1
|
Santema LL, Rotilio L, Xiang R, Tjallinks G, Guallar V, Mattevi A, Fraaije MW. Discovery and biochemical characterization of thermostable glycerol oxidases. Appl Microbiol Biotechnol 2024; 108:61. [PMID: 38183484 PMCID: PMC10771423 DOI: 10.1007/s00253-023-12883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 01/08/2024]
Abstract
Alditol oxidases are promising tools for the biocatalytic oxidation of glycerol to more valuable chemicals. By integrating in silico bioprospecting with cell-free protein synthesis and activity screening, an effective pipeline was developed to rapidly identify enzymes that are active on glycerol. Three thermostable alditol oxidases from Actinobacteria Bacterium, Streptomyces thermoviolaceus, and Thermostaphylospora chromogena active on glycerol were discovered. The characterization of these three flavoenzymes demonstrated their glycerol oxidation activities, preference for alkaline conditions, and excellent thermostabilities with melting temperatures higher than 75 °C. Structural elucidation of the alditol oxidase from Actinobacteria Bacterium highlighted a constellation of side chains that engage the substrate through several hydrogen bonds, a histidine residue covalently bound to the FAD prosthetic group, and a tunnel leading to the active site. Upon computational simulations of substrate binding, a double mutant targeting a residue pair at the tunnel entrance was created and found to display an improved thermal stability and catalytic efficiency for glycerol oxidation. The hereby described alditol oxidases form a valuable panel of oxidative biocatalysts that can perform regioselective oxidation of glycerol and other polyols. KEY POINTS: • Rapid pipeline designed to identify putative oxidases • Biochemical and structural characterization of alditol oxidases • Glycerol oxidation to more valuable derivatives.
Collapse
Affiliation(s)
- Lars L Santema
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Laura Rotilio
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Ruite Xiang
- Barcelona Supercomputing Center (BSC), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08034, Spain
| | - Gwen Tjallinks
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08034, Spain.
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| | - Marco W Fraaije
- Molecular Enzymology, University of Groningen, Nijenborgh 4, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
2
|
Choi S, Park YS, Lee KW, Park YJ, Jang HJ, Kim DM, Yoo TH. Sensitive Methods to Detect Single-Stranded Nucleic Acids of Food Pathogens Based on Cell-Free Protein Synthesis and Retroreflection Signal Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3783-3792. [PMID: 38346351 DOI: 10.1021/acs.jafc.3c07785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Cell-free protein synthesis (CFPS) has recently gained considerable attention as a new platform for developing methods to detect various molecules, ranging from small chemicals to biological macromolecules. Retroreflection has been used as an alternative signal to develop analytical methods because it can be detected by using a simple instrument comprising a white light source and a camera. Here, we report a novel reporter protein that couples the capability of CFPS and the simplicity of retroreflection signal detection. The design of the reporter was based on two pairs of protein-peptide interactions, SpyCatcher003-SpyTag003 and MDM2-PMI(N8A). MDM2-MDM2-SpyCatcher003 was decided as the reporter protein, and the two peptides, SpyTag003 and PMI(N8A), were immobilized on the surfaces of retroreflective Janus particles and microfluidic chips, respectively. The developed retroreflection signal detection system was combined with a previously reported CFPS reaction that can transduce the presence of a single-stranded nucleic acid into protein synthesis. The resulting methods were applied to detect 16S rRNAs of several foodborne pathogens. Concentration-dependent relationships were observed over a range of 10° fM to 102 pM, with the limits of detection being single-digit femtomolar concentrations. Considering the designability of the CFPS system for other targets, the retroreflection signal detection method will enable the development of novel methods to detect various molecules.
Collapse
Affiliation(s)
- Sunjoo Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Ye Seop Park
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Kyung Won Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Yu Jin Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Hee Ju Jang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Korea
| |
Collapse
|
3
|
Wagner L, Jules M, Borkowski O. What remains from living cells in bacterial lysate-based cell-free systems. Comput Struct Biotechnol J 2023; 21:3173-3182. [PMID: 37333859 PMCID: PMC10275740 DOI: 10.1016/j.csbj.2023.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/23/2023] [Accepted: 05/23/2023] [Indexed: 06/20/2023] Open
Abstract
Because they mimic cells while offering an accessible and controllable environment, lysate-based cell-free systems (CFS) have emerged as valuable biotechnology tools for synthetic biology. Historically used to uncover fundamental mechanisms of life, CFS are nowadays used for a multitude of purposes, including protein production and prototyping of synthetic circuits. Despite the conservation of fundamental functions in CFS like transcription and translation, RNAs and certain membrane-embedded or membrane-bound proteins of the host cell are lost when preparing the lysate. As a result, CFS largely lack some essential properties of living cells, such as the ability to adapt to changing conditions, to maintain homeostasis and spatial organization. Regardless of the application, shedding light on the black-box of the bacterial lysate is necessary to fully exploit the potential of CFS. Most measurements of the activity of synthetic circuits in CFS and in vivo show significant correlations because these only require processes that are preserved in CFS, like transcription and translation. However, prototyping circuits of higher complexity that require functions that are lost in CFS (cell adaptation, homeostasis, spatial organization) will not show such a good correlation with in vivo conditions. Both for prototyping circuits of higher complexity and for building artificial cells, the cell-free community has developed devices to reconstruct cellular functions. This mini-review compares bacterial CFS to living cells, focusing on functional and cellular process differences and the latest developments in restoring lost functions through complementation of the lysate or device engineering.
Collapse
|
4
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
5
|
Batista AC, Levrier A, Soudier P, Voyvodic PL, Achmedov T, Reif-Trauttmansdorff T, DeVisch A, Cohen-Gonsaud M, Faulon JL, Beisel CL, Bonnet J, Kushwaha M. Differentially Optimized Cell-Free Buffer Enables Robust Expression from Unprotected Linear DNA in Exonuclease-Deficient Extracts. ACS Synth Biol 2022; 11:732-746. [PMID: 35034449 DOI: 10.1021/acssynbio.1c00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of linear DNA templates in cell-free systems promises to accelerate the prototyping and engineering of synthetic gene circuits. A key challenge is that linear templates are rapidly degraded by exonucleases present in cell extracts. Current approaches tackle the problem by adding exonuclease inhibitors and DNA-binding proteins to protect the linear DNA, requiring additional time- and resource-intensive steps. Here, we delete the recBCD exonuclease gene cluster from the Escherichia coli BL21 genome. We show that the resulting cell-free systems, with buffers optimized specifically for linear DNA, enable near-plasmid levels of expression from σ70 promoters in linear DNA templates without employing additional protection strategies. When using linear or plasmid DNA templates at the buffer calibration step, the optimal potassium glutamate concentrations obtained when using linear DNA were consistently lower than those obtained when using plasmid DNA for the same extract. We demonstrate the robustness of the exonuclease deficient extracts across seven different batches and a wide range of experimental conditions across two different laboratories. Finally, we illustrate the use of the ΔrecBCD extracts for two applications: toehold switch characterization and enzyme screening. Our work provides a simple, efficient, and cost-effective solution for using linear DNA templates in cell-free systems and highlights the importance of specifically tailoring buffer composition for the final experimental setup. Our data also suggest that similar exonuclease deletion strategies can be applied to other species suitable for cell-free synthetic biology.
