1
|
Electrophysiological Changes of Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes during Acute Hypoxia and Reoxygenation. Stem Cells Int 2022; 2022:9438281. [PMID: 36579142 PMCID: PMC9792238 DOI: 10.1155/2022/9438281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/14/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Ischemic heart disease is the most common cardiovascular disease and a major burden for healthcare worldwide. However, its pathophysiology is still not fully understood, and human-based models for disease mechanisms and treatments are needed. Here, we used human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to model acute ischemia-reperfusion in our novel cell culture assembly. The assembly enables exchange of oxygen partial pressure for the cells within minutes, mimicking acute ischemic event. In this study, hypoxia was induced using 0% O2 gas for three hours and reoxygenation with 19% O2 gas for 24 hours in serum- and glucose-free medium. According to electrophysiological recordings, hypoxia decreased the hiPSC-CM-beating frequency and field potential (FP) amplitude. Furthermore, FP depolarization time and propagation slowed down. Most of the electrophysiological changes reverted during reoxygenation. However, immunocytochemical staining of the hypoxic and reoxygenation samples showed that morphological changes and changes in the sarcomere structure did not revert during reoxygenation but further deteriorated. qPCR results showed no significant differences in apoptosis or stress-related genes or in the expression of glycolytic genes. In conclusion, the hiPSC-CMs reproduced many characteristic changes of adult CMs during ischemia and reperfusion, indicating their usefulness as a human-based model of acute cardiac ischemia-reperfusion.
Collapse
|
2
|
Häkli M, Kreutzer J, Mäki AJ, Välimäki H, Lappi H, Huhtala H, Kallio P, Aalto-Setälä K, Pekkanen-Mattila M. Human induced pluripotent stem cell-based platform for modeling cardiac ischemia. Sci Rep 2021; 11:4153. [PMID: 33603154 PMCID: PMC7893031 DOI: 10.1038/s41598-021-83740-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023] Open
Abstract
Ischemic heart disease is a major cause of death worldwide, and the only available therapy to salvage the tissue is reperfusion, which can initially cause further damage. Many therapeutics that have been promising in animal models have failed in human trials. Thus, functional human based cardiac ischemia models are required. In this study, a human induced pluripotent stem cell derived-cardiomyocyte (hiPSC-CM)-based platform for modeling ischemia-reperfusion was developed utilizing a system enabling precise control over oxygen concentration and real-time monitoring of the oxygen dynamics as well as iPS-CM functionality. In addition, morphology and expression of hypoxia-related genes and proteins were evaluated as hiPSC-CM response to 8 or 24 h hypoxia and 24 h reoxygenation. During hypoxia, initial decrease in hiPSC-CM beating frequency was observed, after which the CMs adapted to the conditions and the beating frequency gradually increased already before reoxygenation. During reoxygenation, the beating frequency typically first surpassed the baseline before settling down to the values close the baseline. Furthermore, slowing on the field potential propagation throughout the hiPSC-CM sheet as well as increase in depolarization time and decrease in overall field potential duration were observed during hypoxia. These changes were reversed during reoxygenation. Disorganization of sarcomere structures was observed after hypoxia and reoxygenation, supported by decrease in the expression of sarcomeric proteins. Furthermore, increase in the expression of gene encoding glucose transporter 1 was observed. These findings indicate, that despite their immature phenotype, hiPSC-CMs can be utilized in modeling ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Martta Häkli
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland.
