collapse
|
40
|
Hu Y, Fu C, Huang Y, Yin Y, Cheng G, Lei F, Lu N, Li J, Ashforth EJ, Zhang L, Zhu B. Novel lipolytic genes from the microbial metagenomic library of the South China Sea marine sediment. FEMS Microbiol Ecol 2010; 72:228-37. [DOI: 10.1111/j.1574-6941.2010.00851.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Sharma S, Khan FG, Qazi GN. Molecular cloning and characterization of amylase from soil metagenomic library derived from Northwestern Himalayas. Appl Microbiol Biotechnol 2010; 86:1821-8. [PMID: 20054535 DOI: 10.1007/s00253-009-2404-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/07/2009] [Accepted: 12/09/2009] [Indexed: 11/30/2022]
Abstract
The increasing demand for novel biocatalysts stimulates exploration of resources from soil. Metagenomics, a culture independent approach, represent a sheer unlimited resource for discovery of novel biocatalysts from uncultured microorganisms. In this study, a soil-derived metagenomic library containing 90,700 recombinants was constructed and screened for lipase, cellulase, protease and amylase activity. A gene (pAMY) of 909 bp encoding for amylase was found after the screening of 35,000 Escherichia coli clones. Amino acid sequence comparison and phylogenetic analysis indicated that pAMY was closely related to uncultured bacteria. The molecular mass of pAMY was estimated about 38 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis. Amylase activity was determined using soluble starch, amylose, glycogen and maltose as substrates. The maximal activity (2.46 U/mg) was observed at 40 degrees C under nearly neutral pH conditions with amylose; whereas it retains 90% of its activity at low temperature with all the substrates used in this study. The ability of pAMY to work at low temperature is unique for amylases reported so far from microbes of cultured and uncultured division.
Collapse
Affiliation(s)
- Sarika Sharma
- Biotechnology Division, Indian Institute of Integrative Medicine (Council of Scientific and Industrial Research), Canal Road, Jammu, 180001, India.
| | | | | |
Collapse
|
42
|
Kourist R, Brundiek H, Bornscheuer UT. Protein engineering and discovery of lipases. EUR J LIPID SCI TECH 2010. [DOI: 10.1002/ejlt.200900143] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Zhang T, Han WJ. Gene cloning and characterization of a novel esterase from activated sludge metagenome. Microb Cell Fact 2009; 8:67. [PMID: 20028524 PMCID: PMC3224729 DOI: 10.1186/1475-2859-8-67] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 12/22/2009] [Indexed: 11/29/2022] Open
Abstract
A metagenomic library was prepared using pCC2FOS vector containing about 3.0 Gbp of community DNA from the microbial assemblage of activated sludge. Screening of a part of the un-amplified library resulted in the finding of 1 unique lipolytic clone capable of hydrolyzing tributyrin, in which an esterase gene was identified. This esterase/lipase gene consists of 834 bp and encodes a polypeptide (designated EstAS) of 277 amino acid residuals with a molecular mass of 31 kDa. Sequence analysis indicated that it showed 33% and 31% amino acid identity to esterase/lipase from Gemmata obscuriglobus UQM 2246 (ZP_02733109) and Yarrowia lipolytica CLIB122 (XP_504639), respectively; and several conserved regions were identified, including the putative active site, HSMGG, a catalytic triad (Ser92, His125 and Asp216) and a LHYFRG conserved motif. The EstAS was overexpressed, purified and shown to hydrolyse p-nitrophenyl (NP) esters of fatty acids with short chain lengths (≤ C8). This EstAS had optimal temperature and pH at 35°C and 9.0, respectively, by hydrolysis of p-NP hexanoate. It also exhibited the same level of stability over wide temperature and pH ranges and in the presence of metal ions or detergents. The high level of stability of esterase EstAS with its unique substrate specificities make itself highly useful for biotechnological applications.
Collapse
Affiliation(s)
- Tao Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China.
| | | |
Collapse
|
44
|
Isolation and biochemical characterization of two lipases from a metagenomic library of China Holstein cow rumen. Biochem Biophys Res Commun 2009; 385:605-11. [PMID: 19486892 DOI: 10.1016/j.bbrc.2009.05.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/21/2022]
Abstract
Two novel lipase genes RlipE1 and RlipE2 which encoded 361- and 265-amino acid peptides, respectively, were recovered from a metagenomic library of the rumen microbiota of Chinese Holstein cows. A BLAST search revealed a high similarity (90%) between RlipE2 and a carboxylesterase from Thermosinus carboxydivorans Nor1, while there was a low similarity (below 50%) between RlipE1 and other lipases. Phylogenetic analysis indicated that RlipE2 clustered with the lipolytic enzymes from family V while RlipE1 clustered with six other putative bacterial lipases which might constitute a new subfamily. The recombinant lipases were thermally unstable and retained 60% activity over a pH range of 6.5-8.5. Substrate specificity assay indicated that both enzymes had higher hydrolytic activity toward laurate (C(12)), palmitate (C(16)) and stearate (C(18)). The novel phylogenetic affiliation and high specificity of both enzymes for long-chain fatty acid make them interesting targets for manipulation of rumen lipid metabolism.