Collapse
Affiliation(s)
- Angelo Cardoso Batista
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| | - Antoine Levrier
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Paul Soudier
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Peter L. Voyvodic
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | | | - Angelique DeVisch
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Jean-Loup Faulon
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - Jerome Bonnet
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Manish Kushwaha
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| |
Collapse
|
6
|
Park YJ, Kim DM. Production of Recombinant Horseradish Peroxidase in an Engineered Cell-free Protein Synthesis System. Front Bioeng Biotechnol 2021; 9:778496. [PMID: 34778239 PMCID: PMC8579056 DOI: 10.3389/fbioe.2021.778496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
One of the main advantages of a cell-free synthesis system is that the synthetic machinery of cells can be modularized and re-assembled for desired purposes. In this study, we attempted to combine the translational activity of Escherichia coli extract with a heme synthesis pathway for the functional production of horseradish peroxidase (HRP). We first optimized the reaction conditions and the sequence of template DNA to enhance protein expression and folding. The reaction mixture was then supplemented with 5-aminolevulinic acid synthase to facilitate co-synthesis of the heme prosthetic group from glucose. Combining the different synthetic modules required for protein synthesis and cofactor generation led to successful production of functional HRP in a cell-free synthesis system.
Collapse
Affiliation(s)
- Yu-Jin Park
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
7
|
|
8
|
Cell-Free Protein Synthesis by Diversifying Bacterial Transcription Machinery. BIOTECH 2021; 10:biotech10040024. [PMID: 35822798 PMCID: PMC9245472 DOI: 10.3390/biotech10040024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022] Open
Abstract
We have evaluated several approaches to increase protein synthesis in a cell-free coupled bacterial transcription and translation system. A strong pargC promoter, originally isolated from a moderate thermophilic bacterium Geobacillus stearothermophilus, was used to improve the performance of a cell-free system in extracts of Escherichia coli BL21 (DE3). A stimulating effect on protein synthesis was detected with extracts prepared from recombinant cells, in which the E. coli RNA polymerase subunits α, β, β’ and ω are simultaneously coexpressed. Appending a 3′ UTR genomic sequence and a T7 transcription terminator to the protein-coding region also improves the synthetic activity of some genes from linear DNA. The E. coli BL21 (DE3) rna::Tn10 mutant deficient in a periplasmic RNase I was constructed. The mutant cell-free extract increases by up to four-fold the expression of bacterial and human genes mediated from both bacterial pargC and phage pT7 promoters. By contrast, the RNase E deficiency does not affect the cell-free expression of the same genes. The regulatory proteins of the extremophilic bacterium Thermotoga, synthesized in a cell-free system, can provide the binding capacity to target DNA regions. The advantageous characteristics of cell-free systems described open attractive opportunities for high-throughput screening assays.
Collapse
|
9
|
Ferdous S, Dopp JL, Reuel NF. Optimization of E. Coli Tip-Sonication for High-Yield Cell-Free Extract using Finite Element Modeling. AIChE J 2021; 67:e17389. [PMID: 35663841 PMCID: PMC9161774 DOI: 10.1002/aic.17389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/17/2021] [Indexed: 12/23/2022]
Abstract
Optimal tip sonication settings, namely tip position, input power, and pulse durations, are necessary for temperature sensitive procedures like preparation of viable cell extract. In this paper, the optimum tip immersion depth (20-30% height below the liquid surface) is estimated which ensures maximum mixing thereby enhancing thermal dissipation of local cavitation hotspots. A finite element (FE) heat transfer model is presented, validated experimentally with (R2 > 97%) and used to observe the effect of temperature rise on cell extract performance of E. coli BL21 DE3 star strain and estimate the temperature threshold. Relative yields in the top 10% are observed for solution temperatures maintained below 32°C; this reduces below 50% relative yield at temperatures above 47°C. A generalized workflow for direct simulation using the COMSOL code as well as master plots for estimation of sonication parameters (power input and pulse settings) is also presented.
Collapse
Affiliation(s)
- Sakib Ferdous
- Department of Chemical and Biological Engineering, Iowa State University
| | - Jared L. Dopp
- Department of Chemical and Biological Engineering, Iowa State University
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University
| |
Collapse
|
10
|
McSweeney MA, Styczynski MP. Effective Use of Linear DNA in Cell-Free Expression Systems. Front Bioeng Biotechnol 2021; 9:715328. [PMID: 34354989 PMCID: PMC8329657 DOI: 10.3389/fbioe.2021.715328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
Cell-free expression systems (CFEs) are cutting-edge research tools used in the investigation of biological phenomena and the engineering of novel biotechnologies. While CFEs have many benefits over in vivo protein synthesis, one particularly significant advantage is that CFEs allow for gene expression from both plasmid DNA and linear expression templates (LETs). This is an important and impactful advantage because functional LETs can be efficiently synthesized in vitro in a few hours without transformation and cloning, thus expediting genetic circuit prototyping and allowing expression of toxic genes that would be difficult to clone through standard approaches. However, native nucleases present in the crude bacterial lysate (the basis for the most affordable form of CFEs) quickly degrade LETs and limit expression yield. Motivated by the significant benefits of using LETs in lieu of plasmid templates, numerous methods to enhance their stability in lysate-based CFEs have been developed. This review describes approaches to LET stabilization used in CFEs, summarizes the advancements that have come from using LETs with these methods, and identifies future applications and development goals that are likely to be impactful to the field. Collectively, continued improvement of LET-based expression and other linear DNA tools in CFEs will help drive scientific discovery and enable a wide range of applications, from diagnostics to synthetic biology research tools.
