1
|
Qin Y, Teng Y, Yang Y, Mao Z, Zhao S, Zhang N, Li X, Niu W. Advancements in inhibitors of crucial enzymes in the cysteine biosynthetic pathway: Serine acetyltransferase and O-acetylserine sulfhydrylase. Chem Biol Drug Des 2024; 104:e14573. [PMID: 38965664 DOI: 10.1111/cbdd.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Infectious diseases have been jeopardized problem that threaten public health over a long period of time. The growing prevalence of drug-resistant pathogens and infectious cases have led to a decrease in the number of effective antibiotics, which highlights the urgent need for the development of new antibacterial agents. Serine acetyltransferase (SAT), also known as CysE in certain bacterial species, and O-acetylserine sulfhydrylase (OASS), also known as CysK in select bacteria, are indispensable enzymes within the cysteine biosynthesis pathway of various pathogenic microorganisms. These enzymes play a crucial role in the survival of these pathogens, making SAT and OASS promising targets for the development of novel anti-infective agents. In this comprehensive review, we present an introduction to the structure and function of SAT and OASS, along with an overview of existing inhibitors for SAT and OASS as potential antibacterial agents. Our primary focus is on elucidating the inhibitory activities, structure-activity relationships, and mechanisms of action of these inhibitors. Through this exploration, we aim to provide insights into promising strategies and prospects in the development of antibacterial agents that target these essential enzymes.
Collapse
Affiliation(s)
- Yinhui Qin
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Yuetai Teng
- Department of Pharmacy, Jinan Vocational College of Nursing, Jinan, China
| | - Yan Yang
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Zhenkun Mao
- Department of Pharmacy, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| | - Shengyu Zhao
- Shenyang Pharmaceutical University, Shenyang, China
| | - Na Zhang
- Shandong Academy of Chinese Medicine, Jinan, China
| | - Xu Li
- Institute of Chemistry Henan Academy of Sciences, Zhengzhou, Henan, China
| | - Weihong Niu
- Department of Pathology, Henan Key Laboratory for Digital Pathology Medicine, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Cuthbert BJ, Hayes CS, Goulding CW. Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors. Front Mol Biosci 2022; 9:866854. [PMID: 35558562 PMCID: PMC9086364 DOI: 10.3389/fmolb.2022.866854] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
Bacteria live in complex communities and environments, competing for space and nutrients. Within their niche habitats, bacteria have developed various inter-bacterial mechanisms to compete and communicate. One such mechanism is contact-dependent growth inhibition (CDI). CDI is found in many Gram-negative bacteria, including several pathogens. These CDI+ bacteria encode a CdiB/CdiA two-partner secretion system that delivers inhibitory toxins into neighboring cells upon contact. Toxin translocation results in the growth inhibition of closely related strains and provides a competitive advantage to the CDI+ bacteria. CdiB, an outer-membrane protein, secretes CdiA onto the surface of the CDI+ bacteria. When CdiA interacts with specific target-cell receptors, CdiA delivers its C-terminal toxin region (CdiA-CT) into the target-cell. CdiA-CT toxin proteins display a diverse range of toxic functions, such as DNase, RNase, or pore-forming toxin activity. CDI+ bacteria also encode an immunity protein, CdiI, that specifically binds and neutralizes its cognate CdiA-CT, protecting the CDI+ bacteria from auto-inhibition. In Gram-negative bacteria, toxin/immunity (CdiA-CT/CdiI) pairs have highly variable sequences and functions, with over 130 predicted divergent toxin/immunity complex families. In this review, we will discuss biochemical and structural advances made in the characterization of CDI. This review will focus on the diverse array of CDI toxin/immunity complex structures together with their distinct toxin functions. Additionally, we will discuss the most recent studies on target-cell recognition and toxin entry, along with the discovery of a new member of the CDI loci. Finally, we will offer insights into how these diverse toxin/immunity complexes could be harnessed to fight human diseases.
Collapse
Affiliation(s)
- Bonnie J. Cuthbert
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| | - Christopher S. Hayes
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Celia W. Goulding
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
- Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
3
|
A Competitive O-Acetylserine Sulfhydrylase Inhibitor Modulates the Formation of Cysteine Synthase Complex. Catalysts 2021. [DOI: 10.3390/catal11060700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cysteine is the main precursor of sulfur-containing biological molecules in bacteria and contributes to the control of the cell redox state. Hence, this amino acid plays an essential role in microbial survival and pathogenicity and the reductive sulfate assimilation pathway is considered a promising target for the development of new antibacterials. Serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS-A), the enzymes catalyzing the last two steps of cysteine biosynthesis, engage in the formation of the cysteine synthase (CS) complex. The interaction between SAT and OASS-A finely tunes cysteine homeostasis, and the development of inhibitors targeting either protein–protein interaction or the single enzymes represents an attractive strategy to undermine bacterial viability. Given the peculiar mode of interaction between SAT and OASS-A, which exploits the insertion of SAT C-terminal sequence into OASS-A active site, we tested whether a recently developed competitive inhibitor of OASS-A exhibited any effect on the CS stability. Through surface plasmon resonance spectroscopy, we (i) determined the equilibrium constant for the Salmonella Typhimurium CS complex formation and (ii) demonstrated that the inhibitor targeting OASS-A active site affects CS complex formation. For comparison, the Escherichia coli CS complex was also investigated, with the aim of testing the potential broad-spectrum activity of the candidate antimicrobial compound.