| | - Joose Kreutzer
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Hannu Välimäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Henna Lappi
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Katriina Aalto-Setälä
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| | - Mari Pekkanen-Mattila
- Heart Group, Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, 33520, Tampere, Finland
| |
Collapse
|
3
|
Pyrazinamide may possess cardioprotective properties. J Antibiot (Tokyo) 2019; 72:714-717. [PMID: 31243346 PMCID: PMC6760625 DOI: 10.1038/s41429-019-0202-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/14/2019] [Accepted: 06/09/2019] [Indexed: 11/21/2022]
Abstract
Pyrazinamide is an anti-tubercular agent, used as a part of a three-drug regime (any three of the following: rifampicin, isoniazid, pyrazinamide, streptomycin or ethambutol) for the initial phase of treatment. One of the effects pyrazinamide has on mammalian cells is to regulate NAD+/NADH levels. We have recently found that changes in NAD+/NADH are associated with regulation of expression levels of SUR2A, a cardioprotective protein serving as a regulatory subunit of cardiac ATP-sensitive K+ (KATP) channels. Here, we have tested whether pyrazinamide regulate expression of SUR2A/KATP channel subunits and resistance to metabolic stress in embryonic heart-derived H9c2 cells. We have found that 24-h-long treatment with pyrazinamide (3 mcg/ml) increased mRNA levels of SUR2A, SUR2B and Kir6.1 without affecting mRNA levels of other KATP channel subunits. This treatment with pyrazinamide (3 mcg/ml) protected H9c2 cells against stress induced by 10 mM 2,4-dinitrophenol (DNP). The survival rate of DNP-treated cells was 45.6 ± 2.3% (n = 5) if not treated with pyrazinamide and 90.8 ± 2.3% (n = 5; P < 0.001) if treated with pyrazinamide. We conclude that pyrazinamide increases resistance to metabolic stress in heart H9c2 cells probably by increasing SUR2A and SUR2B expression. Our results of this study indicate that pyrazinamide should be seriously considered as a drug of choice for patients with tuberculosis and ischaemic heart disease.
Collapse
|
4
|
Clinical and functional characterization of a novel mutation in lamin a/c gene in a multigenerational family with arrhythmogenic cardiac laminopathy. PLoS One 2015; 10:e0121723. [PMID: 25837155 PMCID: PMC4383583 DOI: 10.1371/journal.pone.0121723] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/03/2015] [Indexed: 11/19/2022] Open
Abstract
Mutations in the lamin A/C gene (LMNA) were associated with dilated cardiomyopathy (DCM) and, recently, were related to severe forms of arrhythmogenic right ventricular cardiomyopathy (ARVC). Both genetic and phenotypic overlap between DCM and ARVC was observed; molecular pathomechanisms leading to the cardiac phenotypes caused by LMNA mutations are not yet fully elucidated. This study involved a large Italian family, spanning 4 generations, with arrhythmogenic cardiomyopathy of different phenotypes, including ARVC, DCM, system conduction defects, ventricular arrhythmias, and sudden cardiac death. Mutation screening of LMNA and ARVC-related genes PKP2, DSP, DSG2, DSC2, JUP, and CTNNA3 was performed. We identified a novel heterozygous mutation (c.418_438dup) in LMNA gene exon 2, occurring in a highly conserved protein domain across several species. This newly identified variant was not found in 250 ethnically-matched control subjects. Genotype-phenotype correlation studies suggested a co-segregation of the LMNA mutation with the disease phenotype and an incomplete and age-related penetrance. Based on clinical, pedigree, and molecular genetic data, this mutation was considered likely disease-causing. To clarify its potential pathophysiologic impact, functional characterization of this LMNA mutant was performed in cultured cardiomyocytes expressing EGFP-tagged wild-type and mutated LMNA constructs, and indicated an increased nuclear envelope fragility, leading to stress-induced apoptosis as the main pathogenetic mechanism. This study further expands the role of the LMNA gene in the pathogenesis of cardiac laminopathies, suggesting that LMNA should be included in mutation screening of patients with suspected arrhythmogenic cardiomyopathy, particularly when they have ECG evidence for conduction defects. The combination of clinical, genetic, and functional data contribute insights into the pathogenesis of this form of life-threatening arrhythmogenic cardiac laminopathy.