Collapse
Affiliation(s)
- Megan A McSweeney
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| | - Mark P Styczynski
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| |
Collapse
|
11
|
Norouzi M, Panfilov S, Pardee K. High-Efficiency Protection of Linear DNA in Cell-Free Extracts from Escherichia coli and Vibrio natriegens. ACS Synth Biol 2021; 10:1615-1624. [PMID: 34161082 DOI: 10.1021/acssynbio.1c00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of cell-free synthetic biology is an emerging branch of engineered biology that allows for rapid prototyping of biological designs and, in its own right, is becoming a venue for the in vitro operation of gene circuit-based sensors and biomanufacturing. To date, the related DNA encoded tools that operate in cell-free reactions have primarily relied on plasmid DNA inputs, as linear templates are highly susceptible to degradation by exonucleases present in cell-free extracts. This incompatibility has precluded significant throughput, time and cost benefits that could be gained with the use of linear DNA in the cell-free expression workflow. Here to tackle this limitation, we report that terminal incorporation of Ter binding sites for the DNA-binding protein Tus enables highly efficient protection of linear expression templates encoding mCherry and deGFP. In Escherichia coli extracts, our method compares favorably with the previously reported GamS-mediated protection scheme. Importantly, we extend the Tus-Ter system to Vibrio natriegens extracts, and demonstrate that this simple and easily implemented method can enable an unprecedented plasmid-level expression from linear templates in this emerging chassis organism.
Collapse
Affiliation(s)
- Masoud Norouzi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sabina Panfilov
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
12
|
Nishio T, Yoshikawa Y, Yoshikawa K, Sato SI. Longer DNA exhibits greater potential for cell-free gene expression. Sci Rep 2021; 11:11739. [PMID: 34083658 PMCID: PMC8175755 DOI: 10.1038/s41598-021-91243-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Cell-free gene expression systems have been valuable tools for understanding how transcription/translation can be regulated in living cells. Many studies have investigated the determining factors that affect gene expression. Here we report the effect of the length of linearized reporter DNAs encoding the firefly luciferase gene so as to exclude the influence of supercoiling. It is found that longer DNA molecules exhibit significantly greater potency in gene expression; for example, the expression level for DNA with 25.7 kbp is 1000-times higher than that for DNA of 1.7 kbp. AFM observation of the DNA conformation indicates that longer DNA takes shrunken conformation with a higher segment density in the reaction mixture for gene expression, in contrast to the stiff conformation of shorter DNA. We propose an underlying mechanism for the favorable effect of longer DNA on gene expression in terms of the enhancement of access of RNA polymerase to the shrunken conformation. It is expected that the enhancement of gene expression efficiency with a shrunken DNA conformation would also be a rather general mechanism in living cellular environments.
Collapse
Affiliation(s)
- Takashi Nishio
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Yuko Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Kenichi Yoshikawa
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, 610-0394, Japan
| | - Shin-Ichi Sato
- Institute for Chemical Research, Kyoto University, Kyoto, 611-0011, Japan.
| |
Collapse
|
13
|
Chen X, Lu Y. In silico Design of Linear DNA for Robust Cell-Free Gene Expression. Front Bioeng Biotechnol 2021; 9:670341. [PMID: 34095101 PMCID: PMC8169995 DOI: 10.3389/fbioe.2021.670341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Cell-free gene expression systems with linear DNA expression templates (LDETs) have been widely applied in artificial cells, biochips, and high-throughput screening. However, due to the degradation caused by native nucleases in cell extracts, the transcription with linear DNA templates is weak, thereby resulting in low protein expression level, which greatly limits the development of cell-free systems using linear DNA templates. In this study, the protective sequences for stabilizing linear DNA and the transcribed mRNAs were rationally designed according to nucleases' action mechanism, whose effectiveness was evaluated through computer simulation and cell-free gene expression. The cell-free experiment results indicated that, with the combined protection of designed sequence and GamS protein, the protein expression of LDET-based cell-free systems could reach the same level as plasmid-based cell-free systems. This study would potentially promote the development of the LDET-based cell-free gene expression system for broader applications.
Collapse
Affiliation(s)
- Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Ouyang X, Zhou X, Lai SN, Liu Q, Zheng B. Immobilization of Proteins of Cell Extract to Hydrogel Networks Enhances the Longevity of Cell-Free Protein Synthesis and Supports Gene Networks. ACS Synth Biol 2021; 10:749-755. [PMID: 33784075 DOI: 10.1021/acssynbio.0c00541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we constructed a new type of hydrogel based artificial cells supporting long-lived protein synthesis, post-translational modification, and gene networks. We constructed the artificial cells by immobilizing the transcription and translation system from E. coli cytoplasmic extract onto the polyacrylamide hydrogel. With the continuous supply of energy and nutrition, the artificial cells were capable of stable protein expression for at least 30 days. Functional proteins which were difficult to produce in vivo, including colicin E1 and urokinase, were synthesized in the artificial cells with high bioactivity. Furthermore, we constructed a sigma factor based genetic oscillator in the artificial cells. The artificial cells not only provide a powerful platform for continuous protein synthesis and convenient design and testing of genetic networks, but also hold great promise for the development of metabolic engineering, drug delivery, and biosensors.
Collapse
Affiliation(s)
- Xiaofei Ouyang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoyu Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Sze Nga Lai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Qi Liu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bo Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
15
|
Generation of an Induced Pluripotent Stem Cell Line with the Constitutive EGFP Reporter. Methods Mol Biol 2021. [PMID: 32474864 DOI: 10.1007/978-1-0716-0655-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The discovery of induced pluripotent stem cell (iPSC) technology has provided a versatile platform for basic science research and regenerative medicine. With the rise of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) systems and the ease at which they can be utilized for gene editing, creating genetically modified iPSCs has never been more advantageous for studying both organism development and potential clinical applications. However, to better understand the behavior and true therapeutic potential of iPSCs and iPSC-derived cells, a tool for labeling and monitoring these cells in vitro and in vivo is needed. Here, we describe a protocol that provides a straightforward method for introducing a stable, highly expressed fluorescent protein into iPSCs using the CRISPR/Cas9 system and a standardized donor vector. The approach involves the integration of the EGFP transgene into the transcriptionally active adeno-associated virus integration site 1 (AAVS1) locus through homology directed repair. The knockin of this transgene results in the generation of iPSC lines with constitutive expression of the EGFP protein that also persists in differentiated iPSCs. These EGFP-labeled iPSC lines are ideal for assessing iPSC differentiation in vitro and evaluating the distribution of iPSC-derived cells in vivo after transplantation into model animals.