Collapse
|
4
|
Hemmadi V, Biswas M. An overview of moonlighting proteins in Staphylococcus aureus infection. Arch Microbiol 2020; 203:481-498. [PMID: 33048189 PMCID: PMC7551524 DOI: 10.1007/s00203-020-02071-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/01/2023]
Abstract
Staphylococcus aureus is responsible for numerous instances of superficial, toxin-mediated, and invasive infections. The emergence of methicillin-resistant (MRSA), as well as vancomycin-resistant (VRSA) strains of S. aureus, poses a massive threat to human health. The tenacity of S. aureus to acquire resistance against numerous antibiotics in a very short duration makes the effort towards developing new antibiotics almost futile. S. aureus owes its destructive pathogenicity to the plethora of virulent factors it produces among which a majority of them are moonlighting proteins. Moonlighting proteins are the multifunctional proteins in which a single protein, with different oligomeric conformations, perform multiple independent functions in different cell compartments. Peculiarly, proteins involved in key ancestral functions and metabolic pathways typically exhibit moonlighting functions. Pathogens mainly employ those proteins as virulent factors which exhibit high structural conservation towards their host counterparts. Consequentially, the host immune system counteracts these invading bacterial virulent factors with minimal protective action. Additionally, many moonlighting proteins also play multiple roles in various stages of pathogenicity while augmenting the virulence of the bacterium. This has necessitated elaborative studies to be conducted on moonlighting proteins of S. aureus that can serve as drug targets. This review is a small effort towards understanding the role of various moonlighting proteins in the pathogenicity of S. aureus.
Collapse
Affiliation(s)
- Vijay Hemmadi
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India
| | - Malabika Biswas
- Department of Biological Sciences, Birla Institute of Technology and Science, BITS-Pilani, K. K. Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.
| |
Collapse
|
5
|
Combination of SAXS and Protein Painting Discloses the Three-Dimensional Organization of the Bacterial Cysteine Synthase Complex, a Potential Target for Enhancers of Antibiotic Action. Int J Mol Sci 2019; 20:ijms20205219. [PMID: 31640223 PMCID: PMC6829319 DOI: 10.3390/ijms20205219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/10/2019] [Accepted: 09/17/2019] [Indexed: 01/03/2023] Open
Abstract
The formation of multienzymatic complexes allows for the fine tuning of many aspects of enzymatic functions, such as efficiency, localization, stability, and moonlighting. Here, we investigated, in solution, the structure of bacterial cysteine synthase (CS) complex. CS is formed by serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase isozyme A (CysK), the enzymes that catalyze the last two steps of cysteine biosynthesis in bacteria. CysK and CysE have been proposed as potential targets for antibiotics, since cysteine and related metabolites are intimately linked to protection of bacterial cells against redox damage and to antibiotic resistance. We applied a combined approach of small-angle X-ray scattering (SAXS) spectroscopy and protein painting to obtain a model for the solution structure of CS. Protein painting allowed the identification of protein–protein interaction hotspots that were then used as constrains to model the CS quaternary assembly inside the SAXS envelope. We demonstrate that the active site entrance of CysK is involved in complex formation, as suggested by site-directed mutagenesis and functional studies. Furthermore, complex formation involves a conformational change in one CysK subunit that is likely transmitted through the dimer interface to the other subunit, with a regulatory effect. Finally, SAXS data indicate that only one active site of CysK is involved in direct interaction with CysE and unambiguously unveil the quaternary arrangement of CS.
Collapse
|
6
|
Insights into multifaceted activities of CysK for therapeutic interventions. 3 Biotech 2019; 9:44. [PMID: 30675454 DOI: 10.1007/s13205-019-1572-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023] Open
Abstract
CysK (O-acetylserine sulfhydrylase) is a pyridoxal-5' phosphate-dependent enzyme which catalyzes the second step of the de novo cysteine biosynthesis pathway by converting O-acetyl serine (OAS) into l-cysteine in the presence of sulfide. The first step of the cysteine biosynthesis involves formation of OAS from serine and acetyl CoA by CysE (serine acetyltransferase). Apart from role of CysK in cysteine biosynthesis, recent studies have revealed various additional roles of this enzyme in bacterial physiology. Other than the suggested regulatory role in cysteine production, other activities of CysK include involvement of CysK-in contact-dependent toxin activation in Gram-negative pathogens, as a transcriptional regulator of CymR by stabilizing the CymR-DNA interactions, in biofilm formation by providing cysteine and via another mechanism not yet understood, in ofloxacin and tellurite resistance as well as in cysteine desulfurization. Some of these activities involve binding of CysK to another cellular partner, where the complex is regulated by the availability of OAS and/or sulfide (H2S). The aim of this study is to present an overview of current knowledge of multiple functions performed by CysK and identifying structural features involved in alternate functions. Due to possible role in disease, promoting or inhibiting a "moonlighting" function of CysK could be a target for developing novel therapeutic interventions.