Collapse
|
5
|
Sukhodub A, Sudhir R, Du Q, Jovanović S, Reyes S, Jovanović A. Nicotinamide-rich diet improves physical endurance by up-regulating SUR2A in the heart. J Cell Mol Med 2011; 15:1703-12. [PMID: 20731746 PMCID: PMC4373361 DOI: 10.1111/j.1582-4934.2010.01156.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/14/2010] [Indexed: 11/29/2022] Open
Abstract
SUR2A is an ATP-binding protein that serves as a regulatory subunit of cardioprotective ATP-sensitive K(+) (K(ATP) ) channels. Based on signalling pathway regulating SUR2A expression and SUR2A role in regulating numbers of fully assembled K(ATP) channels, we have suggested that nicotinamide-rich diet could improve physical endurance by stimulating SUR2A expression. We have found that mice on nicotinamide-rich diet significantly improved physical endurance, which was associated with significant increase in expression of SUR2A. Transgenic mice with solely overexpressed SUR2A on control diet had increased physical endurance in a similar manner as the wild-type mice on nicotinamide-rich diet. The experiments focused on action membrane potential and intracellular Ca(2+) concentration have demonstrated that increased SUR2A expression was associated with the activation of sarcolemmal K(ATP) channels and steady Ca(2+) levels in cardiomyocytes in response to β-adrenergic stimulation. In contrast, the same challenge in the wild-type was characterized by a lack of the channel activation and rise in intracellular Ca(2+) . Nicotinamide-rich diet was ineffective to increase physical endurance in mice lacking K(ATP) channels. This study has shown that nicotinamide-rich diet improves physical endurance by increasing expression of SUR2A and that this is a sole mechanism of the nicotinamide-rich diet effect. The obtained results suggest that oral nicotinamide is a regulator of SUR2A expression and has a potential as a drug that can improve physical endurance in conditions where this effect would be desirable.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Adrenergic beta-Agonists/pharmacology
- Animals
- Calcium/metabolism
- Cells, Cultured
- Diet
- Female
- Gene Expression/drug effects
- Heart Ventricles/cytology
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Isoproterenol/pharmacology
- Male
- Membrane Potentials/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Motor Activity/drug effects
- Myocardium/cytology
- Myocardium/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/physiology
- Niacinamide/administration & dosage
- Niacinamide/pharmacology
- Physical Conditioning, Animal/physiology
- Potassium Channels, Inwardly Rectifying/genetics
- Potassium Channels, Inwardly Rectifying/metabolism
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sulfonylurea Receptors
- Up-Regulation/drug effects
- Vitamin B Complex/administration & dosage
- Vitamin B Complex/pharmacology
Collapse
Affiliation(s)
- Andriy Sukhodub
- Division of Medical Sciences, Centre for Cardiovascular and Lung Biology, Ninewells Hospital & Medical School, University of DundeeDundee, UK
| | - Rajni Sudhir
- Division of Medical Sciences, Centre for Cardiovascular and Lung Biology, Ninewells Hospital & Medical School, University of DundeeDundee, UK
| | - Qingyou Du
- Division of Medical Sciences, Centre for Cardiovascular and Lung Biology, Ninewells Hospital & Medical School, University of DundeeDundee, UK
| | - Sofija Jovanović
- Division of Medical Sciences, Centre for Cardiovascular and Lung Biology, Ninewells Hospital & Medical School, University of DundeeDundee, UK
| | | | - Aleksandar Jovanović
- Division of Medical Sciences, Centre for Cardiovascular and Lung Biology, Ninewells Hospital & Medical School, University of DundeeDundee, UK
| |
Collapse
|
6
|
Abstract
Abstract
Sarcolemmal ATP-sensitive K+ (KATP) channels are abundant in cardiac myocytes where they couple the cellular metabolic state with membrane excitability. Structurally, these channels are composed of Kir6.2, a pore-forming subunit, SUR2A, a regulatory subunit, and at least four accessory proteins. The activation of KATP channels occurs during ischaemia to promote cardiac viability under this adverse condition. Age-dependent changes in the myocardial susceptibility to ischaemia have been reported in experimental animals as well as in humans. Recent research has demonstrated that ageing is associated with a decrease in the number of cardiac sarcolemmal KATP channels in hearts from females, but not males. This alteration is likely to be due to an age-dependent decrease in the concentration of circulating estrogens. In the heart, SUR2A is the least expressed protein of all KATP channel-forming proteins. The consequence of this phenomenon is that the level of SUR2A is the main factor controlling the number of sarcolemmal KATP channels. Estrogens specifically up-regulate SUR2A and govern the number of sarcolemmal KATP channels, and this may explain the effect of decreasing estrogen levels on the heart. An age-dependent decrease in the number of sarcolemmal KATP channels generates a cardiac phenotype more sensitive to ischaemia, which seems to be responsible for the ageing-associated decrease in myocardial tolerance to stress that occurs in elderly women.