Collapse
|
16
|
Baek MS, Lee KH, Byun JY, Shin YB, Kim DM. Aptamer-linked in vitro expression assay for ultrasensitive detection of biomarkers. Anal Chim Acta 2020; 1146:118-123. [PMID: 33461706 DOI: 10.1016/j.aca.2020.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/02/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Signal amplification is a key step that determines the sensitivity of molecular assays. Although studies on aptamers have mostly focused on their target-binding ability, taking advantage of the gene-coding function of nucleic acids, we demonstrate here that aptamers can be engineered into diagnostic reagents that can both recognize a target and generate highly amplified detection signals. We developed a strategy that employs a 'readable' aptamer that consists of a single-stranded aptamer and a double-stranded reporter gene. After binding to its target via the aptamer region, the reporter gene of the readable aptamer produces amplified number of signal-generating enzymes through a subsequent in vitro expression reaction. In contrast to conventional enzyme-conjugation methods, this method allows the generation of far more amplified detection signals, thereby markedly increasing the sensitivity of detection enough to analyze a target present in aM concentrations.
Collapse
Affiliation(s)
- Min-Seok Baek
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea
| | - Ju-Young Byun
- BioNano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Yong-Beom Shin
- BioNano Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea; BioNano Health Guard Research Center (H-GUARD), Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
17
|
Cole SD, Miklos AE, Chiao AC, Sun ZZ, Lux MW. Methodologies for preparation of prokaryotic extracts for cell-free expression systems. Synth Syst Biotechnol 2020; 5:252-267. [PMID: 32775710 PMCID: PMC7398980 DOI: 10.1016/j.synbio.2020.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cell-free systems that mimic essential cell functions, such as gene expression, have dramatically expanded in recent years, both in terms of applications and widespread adoption. Here we provide a review of cell-extract methods, with a specific focus on prokaryotic systems. Firstly, we describe the diversity of Escherichia coli genetic strains available and their corresponding utility. We then trace the history of cell-extract methodology over the past 20 years, showing key improvements that lower the entry level for new researchers. Next, we survey the rise of new prokaryotic cell-free systems, with associated methods, and the opportunities provided. Finally, we use this historical perspective to comment on the role of methodology improvements and highlight where further improvements may be possible.
Collapse
Affiliation(s)
- Stephanie D. Cole
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Aleksandr E. Miklos
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| | - Abel C. Chiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Zachary Z. Sun
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Synvitrobio Inc., San Francisco, CA, USA
| | - Matthew W. Lux
- US Army Combat Capabilities Development Command Chemical Biological Center, 8567 Ricketts Point Road, Aberdeen Proving Ground, MD, 21010, USA
| |
Collapse
|
18
|
Dopp JL, Reuel NF. Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Lin X, Li Y, Li Z, Hua R, Xing Y, Lu Y. Portable environment-signal detection biosensors with cell-free synthetic biosystems. RSC Adv 2020; 10:39261-39265. [PMID: 35518409 PMCID: PMC9057330 DOI: 10.1039/d0ra05293k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
By embedding regulated genetic circuits and cell-free systems onto a paper, the portable in vitro biosensing platform showed the possibility of detecting environmental pollutants, namely arsenic ions and bacterial quorum-sensing signal AHLs (N-acyl homoserine lactones). This platform has a great potential for practical environmental management and diagnosis. By embedding the regulated genetic circuits and cell-free systems onto a paper, a portable in vitro biosensing platform has been established.![]()
Collapse
Affiliation(s)
- Xiaomei Lin
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuting Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Zhixia Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Rui Hua
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuyang Xing
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Development of a robust Escherichia coli-based cell-free protein synthesis application platform. Biochem Eng J 2020; 165:107830. [PMID: 33100890 PMCID: PMC7568173 DOI: 10.1016/j.bej.2020.107830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/30/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023]
Abstract
A robust cell-free protein synthesis platform has been developed. Engineering strategies were explored to improve the synthesis efficiency. The platform has been applied in prototyping, screening and on-demand synthesis.
Since the cell-free protein synthesis system is not limited by the cell growth, all the substrates are used to produce the protein of interest, and the reaction environment can be flexibly controlled. All the advantages allow it to synthesize toxic proteins, membrane proteins, and unnatural proteins that are difficult to make in vivo. However, one typical reason why the cell-free system has not been widely accepted as a practical alternative, is its expression efficiency problem. The Escherichia coli-based system was chosen in this study, and the model protein deGFP was expressed to explore a more efficient cell-free system. The results showed that Mg2+ with a concentration of 15 mM in the cell-free system with BL21 Star (DE3) as the extract could better synthesize protein. The smaller the vectors, the lighter the burden, the higher the protein synthesis. Simulating the crowding effect in the cell does not improve the protein expression efficiency of the optimized cell-free protein synthesis system. Based on the optimized system, the cell-free fundamental research platform, primary screening platform, and portable biomolecular synthesis platform were established. This study provides a robust cell-free protein synthesis toolbox with easy extract preparation and high protein yield. It also enables more researchers to reap the benefits from the cell-free biosynthesis platform.
Collapse
|
21
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
22
|
Escherichia coli Extract-Based Cell-Free Expression System as an Alternative for Difficult-to-Obtain Protein Biosynthesis. Int J Mol Sci 2020; 21:ijms21030928. [PMID: 32023820 PMCID: PMC7037961 DOI: 10.3390/ijms21030928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Before utilization in biomedical diagnosis, therapeutic treatment, and biotechnology, the diverse variety of peptides and proteins must be preliminarily purified and thoroughly characterized. The recombinant DNA technology and heterologous protein expression have helped simplify the isolation of targeted polypeptides at high purity and their structure-function examinations. Recombinant protein expression in Escherichia coli, the most-established heterologous host organism, has been widely used to produce proteins of commercial and fundamental research interests. Nonetheless, many peptides/proteins are still difficult to express due to their ability to slow down cell growth or disrupt cellular metabolism. Besides, special modifications are often required for proper folding and activity of targeted proteins. The cell-free (CF) or in vitro recombinant protein synthesis system enables the production of such difficult-to-obtain molecules since it is possible to adjust reaction medium and there is no need to support cellular metabolism and viability. Here, we describe E. coli-based CF systems, the optimization steps done toward the development of highly productive and cost-effective CF methodology, and the modification of an in vitro approach required for difficult-to-obtain protein production.
Collapse
|
23
|
Dopp JL, Jo YR, Reuel NF. Methods to reduce variability in E. Coli-based cell-free protein expression experiments. Synth Syst Biotechnol 2019; 4:204-211. [PMID: 31750411 PMCID: PMC6849339 DOI: 10.1016/j.synbio.2019.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) is an established biotechnology tool that has shown great utility in many applications such as prototyping proteins, building genetic circuits, designing biosensors, and expressing cytotoxic proteins. Although CFPS has been widely deployed, the many, varied methods presented in the literature can be challenging for new users to adopt. From our experience and others who newly enter the field, one of the most frustrating aspects of applying CFPS as a laboratory can be the large levels of variability that are present within experimental replicates. Herein we provide a retrospective summary of CFPS methods that reduce variability significantly. These methods include optimized extract preparation, fully solubilizing the master mix components, and careful mixing of the reaction. These have reduced our coefficient of variation from 97.3% to 1.2%. Moreover, these methods allow complete novices (e.g. semester rotation undergraduate students) to provide data that is comparable to experienced users, thus allowing broader participation in this exciting research area.