Collapse
|
7
|
Kant V, Vijayakumar S, Sahoo GC, Ali V, Singh K, Chaudhery SS, Das P. In-silico screening and validation of high-affinity tetra-peptide inhibitor of Leishmania donovani O-acetyl serine sulfhydrylase (OASS). J Biomol Struct Dyn 2018; 37:481-492. [PMID: 29415627 DOI: 10.1080/07391102.2018.1429315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OASS is a specific enzyme that helps Leishmania parasite to survive the oxidative stress condition in human macrophages. SAT C-terminal peptides in several organisms, including Leishmania, were reported to inhibit or reduce the activity of OASS. Small peptide and small molecules mimicking the SAT C-terminal residues are designed and tested for the inhibition of OASS in different organisms. Hence, in this study, all the possible tetra-peptide combinations were designed and screened based on the docking ability with Leishmania donovani OASS (Ld-OASS). The top ranked peptides were further validated for the stability using 50 ns molecular dynamic simulation. In order to identify the better binding capability of the peptides, the top peptides complexed with Ld-OASS were also subjected to molecular dynamic simulation. The docking and simulation results favored the peptide EWSI to possess greater advantage than previously reported peptide (DWSI) in binding with Ld-OASS active site. Also, screening of non-peptide inhibitor of Asinex Biodesign library based on the shape similarity of EWSI and DWSI was performed. The top similar molecules of each peptides were docked on to Ld-OASS active site and subsequently simulated for 20 ns. The results suggested that the ligand that shares high shape similarity with EWSI possess better binding capability than the ligand that shares high shape similarity with DWSI. This study revealed that the tetra-peptide EWSI had marginal advantage over DWSI in binding with Ld-OASS, thereby providing basis for defining a pharmacophoric scaffold for the design of peptidomimetic inhibitors as well as non-peptide inhibitors of Ld-OASS. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Vishnu Kant
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Hajipur , Bihar 844102 , India
| | - Saravanan Vijayakumar
- b Department of Statistics/Bioinformatics Centre , Rajendra Memorial Research Institute of Medical Science, ICMR , Agamkuan, Patna , Bihar 800007 , India
| | - Ganesh Chandra Sahoo
- c Bioinformatics Division , Rajendra Memorial Research Institute of Medical Science, ICMR , Agamkuan, Patna , Bihar 800007 , India
| | - Vahab Ali
- d Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Kuljit Singh
- d Laboratory of Molecular Biochemistry and Cell Biology, Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, India
| | - Shailendra S Chaudhery
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Hajipur , Bihar 844102 , India
| | - Pradeep Das
- e Department of Molecular Biology , Rajendra Memorial Research Institute of Medical Science, ICMR , Agamkuan, Patna , Bihar 800007 , India
| |
Collapse
|
8
|
Benoni R, Beck CM, Garza-Sánchez F, Bettati S, Mozzarelli A, Hayes CS, Campanini B. Activation of an anti-bacterial toxin by the biosynthetic enzyme CysK: mechanism of binding, interaction specificity and competition with cysteine synthase. Sci Rep 2017; 7:8817. [PMID: 28821763 PMCID: PMC5562914 DOI: 10.1038/s41598-017-09022-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is a wide-spread mechanism of inter-bacterial competition. CDI+ bacteria deliver CdiA-CT toxins into neighboring bacteria and produce specific immunity proteins that protect against self-intoxication. The CdiA-CT toxin from uropathogenic Escherichia coli 536 is a latent tRNase that is only active when bound to the cysteine biosynthetic enzyme CysK. Remarkably, the CysK:CdiA-CT binding interaction mimics the ‘cysteine synthase’ complex of CysK:CysE. The C-terminal tails of CysE and CdiA-CT each insert into the CysK active-site cleft to anchor the respective complexes. The dissociation constant for CysK:CdiA-CT (Kd ~ 11 nM) is comparable to that of the E. coli cysteine synthase complex (Kd ~ 6 nM), and both complexes bind through a two-step mechanism with a slow isomerization phase after the initial encounter. However, the second-order rate constant for CysK:CdiA-CT binding is two orders of magnitude slower than that of the cysteine synthase complex, suggesting that CysE should outcompete the toxin for CysK occupancy. However, we find that CdiA-CT can effectively displace CysE from pre-formed cysteine synthase complexes, enabling toxin activation even in the presence of excess competing CysE. This adventitious binding, coupled with the very slow rate of CysK:CdiA-CT dissociation, ensures robust nuclease activity in target bacteria.