Collapse
Affiliation(s)
- Aleksandar Jovanović
- Maternal and Child Health Sciences, Tayside Institute of Child Health, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| |
Collapse
|
7
|
Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proc Natl Acad Sci U S A 2009; 107:3329-34. [PMID: 19846783 DOI: 10.1073/pnas.0905729106] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myocardial infarction resulting in irreversible loss of cardiomyocytes (CMs) remains a leading cause of heart failure. Although cell transplantation has modestly improved cardiac function, major challenges including increasing cell survival, engraftment, and functional integration with host tissue, remain. Embryonic stem cells (ESCs), which can be differentiated into cardiac progenitors (CPs) and CMs, represent a candidate cell source for cardiac cell therapy. However, it is not known what specific cell type or condition is the most appropriate for transplantation. This problem is exasperated by the lack of efficient and predictive strategies to screen the large numbers of parameters that may impact cell transplantation. We used a cardiac tissue model, engineered heart tissue (EHT), and quantitative molecular and electrophysiological analyses, to test transplantation conditions and specific cell populations for their potential to functionally integrate with the host tissue. In this study, we validated our analytical platform using contractile mouse neonatal CMs (nCMs) and noncontractile cardiac fibroblasts (cFBs), and screened for the integration potential of ESC-derived CMs and CPs (ESC-CMs and -CPs). Consistent with previous in vivo studies, cFB injection interfered with electrical signal propagation, whereas injected nCMs improved tissue function. Purified bioreactor-generated ESC-CMs exhibited a diminished capacity for electrophysiological integration; a result correlated with lower (compared with nCMs) connexin 43 expression. ESC-CPs, however, appeared able to appropriately mature and integrate into EHT, enhancing the amplitude of tissue contraction. Our results support the use of EHT as a model system to accelerate development of cardiac cell therapy strategies.
Collapse
|
8
|
Yan XS, Ma JH, Zhang PH. Modulation of K(ATP) currents in rat ventricular myocytes by hypoxia and a redox reaction. Acta Pharmacol Sin 2009; 30:1399-414. [PMID: 19801996 DOI: 10.1038/aps.2009.134] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM The present study investigated the possible regulatory mechanisms of redox agents and hypoxia on the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. METHODS Single-channel and whole-cell patch-clamp techniques were used to record the K(ATP) current (I(KATP)) in acutely isolated rat ventricular myocytes. RESULTS Oxidized glutathione (GSSG, 1 mmol/L) increased the I(KATP), while reduced glutathione (GSH, 1 mmol/L) could reverse the increased I(KATP) during normoxia. To further corroborate the effect of the redox agent on the K(ATP) channel, we employed the redox couple DTT (1 mmol/L)/H2O2 (0.3, 0.6, and 1 mmol/L) and repeated the previous processes, which produced results similar to the previous redox couple GSH/GSSG during normoxia. H2O2 increased the I(KATP) in a concentration dependent manner, which was reversed by DTT (1 mmol/L). In addition, our results have shown that 15 min of hypoxia increased the I(KATP), while GSH (1 mmol/L) could reverse the increased I(KATP). Furthermore, in order to study the signaling pathways of the I(KATP) augmented by hypoxia and the redox agent, we applied a protein kinase C(PKC) inhibitor bisindolylmaleimide VI (BIM), a protein kinase G(PKG) inhibitor KT5823, a protein kinase A (PKA) inhibitor H-89, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitors KN-62 and KN-93. The results indicated that BIM, KT5823, KN-62, and KN-93, but not H-89, inhibited the I(KATP) augmented by hypoxia and GSSG; in addition, these results suggest that the effects of both GSSG and hypoxia on K(ATP) channels involve the activation of the PKC, PKG, and CaMK II pathways, but not the PKA pathway. CONCLUSION The present study provides electrophysiological evidence that hypoxia and the oxidizing reaction are closely related to the modulation of I(KATP).