Collapse
|
24
|
Lee KH, Kim DM. Recent advances in development of cell-free protein synthesis systems for fast and efficient production of recombinant proteins. FEMS Microbiol Lett 2019; 365:5062788. [PMID: 30084930 DOI: 10.1093/femsle/fny174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Cell-free protein synthesis has emerged in recent years as a powerful tool that can potentially transform the production of recombinant proteins. Cell-free protein synthesis harnesses the synthetic power of living cells while eliminating many of the constraints of traditional cell-based gene expression methods. Due to the lack of physical barriers separating the protein synthesis machinery from the surrounding environment, a cell-free protein synthesis reaction mixture can be directly programmed using diverse genetic material for the instant production of recombinant proteins without complicated cloning procedures. However, a number of issues must be addressed for this technology to be widely accepted as an alternative platform for protein production, including quality-control of translation machinery preparations, and high reagent cost. This review describes recent efforts to make cell-free protein synthesis more affordable and more easily accessible for generic applications.
Collapse
Affiliation(s)
- Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
25
|
A Crude Extract Preparation and Optimization from a Genomically Engineered Escherichia coli for the Cell-Free Protein Synthesis System: Practical Laboratory Guideline. Methods Protoc 2019; 2:mps2030068. [PMID: 31405077 PMCID: PMC6789667 DOI: 10.3390/mps2030068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/25/2023] Open
Abstract
With the advancement of synthetic biology, the cell-free protein synthesis (CFPS) system has been receiving the spotlight as a versatile toolkit for engineering natural and unnatural biological systems. The CFPS system reassembles the materials necessary for transcription and translation and recreates the in vitro protein synthesis environment by escaping a physical living boundary. The cell extract plays an essential role in this in vitro format. Here, we propose a practical protocol and method for Escherichia coli-derived cell extract preparation and optimization, which can be easily applied to both commercially available and genomically engineered E. coli strains. The protocol includes: (1) The preparation step for cell growth and harvest, (2) the thorough step-by-step procedures for E. coli cell extract preparation including the cell wash and lysis, centrifugation, runoff reaction, and dialysis, (3) the preparation for the CFPS reaction components and, (4) the quantification of cell extract and cell-free synthesized protein. We anticipate that the protocol in this research will provide a simple preparation and optimization procedure of a highly active E. coli cell extract.
Collapse
|
26
|
Lim HJ, Kim DM. Cell-Free Metabolic Engineering: Recent Developments and Future Prospects. Methods Protoc 2019; 2:mps2020033. [PMID: 31164613 PMCID: PMC6632161 DOI: 10.3390/mps2020033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023] Open
Abstract
Due to the ongoing crises of fossil fuel depletion, climate change, and environmental pollution, microbial processes are increasingly considered as a potential alternative for cleaner and more efficient production of the diverse chemicals required for modern civilization. However, many issues, including low efficiency of raw material conversion and unintended release of genetically modified microorganisms into the environment, have limited the use of bioprocesses that rely on recombinant microorganisms. Cell-free metabolic engineering is emerging as a new approach that overcomes the limitations of existing cell-based systems. Instead of relying on metabolic processes carried out by living cells, cell-free metabolic engineering harnesses the metabolic activities of cell lysates in vitro. Such approaches offer several potential benefits, including operational simplicity, high conversion yield and productivity, and prevention of environmental release of microorganisms. In this article, we review the recent progress in this field and discuss the prospects of this technique as a next-generation bioconversion platform for the chemical industry.
Collapse
Affiliation(s)
- Hye Jin Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea.
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
27
|
Jin X, Kightlinger W, Hong SH. Optimizing Cell-Free Protein Synthesis for Increased Yield and Activity of Colicins. Methods Protoc 2019; 2:28. [PMID: 36358105 PMCID: PMC6632115 DOI: 10.3390/mps2020028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/19/2022] Open
Abstract
Colicins are antimicrobial proteins produced by Escherichia coli that hold great promise as viable complements or alternatives to antibiotics. Cell-free protein synthesis (CFPS) is a useful production platform for toxic proteins because it eliminates the need to maintain cell viability, a common problem in cell-based production. Previously, we demonstrated that colicins produced by CFPS based on crude Escherichia coli lysates are effective in eradicating antibiotic-tolerant bacteria known as persisters. However, we also found that some colicins have poor solubility or low cell-killing activity. In this study, we improved the solubility of colicin M from 16% to nearly 100% by producing it in chaperone-enriched E. coli extracts, resulting in enhanced cell-killing activity. We also improved the cytotoxicity of colicin E3 by adding or co-expressing the E3 immunity protein during the CFPS reaction, suggesting that the E3 immunity protein enhances colicin E3 activity in addition to protecting the host strain. Finally, we confirmed our previous finding that active colicins can be rapidly synthesized by observing colicin E1 production over time in CFPS. Within three hours of CFPS incubation, colicin E1 reached its maximum production yield and maintained high cytotoxicity during longer incubations up to 20 h. Taken together, our findings indicate that colicin production can be easily optimized for improved solubility and activity using the CFPS platform.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| |
Collapse
|
28
|
Byun JY, Lee KH, Shin YB, Kim DM. Cascading Amplification of Immunoassay Signal by Cell-Free Expression of Firefly Luciferase from Detection Antibody-Conjugated DNA in an Escherichia coli Extract. ACS Sens 2019; 4:93-99. [PMID: 30582797 DOI: 10.1021/acssensors.8b00949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expression immunoassay is a powerful technique that combines unique features of immunosorbent assays and cell-free protein synthesis. The main advantage of the expression immunoassay is a greatly amplified signal, whereas a conventional enzyme-linked immunosorbent assay (ELISA) employs a single enzyme molecule conjugated to a detection antibody to produce a measurable signal. Expression immunoassays utilize a DNA molecule conjugated to a target-bound antibody to generate multiple enzyme molecules that then produce the signal. To date, expression immunoassays have not been widely adopted due to the limited availability of efficient methods for translating antibody-conjugated DNA. We developed a highly efficient translation module for expression immunoassays using an Escherichia coli extract-based cell-free protein synthesis system. When we used our immunoassay technique to detect α-fetoprotein, we achieved a limit of detection of 7 fM. Given the outstanding sensitivity that can be obtained with only minimal modifications to the procedure of standard ELISA, we believe that this method will open up new possibilities for widespread application of expression immunoassays to ultrasensitive detection and diagnostics.