Collapse
Affiliation(s)
- Roberto Benoni
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Praha, Czech Republic
| | - Christina M Beck
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia, Università di Parma, Parma, Italy.,Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Andrea Mozzarelli
- Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy.,Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA. .,Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy.
| |
Collapse
|
9
|
Benoni R, De Bei O, Paredi G, Hayes CS, Franko N, Mozzarelli A, Bettati S, Campanini B. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Lett 2017; 591:1212-1224. [PMID: 28337759 DOI: 10.1002/1873-3468.12630] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/20/2017] [Accepted: 03/16/2017] [Indexed: 11/09/2022]
Abstract
In bacteria and plants, serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase-A sulfhydrylase (CysK) collaborate to synthesize l-Cys from l-Ser. CysE and CysK bind one another with high affinity to form the cysteine synthase complex (CSC). We demonstrate that bacterial CysE is activated when bound to CysK. CysE activation results from the release of substrate inhibition, with the Ki for l-Ser increasing from 4 mm for free CysE to 16 mm for the CSC. Feedback inhibition of CysE by l-Cys is also relieved in the bacterial CSC. These findings suggest that the CysE active site is allosterically altered by CysK to alleviate substrate and feedback inhibition in the context of the CSC.
Collapse
Affiliation(s)
- Roberto Benoni
- Dipartimento di Medicina e Chirurgia, Università di Parma, Italy
| | - Omar De Bei
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| | - Gianluca Paredi
- Centro Interdipartimentale SITEIA.PARMA, Università di Parma, Italy
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Nina Franko
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Roma, Italy.,Istituto di Biofisica, CNR, Pisa, Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia, Università di Parma, Italy.,INBB (Istituto Nazionale Biostrutture e Biosistemi), Roma, Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Italy
| |
Collapse
|
10
|
Abstract
Contact-dependent growth inhibition (CDI) is a widespread mechanism of bacterial competition. CDI(+) bacteria deliver the toxic C-terminal region of contact-dependent inhibition A proteins (CdiA-CT) into neighboring target bacteria and produce CDI immunity proteins (CdiI) to protect against self-inhibition. The CdiA-CT(EC536) deployed by uropathogenic Escherichia coli 536 (EC536) is a bacterial toxin 28 (Ntox28) domain that only exhibits ribonuclease activity when bound to the cysteine biosynthetic enzyme O-acetylserine sulfhydrylase A (CysK). Here, we present crystal structures of the CysK/CdiA-CT(EC536) binary complex and the neutralized ternary complex of CysK/CdiA-CT/CdiI(EC536) CdiA-CT(EC536) inserts its C-terminal Gly-Tyr-Gly-Ile peptide tail into the active-site cleft of CysK to anchor the interaction. Remarkably, E. coli serine O-acetyltransferase uses a similar Gly-Asp-Gly-Ile motif to form the "cysteine synthase" complex with CysK. The cysteine synthase complex is found throughout bacteria, protozoa, and plants, indicating that CdiA-CT(EC536) exploits a highly conserved protein-protein interaction to promote its toxicity. CysK significantly increases CdiA-CT(EC536) thermostability and is required for toxin interaction with tRNA substrates. These observations suggest that CysK stabilizes the toxin fold, thereby organizing the nuclease active site for substrate recognition and catalysis. By contrast, Ntox28 domains from Gram-positive bacteria lack C-terminal Gly-Tyr-Gly-Ile motifs, suggesting that they do not interact with CysK. We show that the Ntox28 domain from Ruminococcus lactaris is significantly more thermostable than CdiA-CT(EC536), and its intrinsic tRNA-binding properties support CysK-independent nuclease activity. The striking differences between related Ntox28 domains suggest that CDI toxins may be under evolutionary pressure to maintain low global stability.
Collapse
|
11
|
Abstract
Virulence gene expression serves two main functions, growth in/on the host, and the acquisition of nutrients. Therefore, it is obvious that nutrient availability is important to control expression of virulence genes. In any cell, enzymes are the components that are best informed about the availability of their respective substrates and products. It is thus not surprising that bacteria have evolved a variety of strategies to employ this information in the control of gene expression. Enzymes that have a second (so-called moonlighting) function in the regulation of gene expression are collectively referred to as trigger enzymes. Trigger enzymes may have a second activity as a direct regulatory protein that can bind specific DNA or RNA targets under particular conditions or they may affect the activity of transcription factors by covalent modification or direct protein-protein interaction. In this chapter, we provide an overview on these mechanisms and discuss the relevance of trigger enzymes for virulence gene expression in bacterial pathogens.