Collapse
|
9
|
Vojinović V, von Stockar U. Influence of uncertainties in pH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways. Biotechnol Bioeng 2009; 103:780-95. [PMID: 19365870 DOI: 10.1002/bit.22309] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Thermodynamic feasibility analysis (TFA) has been used as a tool capable of providing additional constraints to the mass balance-based methods of analysis of metabolic networks (e.g., flux balance analysis). Several publications have recently appeared in which TFA of different metabolic pathways from relatively simple to the genome-scale networks was described as a means of detecting the possible metabolic control steps. However, in order to perform TFA, many simplifying assumptions were necessary. On the other hand, it has been shown by applying TFA to the well-known pathway of glycolysis that erroneous simplifying assumptions may seriously bias the results of the analysis. A quantitative analysis of the influence of non-ideality of the biochemical system, pH, temperature, and complexation of the metabolites with Mg(2+) ions as well as a number of other factors on the TFA is reported. It is shown that the feasibility of glycolysis is very seriously limited by the reaction of oxidative phosphorylation of glyceraldehyde phosphate, and that the intracellular concentration of the main product of this reaction, biphosphoglycerate, must be anywhere from 10 to 100 times lower than published values. In addition, the driving force for this reaction, and consequently the feasibility of the entire pathway depend strongly on the intracellular pH and ionic strength and to a lesser extent on pMg and temperature. The analysis may also be influenced by uncertainties of the dissociation and magnesium complexation constants of glyceraldehyde phosphate. The analysis demonstrates the crucial importance of taking such factors into account when performing TFA. It also suggests an urgent need for experimental determinations of such factors as a prerequisite for sensible thermodynamic analysis of metabolism on a genome-wide scale.
Collapse
Affiliation(s)
- Vojislav Vojinović
- Laboratory of Chemical and Biological Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
10
|
SUKHODUB ANDREY, JOVANOVIĆ SOFIJA, DU QINGYOU, BUDAS GRANT, CLELLAND ALLYSONK, SHEN MEI, SAKAMOTO KEI, TIAN RONG, JOVANOVIĆ ALEKSANDAR. AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K(+) channels. J Cell Physiol 2007; 210:224-36. [PMID: 17044064 PMCID: PMC2128052 DOI: 10.1002/jcp.20862] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Brief periods of ischemia and reperfusion that precede sustained ischemia lead to a reduction in myocardial infarct size. This phenomenon, known as ischemic preconditioning, is mediated by signaling pathway(s) that is complex and yet to be fully defined. AMP-activated kinase (AMPK) is activated in cells under conditions associated with ATP depletion and increased AMP/ATP ratio. In the present study, we have taken advantage of a cardiac phenotype overexpressing a dominant negative form of the alpha2 subunit of AMPK to analyze the role, if any, that AMPK plays in preconditioning the heart. We have found that myocardial preconditioning activates AMPK in wild type, but not transgenic mice. Cardiac cells from transgenic mice could not be preconditioned, as opposed to cells from the wild type. The cytoprotective effect of AMPK was not related to the effect that preconditioning has on mitochondrial membrane potential as revealed by JC-1, a mitochondrial membrane potential-sensitive dye, and laser confocal microscopy. In contrast, experiments with di-8-ANEPPS, a sarcolemmal-potential sensitive dye, has demonstrated that intact AMPK activity is required for preconditioning-induced shortening of the action membrane potential. The preconditioning-induced activation of sarcolemmal K(ATP) channels was observed in wild type, but not in transgenic mice. HMR 1098, a selective inhibitor of sarcolemmal K(ATP) channels opening, inhibited preconditioning-induced shortening of action membrane potential as well as cardioprotection afforded by AMPK. Immunoprecipitation followed by Western blotting has shown that AMPK is essential for preconditioning-induced recruitment of sarcolemmal K(ATP) channels. Based on the obtained results, we conclude that AMPK mediates preconditioning in cardiac cells by regulating the activity and recruitment of sarcolemmal K(ATP) channels without being a part of signaling pathway that regulates mitochondrial membrane potential.