Collapse
Affiliation(s)
- Ju-Young Byun
- Hazards Monitoring BioNano Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
| | - Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| | - Yong-Beom Shin
- Hazards Monitoring BioNano Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea
- BioNano Health Guard Research Center (H-GUARD), Daejeon 34141, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
29
|
Go SY, Lee KH, Kim DM. Detergent-assisted Enhancement of the Translation Rate during Cell-free Synthesis of Peptides in an Escherichia coli Extract. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0418-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
30
|
Cortès S, Hibti FE, Chiraz F, Ezzine S. High-Throughput E. coli Cell-Free Expression: From PCR Product Design to Functional Validation of GPCR. Methods Mol Biol 2019; 2025:261-279. [PMID: 31267457 DOI: 10.1007/978-1-4939-9624-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This chapter outlines a protocol to express GPCRs libraries for screening of targets. High-throughput screening of GPCR expression raised a big interest in the development of proteomic drug candidates, protein engineering, and microarrays. However, GPCRs represent a large family of difficult-to-express proteins which can be successfully produced by cell-free systems in the presence of liposomes. The open and flexible nature of this in vitro expression system allows the manipulation of transcription and translation as well as the modulation of the cell-free reaction environment by the addition of any adjuvant or the incorporation of unnatural amino acid for example.The compatibility of PCR fragments with cell-free protein synthesis and using SPRi as multiplex analytical platform offer an effective method to rapidly select different targets. Large-scale expression and purification of GPCRs into proteoliposome format are discussed at the end of this chapter.
Collapse
|
31
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
32
|
Rapid determination of effective folding agents by sequential cell-free protein synthesis. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Xiao X, Zhou Y, Sun Y, Wang Q, Liu J, Huang J, Zhu X, Yang X, Wang K. Integration of cell-free protein synthesis and purification in one microfluidic chip for on-demand production of recombinant protein. BIOMICROFLUIDICS 2018; 12:054102. [PMID: 30271517 PMCID: PMC6136919 DOI: 10.1063/1.5042307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Recombinant proteins have shown several benefits compared with their non-recombinant counterparts in protein therapeutics. However, there are still some problems with the storage and distribution of recombinant proteins, owing to their temperature sensitivity. Microfluidic chips can integrate different functional modules into a single device because of the advantages of integration and miniaturization, which have the special potential to synthesize drugs when and where they are needed most. Here, we integrated cell-free protein synthesis and purification into a microfluidic chip for the production of recombinant protein. The chip consisted of a main channel and a branch channel. The main channel included two pinches, which were filled with template DNA-modified agarose microbeads and nickel ion-modified agarose beads as the cell-free protein synthesis unit and protein purification unit, respectively. The reaction mixture for protein synthesis was introduced into the main channel and first passed through the protein synthesis unit where the target protein was synthesized; next, the reaction mixture passed through the protein purification unit where the target protein was captured; and, finally, pure protein was collected at the outlet when washing buffer and eluting buffer were sequentially introduced into the branch channel. Enhanced green fluorescent protein (EGFP) was used as the model to investigate the performance of our chip. One chip could produce 70 μl of EGFP solution (144.3 μg/ml, 10.1 μg) per batch, and another round of protein synthesis and purification could be performed after replacing or regenerating nickel ion-modified agarose beads. It should be possible to produce other recombinant proteins on demand with this chip by simply replacing the template DNA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaohai Yang
- Authors to whom correspondence should be addressed: and . Tel./Fax: +86-731-88821566
| | - Kemin Wang
- Authors to whom correspondence should be addressed: and . Tel./Fax: +86-731-88821566
| |
Collapse
|
34
|
Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018; 76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. STATEMENT OF SIGNIFICANCE Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.
Collapse
|
35
|
Jin X, Kightlinger W, Kwon YC, Hong SH. Rapid production and characterization of antimicrobial colicins using Escherichia coli-based cell-free protein synthesis. Synth Biol (Oxf) 2018; 3:ysy004. [PMID: 32995513 PMCID: PMC7445778 DOI: 10.1093/synbio/ysy004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 04/14/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022] Open
Abstract
Colicins are antimicrobial proteins produced by Escherichia coli, which, upon secretion from the host, kill non-host E. coli strains by forming pores in the inner membrane and degrading internal cellular components such as DNA and RNA. Due to their unique cell-killing activities, colicins are considered viable alternatives to conventional antibiotics. Recombinant production of colicins requires co-production of immunity proteins to protect host cells; otherwise, the colicins are lethal to the host. In this study, we used cell-free protein synthesis (CFPS) to produce active colicins without the need for protein purification and co-production of immunity proteins. Cell-free synthesized colicins were active in killing model E. coli cells with different modes of cytotoxicity. Pore-forming colicins E1 and nuclease colicin E2 killed actively growing cells in a nutrient-rich medium, but the cytotoxicity of colicin Ia was low compared to E1 and E2. Moreover, colicin E1 effectively killed cells in a nutrient-free solution, while the activity of E2 was decreased compared to nutrient-rich conditions. Both colicins E1 and E2 decreased the level of persister cells (metabolically dormant cell populations that are insensitive to antibiotics) by up to six orders of magnitude compared to that of the rifampin pretreated persister cells. This study finds that colicins can eradicate non-growing cells including persisters, and that CFPS is a promising platform for rapid production and characterization of toxic proteins.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yong-Chan Kwon
- Department of Biological and Agricultural Engineering, LSU Agricultural Center, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| |
Collapse
|
36
|
Narumi R, Masuda K, Tomonaga T, Adachi J, Ueda HR, Shimizu Y. Cell-free synthesis of stable isotope-labeled internal standards for targeted quantitative proteomics. Synth Syst Biotechnol 2018; 3:97-104. [PMID: 29900422 PMCID: PMC5995455 DOI: 10.1016/j.synbio.2018.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/16/2018] [Accepted: 02/18/2018] [Indexed: 01/04/2023] Open
Abstract
High-sensitivity mass spectrometry approaches using selected reaction monitoring (SRM) or multiple reaction monitoring (MRM) methods are powerful tools for targeted quantitative proteomics-based investigation of dynamics in specific biological systems. Both high-sensitivity detection of low-abundance proteins and their quantification using this technique employ stable isotope-labeled peptide internal standards. Currently, there are various ways for preparing standards, including chemical peptide synthesis, cellular protein expression, and cell-free protein or peptide synthesis. Cell-free protein synthesis (CFPS) or in vitro translation (IVT) systems in particular provide high-throughput and low-cost preparation methods, and various cell types and reconstituted forms are now commercially available. Herein, we review the use of such systems for precise and reliable protein quantification.