Collapse
|
12
|
Benoni R, Pertinhez TA, Spyrakis F, Davalli S, Pellegrino S, Paredi G, Pezzotti A, Bettati S, Campanini B, Mozzarelli A. Structural insight into the interaction ofO-acetylserine sulfhydrylase with competitive, peptidic inhibitors by saturation transfer difference-NMR. FEBS Lett 2016; 590:943-53. [DOI: 10.1002/1873-3468.12126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Thelma A. Pertinhez
- Department of Oncology and Advanced Techniques; Arcispedale Santa Maria Nuova-IRCCS; Reggio Emilia Italy
| | | | | | - Sara Pellegrino
- Department of Pharmaceutical Sciences; Section of General and Organic Chemistry ‘A. Marchesini’; University of Milan; Italy
| | | | | | - Stefano Bettati
- Department of Neurosciences; University of Parma; Italy
- National Institute for Biostructures and Biosystems; Rome Italy
| | | | - Andrea Mozzarelli
- Department of Pharmacy; University of Parma; Italy
- National Institute for Biostructures and Biosystems; Rome Italy
- Institute of Biophysics; CNR; Pisa Italy
| |
Collapse
|
13
|
Pieroni M, Annunziato G, Beato C, Wouters R, Benoni R, Campanini B, Pertinhez TA, Bettati S, Mozzarelli A, Costantino G. Rational Design, Synthesis, and Preliminary Structure–Activity Relationships of α-Substituted-2-Phenylcyclopropane Carboxylic Acids as Inhibitors of Salmonella typhimurium O-Acetylserine Sulfhydrylase. J Med Chem 2016; 59:2567-78. [DOI: 10.1021/acs.jmedchem.5b01775] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | | | | | | | | | | | - Stefano Bettati
- Department
of Neurosciences, University of Parma, Via Volturno, 39, 43125 Parma, Italy
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
| | - Andrea Mozzarelli
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Rome, Italy
- Institute of Biophysics, CNR, /o
Area di Ricerca San Cataldo, Via G. Moruzzi N° 1, 56124 Pisa, Italy
| | | |
Collapse
|
14
|
CysK Plays a Role in Biofilm Formation and Colonization by Vibrio fischeri. Appl Environ Microbiol 2015; 81:5223-34. [PMID: 26025891 DOI: 10.1128/aem.00157-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/19/2015] [Indexed: 11/20/2022] Open
Abstract
A biofilm, or a matrix-embedded community of cells, promotes the ability of the bacterium Vibrio fischeri to colonize its symbiotic host, the Hawaiian squid Euprymna scolopes. Biofilm formation and colonization depend on syp, an 18-gene polysaccharide locus. To identify other genes necessary for biofilm formation, we screened for mutants that failed to form wrinkled colonies, a type of biofilm. We obtained several with defects in genes required for cysteine metabolism, including cysH, cysJ, cysK, and cysN. The cysK mutant exhibited the most severe wrinkling defect. It could be complemented with a wild-type copy of the cysK gene, which encodes O-acetylserine sulfhydrolase, or by supplementing the medium with additional cysteine. None of a number of other mutants defective for biosynthetic genes negatively impacted wrinkled colony formation, suggesting a specific role for CysK. CysK did not appear to control activation of Syp regulators or transcription of the syp locus, but it did influence production of the Syp polysaccharide. Under biofilm-inducing conditions, the cysK mutant retained the same ability as that of the parent strain to adhere to the agar surface. The cysK mutant also exhibited a defect in pellicle production that could be complemented by the cysK gene but not by cysteine, suggesting that, under these conditions, CysK is important for more than the production of cysteine. Finally, our data reveal a role for cysK in symbiotic colonization by V. fischeri. Although many questions remain, this work provides insights into additional factors required for biofilm formation and colonization by V. fischeri.
Collapse
|
15
|
Campanini B, Benoni R, Bettati S, Beck CM, Hayes CS, Mozzarelli A. Moonlighting O-acetylserine sulfhydrylase: New functions for an old protein. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1184-93. [PMID: 25731080 DOI: 10.1016/j.bbapap.2015.02.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/18/2015] [Accepted: 02/20/2015] [Indexed: 12/13/2022]
Abstract
O-acetylserine sulfhydrylase A (CysK) is the pyridoxal 5'-phosphate-dependent enzyme that catalyzes the final reaction of cysteine biosynthesis in bacteria. CysK was initially identified in a complex with serine acetyltransferase (CysE), which catalyzes the penultimate reaction in the synthetic pathway. This "cysteine synthase" complex is stabilized by insertion of the CysE C-terminus into the active-site of CysK. Remarkably, the CysK/CysE binding interaction is conserved in most bacterial and plant systems. For the past 40years, CysK was thought to function exclusively in cysteine biosynthesis, but recent studies have revealed a repertoire of additional "moonlighting" activities for this enzyme. CysK and its paralogs influence transcription in both Gram-positive bacteria and the nematode Caenorhabditis elegans. CysK also activates an antibacterial nuclease toxin produced by uropathogenic Escherichia coli. Intriguingly, each moonlighting activity requires a binding partner that invariably mimics the C-terminus of CysE to interact with the CysK active site. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.