Collapse
Affiliation(s)
- ANDREY SUKHODUB
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - SOFIJA JOVANOVIĆ
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - QINGYOU DU
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - GRANT BUDAS
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - ALLYSON K. CLELLAND
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - MEI SHEN
- Department of Medicine, Cardiovascular Division, Nuclear Magnetic Resonance Laboratory for Physiological Chemistry, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - KEI SAKAMOTO
- MRC Protein Phosphorylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee, UK
| | - RONG TIAN
- Department of Medicine, Cardiovascular Division, Nuclear Magnetic Resonance Laboratory for Physiological Chemistry, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - ALEKSANDAR JOVANOVIĆ
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
11
|
Du Q, Jovanović S, Clelland A, Sukhodub A, Budas G, Phelan K, Murray-Tait V, Malone L, Jovanović A. Overexpression of SUR2A generates a cardiac phenotype resistant to ischemia. FASEB J 2006; 20:1131-41. [PMID: 16770012 PMCID: PMC2121651 DOI: 10.1096/fj.05-5483com] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ATP-sensitive K+ (K(ATP)) channels are present in the sarcolemma of cardiac myocytes where they link membrane excitability with the cellular bioenergetic state. These channels are in vivo composed of Kir6.2, a pore-forming subunit, SUR2A, a regulatory subunit, and at least four accessory proteins. In the present study, real-time RT-PCR has demonstrated that of all six sarcolemmal K(ATP) channel-forming proteins, SUR2A was probably the least expressed protein. We have generated mice where the SUR2A was under the control of a cytomegalovirus promoter, a promoter that is more efficient than the native promoter. These mice had an increase in SUR2A mRNA/protein levels in the heart whereas levels of mRNAs of other channel-forming proteins were not affected at all. Imunoprecipitation/Western blot and patch clamp electrophysiology has shown an increase in K(ATP) channel numbers in the sarcolemma of transgenic mice. Cardiomyocytes from transgenic mice responded to hypoxia with shortening of action membrane potential and were significantly more resistant to this insult than cardiomyocytes from the wild-type. The size of myocardial infarction in response to ischemia-reperfusion was much smaller in hearts from transgenic mice compared to those in wild-type. We conclude that overexpression of SUR2A generates cardiac phenotype resistant to hypoxia/ischemia/reperfusion injury due at least in part to increase in levels of sarcolemmal K(ATP) channels.
Collapse
Affiliation(s)
- Qingyou Du
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee UK
| | - Sofija Jovanović
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee UK
| | - Allyson Clelland
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee UK
| | - Andrey Sukhodub
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee UK
| | - Grant Budas
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee UK
| | - Karen Phelan
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee UK
| | - Victoria Murray-Tait
- Division of Cell Biology and Immunology, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, UK
| | - Lorraine Malone
- Division of Cell Biology and Immunology, School of Life Sciences, MSI/WTB Complex, University of Dundee, Dundee, UK
| | - Aleksandar Jovanović
- Maternal and Child Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee UK
| |
Collapse
|