Collapse
Affiliation(s)
- Ryohei Narumi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Satio-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Keiko Masuda
- Laboratory for Single Cell Mass Spectrometry, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Satio-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8, Satio-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
| | - Yoshihiro Shimizu
- Laboratory for Single Cell Mass Spectrometry, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
- Laboratory for Cell-Free Protein Synthesis, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan
- Corresponding author. Laboratory for Cell-Free Protein Synthesis, RIKEN Quantitative Biology Center (QBiC), 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.
| |
Collapse
|
37
|
Katsura K, Matsuda T, Tomabechi Y, Yonemochi M, Hanada K, Ohsawa N, Sakamoto K, Takemoto C, Shirouzu M. A reproducible and scalable procedure for preparing bacterial extracts for cell-free protein synthesis. J Biochem 2017; 162:357-369. [PMID: 28992119 PMCID: PMC7109869 DOI: 10.1093/jb/mvx039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 05/21/2017] [Indexed: 01/30/2023] Open
Abstract
Cell-free protein synthesis is a useful method for preparing proteins for functional or structural analyses. However, batch-to-batch variability with regard to protein synthesis activity remains a problem for large-scale production of cell extract in the laboratory. To address this issue, we have developed a novel procedure for large-scale preparation of bacterial cell extract with high protein synthesis activity. The developed procedure comprises cell cultivation using a fermentor, harvesting and washing of cells by tangential flow filtration, cell disruption with high-pressure homogenizer and continuous diafiltration. By optimizing and combining these methods, ∼100 ml of the cell extract was prepared from 150 g of Escherichia coli cells. The protein synthesis activities, defined as the yield of protein per unit of absorbance at 260 nm of the cell extract, were shown to be reproducible, and the average activity of several batches was twice that obtained using a previously reported method. In addition, combinatorial use of the high-pressure homogenizer and diafiltration increased the scalability, indicating that the cell concentration at disruption varies from 0.04 to 1 g/ml. Furthermore, addition of Gam protein and examinations of the N-terminal sequence rendered the extract prepared here useful for rapid screening with linear DNA templates.
Collapse
Affiliation(s)
- Kazushige Katsura
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takayoshi Matsuda
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yuri Tomabechi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mayumi Yonemochi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kazuharu Hanada
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Noboru Ohsawa
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chie Takemoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mikako Shirouzu
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
38
|
Lee KH, Kwon JH, Kim DM. Direct translational analysis of electrophoretically separated DNA using a cell-free protein synthesis system. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.09.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Schinn SM, Broadbent A, Bradley WT, Bundy BC. Protein synthesis directly from PCR: progress and applications of cell-free protein synthesis with linear DNA. N Biotechnol 2016; 33:480-7. [PMID: 27085957 DOI: 10.1016/j.nbt.2016.04.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 03/30/2016] [Accepted: 04/07/2016] [Indexed: 11/18/2022]
Abstract
A rapid, versatile method of protein expression and screening can greatly facilitate the future development of therapeutic biologics, proteomic drug targets and biocatalysts. An attractive candidate is cell-free protein synthesis (CFPS), a cell-lysate-based in vitro expression system, which can utilize linear DNA as expression templates, bypassing time-consuming cloning steps of plasmid-based methods. Traditionally, such linear DNA expression templates (LET) have been vulnerable to degradation by nucleases present in the cell lysate, leading to lower yields. This challenge has been significantly addressed in the recent past, propelling LET-based CFPS as a useful tool for studying, screening and engineering proteins in a high-throughput manner. Currently, LET-based CFPS has promise in fields such as functional proteomics, protein microarrays, and the optimization of complex biological systems.
Collapse
Affiliation(s)
- Song-Min Schinn
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Andrew Broadbent
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - William T Bradley
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA
| | - Bradley C Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
40
|
Takahashi MK, Hayes CA, Chappell J, Sun ZZ, Murray RM, Noireaux V, Lucks JB. Characterizing and prototyping genetic networks with cell-free transcription–translation reactions. Methods 2015; 86:60-72. [DOI: 10.1016/j.ymeth.2015.05.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 02/07/2023] Open
|
41
|
Terada T, Yokoyama S. Escherichia coli Cell-Free Protein Synthesis and Isotope Labeling of Mammalian Proteins. Methods Enzymol 2015; 565:311-45. [DOI: 10.1016/bs.mie.2015.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
42
|
Gagoski D, Mureev S, Giles N, Johnston W, Dahmer-Heath M, Škalamera D, Gonda TJ, Alexandrov K. Gateway-compatible vectors for high-throughput protein expression in pro- and eukaryotic cell-free systems. J Biotechnol 2014; 195:1-7. [PMID: 25529348 DOI: 10.1016/j.jbiotec.2014.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 12/06/2014] [Accepted: 12/11/2014] [Indexed: 12/16/2022]
Abstract
Although numerous techniques for protein expression and production are available the pace of genome sequencing outstrips our ability to analyze the encoded proteins. To address this bottleneck, we have established a system for parallelized cloning, DNA production and cell-free expression of large numbers of proteins. This system is based on a suite of pCellFree Gateway destination vectors that utilize a Species Independent Translation Initiation Sequence (SITS) that mediates recombinant protein expression in any in vitro translation system. These vectors introduce C or N terminal EGFP and mCherry fluorescent and affinity tags, enabling direct analysis and purification of the expressed proteins. To maximize throughput and minimize the cost of protein production we combined Gateway cloning with Rolling Circle DNA Amplification. We demonstrate that as little as 0.1 ng of plasmid DNA is sufficient for template amplification and production of recombinant human protein in Leishmania tarentolae and Escherichia coli cell-free expression systems. Our experiments indicate that this approach can be applied to large gene libraries as it can be reliably performed in multi-well plates. The resulting protein expression pipeline provides a valuable new tool for applications of the post genomic era.