Collapse
Affiliation(s)
| | - Roberto Benoni
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy
| | - Stefano Bettati
- Dipartimento di Neuroscienze, Università di Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy
| | - Christina M Beck
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.
| | - Andrea Mozzarelli
- Dipartimento di Farmacia, Università di Parma, Parma, Italy; National Institute of Biostructures and Biosystems, Rome, Italy; Institute of Biophysics, CNR, Pisa, Italy
| |
Collapse
|
16
|
Abstract
In contrast to animals, which release the signal molecule sulfide in small amounts from cysteine and its derivates, phototrophic eukaryotes generate sulfide as an essential intermediate of the sulfur assimilation pathway. Additionally, iron-sulfur cluster turnover and cyanide detoxification might contribute to the release of sulfide in mitochondria. However, sulfide is a potent inhibitor of cytochrome c oxidase in mitochondria. Thus, efficient sulfide detoxification mechanisms are required in mitochondria to ensure adequate energy production and consequently survival of the plant cell. Two enzymes have been recently described to catalyze sulfide detoxification in mitochondria of Arabidopsis thaliana, O-acetylserine(thiol)lyase C (OAS-TL C), and the sulfur dioxygenase (SDO) ethylmalonic encephalopathy protein 1 (ETHE1). Biochemical characterization of sulfide producing and consuming enzymes in mitochondria of plants is fundamental to understand the regulatory network that enables mitochondrial sulfide homeostasis under nonstressed and stressed conditions. In this chapter, we provide established protocols to determine the activity of the sulfide releasing enzyme β-cyanoalanine synthase as well as sulfide-consuming enzymes OAS-TL and SDO. Additionally, we describe a reliable and efficient method to purify OAS-TL proteins from plant material.
Collapse
Affiliation(s)
- Hannah Birke
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | | | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
17
|
Tavares S, Wirtz M, Beier MP, Bogs J, Hell R, Amâncio S. Characterization of the serine acetyltransferase gene family of Vitis vinifera uncovers differences in regulation of OAS synthesis in woody plants. FRONTIERS IN PLANT SCIENCE 2015; 6:74. [PMID: 25741355 PMCID: PMC4330696 DOI: 10.3389/fpls.2015.00074] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/28/2015] [Indexed: 05/08/2023]
Abstract
In higher plants cysteine biosynthesis is catalyzed by O-acetylserine(thiol)lyase (OASTL) and represents the last step of the assimilatory sulfate reduction pathway. It is mainly regulated by provision of O-acetylserine (OAS), the nitrogen/carbon containing backbone for fixation of reduced sulfur. OAS is synthesized by Serine acetyltransferase (SERAT), which reversibly interacts with OASTL in the cysteine synthase complex (CSC). In this study we identify and characterize the SERAT gene family of the crop plant Vitis vinifera. The identified four members of the VvSERAT protein family are assigned to three distinct groups upon their sequence similarities to Arabidopsis SERATs. Expression of fluorescently labeled VvSERAT proteins uncover that the sub-cellular localization of VvSERAT1;1 and VvSERAT3;1 is the cytosol and that VvSERAT2;1 and VvSERAT2;2 localize in addition in plastids and mitochondria, respectively. The purified VvSERATs of group 1 and 2 have higher enzymatic activity than VvSERAT3;1, which display a characteristic C-terminal extension also present in AtSERAT3;1. VvSERAT1;1 and VvSERAT2;2 are evidenced to form the CSC. CSC formation activates VvSERAT2;2, by releasing CSC-associated VvSERAT2;2 from cysteine inhibition. Thus, subcellular distribution of SERAT isoforms and CSC formation in cytosol and mitochondria is conserved between Arabidopsis and grapevine. Surprisingly, VvSERAT2;1 lack the canonical C-terminal tail of plant SERATs, does not form the CSC and is almost insensitive to cysteine inhibition (IC50 = 1.9 mM cysteine). Upon sulfate depletion VvSERAT2;1 is strongly induced at the transcriptional level, while transcription of other VvSERATs is almost unaffected in sulfate deprived grapevine cell suspension cultures. Application of abiotic stresses to soil grown grapevine plants revealed isoform-specific induction of VvSERAT2;1 in leaves upon drought, whereas high light- or temperature- stress hardly trigger VvSERAT2;1 transcription.