Collapse
|
45
|
Berlemont R, Delsaute M, Pipers D, D'Amico S, Feller G, Galleni M, Power P. Insights into bacterial cellulose biosynthesis by functional metagenomics on Antarctic soil samples. ISME JOURNAL 2009; 3:1070-81. [PMID: 19458657 DOI: 10.1038/ismej.2009.48] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this study, the mining of an Antarctic soil sample by functional metagenomics allowed the isolation of a cold-adapted protein (RBcel1) that hydrolyzes only carboxymethyl cellulose. The new enzyme is related to family 5 of the glycosyl hydrolase (GH5) protein from Pseudomonas stutzeri (Pst_2494) and does not possess a carbohydrate-binding domain. The protein was produced and purified to homogeneity. RBcel1 displayed an endoglucanase activity, producing cellobiose and cellotriose, using carboxymethyl cellulose as a substrate. Moreover, the study of pH and the thermal dependence of the hydrolytic activity shows that RBcel1 was active from pH 6 to pH 9 and remained significantly active when temperature decreased (18% of activity at 10 degrees C). It is interesting that RBcel1 was able to synthetize non-reticulated cellulose using cellobiose as a substrate. Moreover, by a combination of bioinformatics and enzyme analysis, the physiological relevance of the RBcel1 protein and its mesophilic homologous Pst_2494 protein from P. stutzeri, A1501, was established as the key enzymes involved in the production of cellulose by bacteria. In addition, RBcel1 and Pst_2494 are the two primary enzymes belonging to the GH5 family involved in this process.
Collapse
Affiliation(s)
- Renaud Berlemont
- Laboratory of Biological Macromolecules, Centre d'Ingéniérie des Proteines, University of Liège, Institut de Chimie B6a, Liège, Sart-Tilman, Belgium
| | | | | | | | | | | | | |
Collapse
|
46
|
Li G, Wang K, Liu YH. Molecular cloning and characterization of a novel pyrethroid-hydrolyzing esterase originating from the Metagenome. Microb Cell Fact 2008; 7:38. [PMID: 19116015 PMCID: PMC2657102 DOI: 10.1186/1475-2859-7-38] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 12/30/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyrethroids and pyrethrins are widely used insecticides. Extensive applications not only result in pest resistance to these insecticides, but also may lead to environmental issues and human exposure. Numerous studies have shown that very high exposure to pyrethroids might cause potential problems to man and aquatic organisms. Therefore, it is important to develop a rapid and efficient disposal process to eliminate or minimize contamination of surface water, groundwater and agricultural products by pyrethroid insecticides. Bioremediation is considered to be a reliable and cost-effective technique for pesticides abatement and a major factor determining the fate of pyrethroid pesticides in the environment, and suitable esterase is expected to be useful for potential application for detoxification of pyrethroid residues. Soil is a complex environment considered as one of the main reservoirs of microbial diversity on the planet. However, most of the microorganisms in nature are inaccessible as they are uncultivable in the laboratory. Metagenomic approaches provide a powerful tool for accessing novel valuable genetic resources (novel enzymes) and developing various biotechnological applications. RESULTS The pyrethroid pesticides residues on foods and the environmental contamination are a public safety concern. Pretreatment with pyrethroid-hydrolyzing esterase has the potential to alleviate the conditions. To this end, a pyrethroid-hydrolyzing esterase gene was successfully cloned using metagenomic DNA combined with activity-based functional screening from soil, sequence analysis of the DNA responsible for the pye3 gene revealed an open reading frame of 819 bp encoding for a protein of 272 amino acid residues. Extensive multiple sequence alignments of the deduced amino acid of Pye3 with the most homologous carboxylesterases revealed moderate identity (45-49%). The recombinant Pye3 was heterologously expressed in E. coli BL21(DE3), purified and characterized. The molecular mass of the native enzyme was approximately 31 kDa as determined by gel filtration. The results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the deduced amino acid sequence of the Pye3 indicated molecular mass of 31 kDa and 31.5 kDa, respectively, suggesting that the Pye3 is a monomer. The purified Pye3 not only degraded all pyrethroid pesticides tested, but also hydrolyzed rho-nitrophenyl esters of medium-short chain fatty acids, indicating that the Pye3 is an esterase with broader specificity. The Km values for trans-Permethrin and cis-permethrin are 0.10 muM and 0.18 muM, respectively, and these catalytic properties were superior to carboxylesterases from resistant insects and mammals. The catalytic activity of the Pye3 was strongly inhibited by Hg2+, Ag+, rho-chloromercuribenzoate, whereas less pronounced effect was observed in the presence of divalent cations, the chelating agent EDTA and phenanthroline. CONCLUSION A novel pyrethroid-hydrolyzing esterase gene was successfully cloned using metagenomic DNA combined with activity-based functional screening from soil, the broader substrate specificities and higher activity of the pyrethroid-hydrolyzing esterase (Pye3) make it an ideal candidate for in situ for detoxification of pyrethroids where they cause environmental contamination problems. Consequently, metagenomic DNA clone library offers possibilities to discover novel bio-molecules through the expression of genes from uncultivated bacteria.