Collapse
Affiliation(s)
- Dejan Gagoski
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - Sergey Mureev
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - Nichole Giles
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - Wayne Johnston
- Institute for Molecular Bioscience, University of Queensland, Australia
| | - Mareike Dahmer-Heath
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Dubravka Škalamera
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Thomas J Gonda
- School of Pharmacy, University of Queensland, Brisbane, Australia; University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, University of Queensland, Australia.
| |
Collapse
|
43
|
Ninomiya R, Zhu B, Kojima T, Iwasaki Y, Nakano H. Role of disulfide bond isomerase DsbC, calcium ions, and hemin in cell-free protein synthesis of active manganese peroxidase isolated from Phanerochaete chrysosporium. J Biosci Bioeng 2014; 117:652-7. [DOI: 10.1016/j.jbiosc.2013.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 10/23/2013] [Accepted: 11/01/2013] [Indexed: 11/27/2022]
|
44
|
|
45
|
Catherine C, Lee KH, Oh SJ, Kim DM. Cell-free platforms for flexible expression and screening of enzymes. Biotechnol Adv 2013; 31:797-803. [DOI: 10.1016/j.biotechadv.2013.04.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 04/06/2013] [Accepted: 04/26/2013] [Indexed: 12/20/2022]
|
46
|
Shrestha P, Smith MT, Bundy BC. Cell-free unnatural amino acid incorporation with alternative energy systems and linear expression templates. N Biotechnol 2013; 31:28-34. [PMID: 24103470 DOI: 10.1016/j.nbt.2013.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/17/2013] [Accepted: 09/27/2013] [Indexed: 01/12/2023]
Abstract
Site-specific incorporation of unnatural amino acids (uAAs) during protein synthesis expands the proteomic code through the addition of unique residue chemistry. This field provides a unique tool to improve pharmacokinetics, cancer treatments, vaccine development, proteomics and protein engineering. The limited ability to predict the characteristics of proteins with uAA-incorporation creates a need for a low-cost system with the potential for rapid screening. Escherichia coli-based cell-free protein synthesis is a compelling platform for uAA incorporation due to the open and accessible nature of the reaction environment. However, typical cell-free systems can be expensive due to the high cost of energizing reagents. By employing alternative energy sources, we reduce the cost of uAA-incorporation in CFPS by 55%. While alternative energy systems reduce cost, the time investment to develop gene libraries can remain cumbersome. Cell-free systems allow the direct use of PCR products known as linear expression templates, thus alleviating tedious plasmid library preparations steps. We report the specific costs of CFPS with uAA incorporation, demonstrate that LETs are suitable expression templates with uAA-incorporation, and consider the substantial reduction in labor intensity using LET-based expression for CFPS uAA incorporation.
Collapse
Affiliation(s)
- Prashanta Shrestha
- Department of Chemical Engineering, Brigham Young University, 350 Clyde Building, Provo, UT 84602, USA
| | | | | |
Collapse
|
47
|
Lee KH, Kim DM. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments. Biotechnol J 2013; 8:1292-300. [DOI: 10.1002/biot.201200385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/16/2013] [Accepted: 09/12/2013] [Indexed: 11/08/2022]
|
48
|
Streamlined extract preparation for Escherichia coli-based cell-free protein synthesis by sonication or bead vortex mixing. Biotechniques 2012; 53:163-74. [DOI: 10.2144/0000113924] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 08/07/2012] [Indexed: 11/23/2022] Open
Abstract
Escherichia coli-based cell extract is a vital component of inexpensive and high-yielding cell-free protein synthesis reactions. However, effective preparation of E. coli cell extract is limited to high-pressure (French press-style or impinge-style) or bead mill homogenizers, which all require a significant capital investment. Here we report the viability of E. coli cell extract prepared using equipment that is both common to biotechnology laboratories and able to process small volume samples. Specifically, we assessed the low-capital-cost lysis techniques of: (i) sonication, (ii) bead vortex mixing, (iii) freeze-thaw cycling, and (iv) lysozyme incubation to prepare E. coli cell extract for cell-free protein synthesis (CFPS). We also used simple shake flask fermentations with a commercially available E. coli strain. In addition, RNA polymerase was overexpressed in the E. coli cells prior to lysis, thus eliminating the need to add independently purified RNA polymerase to the CFPS reaction. As a result, high-yielding E. coli-based extract was prepared using equipment requiring a reduced capital investment and common to biotechnology laboratories. To our knowledge, this is the first successful prokaryote-based CFPS reaction to be carried out with extract prepared by sonication or bead vortex mixing.
Collapse
|
49
|
Wang Y, Xu W, Kou X, Luo Y, Zhang Y, Ma B, Wang M, Huang K. Establishment and optimization of a wheat germ cell-free protein synthesis system and its application in venom kallikrein. Protein Expr Purif 2012; 84:173-80. [PMID: 22626528 DOI: 10.1016/j.pep.2012.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022]
Abstract
Wheat germ cell-free protein synthesis systems have the potential to synthesize functional proteins safely and with high accuracy, but the poor energy supply and the instability of mRNA templates reduce the productivity of this system, which restricts its applications. In this report, phosphocreatine and pyruvate were added to the system to supply ATP as a secondary energy source. After comparing the protein yield, we found that phosphocreatine is more suitable for use in the wheat germ cell-free protein synthesis system. To stabilize the mRNA template, the plasmid vector, SP6 RNA polymerase, and Cu(2+) were optimized, and a wheat germ cell-free protein synthesis system with high yield and speed was established. When plasmid vector (30 ng/μl), SP6 RNA polymerase (15 U), phosphocreatine (25 mM), and Cu(2+) (5 mM) were added to the system and incubated at 26°C for 16 h, the yield of venom kallikrein increased from 0.13 to 0.74 mg/ml. The specific activity of the recombinant protein was 1.3 U/mg, which is only slightly lower than the crude venom kallikrein (1.74 U/mg) due to the lack of the sugar chain. In this study, the yield of venom kallikrein was improved by optimizing the system, and a good foundation has been laid for industrial applications and for further studies.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering and Technology, Tianjin University Tianjin 300072, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lee KH, Lee KY, Byun JY, Kim BG, Kim DM. On-bead expression of recombinant proteins in an agarose gel matrix coated on a glass slide. LAB ON A CHIP 2012; 12:1605-1610. [PMID: 22410788 DOI: 10.1039/c2lc21239k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A system for expression and in situ display of recombinant proteins on a microbead surface is described. Biotinylated PCR products were immobilized on microbead surfaces, which were then embedded in a gel matrix and supplied with translation machinery and substrates. Upon the incubation of the gel matrix, target proteins encoded on the bead-immobilized DNA were expressed and captured on the same bead, thus allowing bead-mediated linkage of DNA and encoded proteins. The new method combines the simplicity and convenience of solid-phase separation of genetic information with the benefits of cell-free protein synthesis, such as instant translation of genetic information, unrestricted substrate accessibility and flexible assay configuration design.
Collapse
Affiliation(s)
- Kyung-Ho Lee
- Interdisciplinary Program for Nano-Technology, Chungnam National University, Daejeon 305-764, Korea
| | | | | | | | | |
Collapse
|