Collapse
Affiliation(s)
- Sílvia Tavares
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica, Universidade Nova de LisboaOeiras, Portugal
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Marcel P. Beier
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Jochen Bogs
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
- Studiengang Weinbau und Oenologie, Dienstleistungszentrum Laendlicher Raum RheinpfalzNeustadt, Germany
- Fachbereich 1, Life Sciences and Engineering, Fachhochschule BingenBingen am Rhein, Germany
| | - Rüdiger Hell
- Centre for Organismal Studies Heidelberg, University of HeidelbergHeidelberg, Germany
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de LisboaLisbon, Portugal
- *Correspondence: Sara Amâncio, Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal e-mail:
| |
Collapse
|
18
|
The Discoidin Domain ofBacillus circulansβ-Galactosidase Plays an Essential Role in Repressing Galactooligosaccharide Production. Biosci Biotechnol Biochem 2014; 77:73-9. [DOI: 10.1271/bbb.120583] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
Spyrakis F, Singh R, Cozzini P, Campanini B, Salsi E, Felici P, Raboni S, Benedetti P, Cruciani G, Kellogg GE, Cook PF, Mozzarelli A. Isozyme-specific ligands for O-acetylserine sulfhydrylase, a novel antibiotic target. PLoS One 2013; 8:e77558. [PMID: 24167577 PMCID: PMC3805590 DOI: 10.1371/journal.pone.0077558] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/03/2013] [Indexed: 01/06/2023] Open
Abstract
The last step of cysteine biosynthesis in bacteria and plants is catalyzed by O-acetylserine sulfhydrylase. In bacteria, two isozymes, O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, have been identified that share similar binding sites, although the respective specific functions are still debated. O-acetylserine sulfhydrylase plays a key role in the adaptation of bacteria to the host environment, in the defense mechanisms to oxidative stress and in antibiotic resistance. Because mammals synthesize cysteine from methionine and lack O-acetylserine sulfhydrylase, the enzyme is a potential target for antimicrobials. With this aim, we first identified potential inhibitors of the two isozymes via a ligand- and structure-based in silico screening of a subset of the ZINC library using FLAP. The binding affinities of the most promising candidates were measured in vitro on purified O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B from Salmonella typhimurium by a direct method that exploits the change in the cofactor fluorescence. Two molecules were identified with dissociation constants of 3.7 and 33 µM for O-acetylserine sulfhydrylase-A and O-acetylserine sulfhydrylase-B, respectively. Because GRID analysis of the two isoenzymes indicates the presence of a few common pharmacophoric features, cross binding titrations were carried out. It was found that the best binder for O-acetylserine sulfhydrylase-B exhibits a dissociation constant of 29 µM for O-acetylserine sulfhydrylase-A, thus displaying a limited selectivity, whereas the best binder for O-acetylserine sulfhydrylase-A exhibits a dissociation constant of 50 µM for O-acetylserine sulfhydrylase-B and is thus 8-fold selective towards the former isozyme. Therefore, isoform-specific and isoform-independent ligands allow to either selectively target the isozyme that predominantly supports bacteria during infection and long-term survival or to completely block bacterial cysteine biosynthesis.
Collapse
Affiliation(s)
| | - Ratna Singh
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Pietro Cozzini
- Department of Food Sciences, University of Parma, Parma, Italy
- National Institute of Biostructures and Biosystems, Rome, Italy
| | - Barbara Campanini
- Department of Pharmacy, University of Parma, Parma, Italy
- * E-mail: (BC); (AM)
| | - Enea Salsi
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Paolo Felici
- Department of Pharmacy, University of Parma, Parma, Italy
| | - Samanta Raboni
- Department of Pharmacy, University of Parma, Parma, Italy
| | | | | | - Glen E. Kellogg
- Department of Medicinal Chemistry and Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Paul F. Cook
- Department of Biochemistry, University of Oklahoma, Norman, Oklahoma, United States of America
| | - Andrea Mozzarelli
- Department of Pharmacy, University of Parma, Parma, Italy
- National Institute of Biostructures and Biosystems, Rome, Italy
- * E-mail: (BC); (AM)
| |
Collapse
|
20
|
Bruno A, Amori L, Costantino G. Computational Insights into the Mechanism of Inhibition of OASS-A by a Small Molecule Inhibitor. Mol Inform 2013; 32:447-57. [PMID: 27481665 DOI: 10.1002/minf.201200174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/09/2012] [Indexed: 11/09/2022]
Abstract
O-Acetylserine sulfhydrylase (isoform A, OASS-A) is a PLP-dependent enzyme involved in the last step of cysteine biosynthesis in many pathogens. Many microorganisms use cysteine as the main building block for sulfur-containing antioxidants, and cysteine depletion in several pathogens resulted in a reduced antibiotic resistance, thus leading to the identification of OASS as novel suitable molecular targets to overcome antimicrobial resistances. The precise molecular mechanism of OASS-A inhibition by small peptides or by small molecule inhibitors is still unclear. To shed more lights on the structural basis underlying the inhibition mechanism for OASS, we engaged ourselves in studying the dynamic properties of this enzyme. In this paper, we describe a computational study involving unbiased MD simulations of OASS-A from Haemophilus influenzae (HiOASS) in its inhibitor free, PLP-bound form, and in complex with a pentapeptide inhibitor and with UPAR40, a small molecule which we have recently reported as a potent OASS-A inhibitors. We proposed that UPAR40 inhibits HiOASS-A through the stabilization of a closed conformation. Moreover, preliminary docking studies and sequence analysis allow us to speculate about the non-specificity of UPAR40 toward a particular OASS enzyme species or isoforms.