Collapse
Affiliation(s)
- Gang Li
- State Key Laboratory of Biocontrol, School of Life sciences, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | | | | |
Collapse
|
47
|
Hu Y, Zhang G, Li A, Chen J, Ma L. Cloning and enzymatic characterization of a xylanase gene from a soil-derived metagenomic library with an efficient approach. Appl Microbiol Biotechnol 2008; 80:823-30. [DOI: 10.1007/s00253-008-1636-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 07/12/2008] [Accepted: 07/30/2008] [Indexed: 11/28/2022]
|
48
|
Sharma P, Kumari H, Kumar M, Verma M, Kumari K, Malhotra S, Khurana J, Lal R. From bacterial genomics to metagenomics: concept, tools and recent advances. Indian J Microbiol 2008; 48:173-94. [PMID: 23100712 DOI: 10.1007/s12088-008-0031-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 02/23/2008] [Indexed: 01/11/2023] Open
Abstract
In the last 20 years, the applications of genomics tools have completely transformed the field of microbial research. This has primarily happened due to revolution in sequencing technologies that have become available today. This review therefore, first describes the discoveries, upgradation and automation of sequencing techniques in a chronological order, followed by a brief discussion on microbial genomics. Some of the recently sequenced bacterial genomes are described to explain how complete genome data is now being used to derive interesting findings. Apart from the genomics of individual microbes, the study of unculturable microbiota from different environments is increasingly gaining importance. The second section is thus dedicated to the concept of metagenomics describing environmental DNA isolation, metagenomic library construction and screening methods to look for novel and potentially important genes, enzymes and biomolecules. It also deals with the pioneering studies in the area of metagenomics that are offering new insights into the previously unappreciated microbial world.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Zoology, University of Delhi, Delhi, 110 007 India
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Chu X, He H, Guo C, Sun B. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl Microbiol Biotechnol 2008; 80:615-25. [PMID: 18600322 DOI: 10.1007/s00253-008-1566-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 06/02/2008] [Accepted: 06/03/2008] [Indexed: 11/30/2022]
Abstract
The demand for novel biocatalysts is increasing in modern biotechnology, which greatly stimulates the development of powerful tools to explore the genetic resources in the environment. Metagenomics, a culture independent strategy, provides an access to valuable genetic resources of the uncultured microbes. In this study, two novel esterase genes designated as estA and estB, which encoded 277- and 328-amino-acid peptides, respectively, were isolated from a marine microbial metagenomic library by functional screening, and the corresponding esterases EstA and EstB were biochemically characterized. Amino acid sequence comparison and phylogenetic analysis indicated that EstA together with other putative lipolytic enzymes was closely related to family III, and EstB with its relatives formed a subfamily of family IV. Site-directed mutagenesis showed that EstA contained classical catalytic triad made up of S146-D222-H255, whereas EstB contained an unusual catalytic triad which consisted of S-E-H, an important feature of the subfamily. EstA exhibited habitat-specific characteristics such as its high level of stability in the presence of various divalent cations and at high concentrations of NaCl. EstB displayed remarkable activity against p-nitrophenyl esters and was highly stable in 30% methanol, ethanol, dimethylformamide, and dimethyl sulfoxide, making EstB a potential candidate for industrial applications.
Collapse
Affiliation(s)
- Xinmin Chu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | | | | | | |
Collapse
|
50
|
Sharma PK, Capalash N, Kaur J. An improved method for single step purification of metagenomic DNA. Mol Biotechnol 2007; 36:61-3. [PMID: 17827539 DOI: 10.1007/s12033-007-0015-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
Abstract
An improved method for purification of intact metagenomic DNA from soil has been developed using Q-Sepharose, which purified the DNA from phenolic and humic acid contaminants in a single step. The entire procedure for purification took only 45 min. A total of 81% of DNA was recovered after purification and there was 84% reduction in humic acid contents. The purified DNA was readily digested with restriction enzymes and can be further used for molecular applications.
Collapse
|