Collapse
Affiliation(s)
- Agostino Bruno
- Department of Pharmacy, Università degli Studi di Parma, Parco Area delle Scienze, Viale G. P. Usberti 27/A, 43124, Parma, Italy
| | - Laura Amori
- Department of Pharmacy, Università degli Studi di Parma, Parco Area delle Scienze, Viale G. P. Usberti 27/A, 43124, Parma, Italy
| | - Gabriele Costantino
- Department of Pharmacy, Università degli Studi di Parma, Parco Area delle Scienze, Viale G. P. Usberti 27/A, 43124, Parma, Italy.
| |
Collapse
|
21
|
Ruhe ZC, Low DA, Hayes CS. Bacterial contact-dependent growth inhibition. Trends Microbiol 2013; 21:230-7. [PMID: 23473845 DOI: 10.1016/j.tim.2013.02.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/06/2013] [Accepted: 02/08/2013] [Indexed: 01/31/2023]
Abstract
Bacteria cooperate to form multicellular communities and compete against one another for environmental resources. Here, we review recent advances in the understanding of bacterial competition mediated by contact-dependent growth inhibition (CDI) systems. Different CDI+ bacteria deploy a variety of toxins to inhibit neighboring cells and protect themselves from autoinhibition by producing specific immunity proteins. The genes encoding CDI toxin-immunity protein pairs appear to be exchanged between cdi loci and are often associated with other toxin-delivery systems in diverse bacterial species. CDI also appears to facilitate cooperative behavior between kin, suggesting that these systems may have other roles beyond competition.
Collapse
Affiliation(s)
- Zachary C Ruhe
- Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106-9625, USA
| | | | | |
Collapse
|
22
|
Spyrakis F, Felici P, Bayden AS, Salsi E, Miggiano R, Kellogg GE, Cozzini P, Cook PF, Mozzarelli A, Campanini B. Fine tuning of the active site modulates specificity in the interaction of O-acetylserine sulfhydrylase isozymes with serine acetyltransferase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:169-81. [DOI: 10.1016/j.bbapap.2012.09.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 10/27/2022]
|
23
|
Fyfe PK, Westrop GD, Ramos T, Müller S, Coombs GH, Hunter WN. Structure of Leishmania major cysteine synthase. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:738-43. [PMID: 22750854 PMCID: PMC3388911 DOI: 10.1107/s1744309112019124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 04/28/2012] [Indexed: 01/19/2023]
Abstract
A crystallographic and biochemical study of L. major cysteine synthase, which is a pyridoxyl phosphate-dependent enzyme, is reported. The structure was determined to 1.8 Å resolution and revealed that the cofactor has been lost and that a fragment of γ-poly-d-glutamic acid, a crystallization ingredient, was bound in the active site. The enzyme was inhibited by peptides. Cysteine biosynthesis is a potential target for drug development against parasitic Leishmania species; these protozoa are responsible for a range of serious diseases. To improve understanding of this aspect of Leishmania biology, a crystallographic and biochemical study of L. major cysteine synthase has been undertaken, seeking to understand its structure, enzyme activity and modes of inhibition. Active enzyme was purified, assayed and crystallized in an orthorhombic form with a dimer in the asymmetric unit. Diffraction data extending to 1.8 Å resolution were measured and the structure was solved by molecular replacement. A fragment of γ-poly-d-glutamic acid, a constituent of the crystallization mixture, was bound in the enzyme active site. Although a d-glutamate tetrapeptide had insignificant inhibitory activity, the enzyme was competitively inhibited (Ki = 4 µM) by DYVI, a peptide based on the C-terminus of the partner serine acetyltransferase with which the enzyme forms a complex. The structure surprisingly revealed that the cofactor pyridoxal phosphate had been lost during crystallization.
Collapse
Affiliation(s)
- Paul K Fyfe
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | | | | | | | | | | |
Collapse
|
24
|
Diner EJ, Beck CM, Webb JS, Low DA, Hayes CS. Identification of a target cell permissive factor required for contact-dependent growth inhibition (CDI). Genes Dev 2012; 26:515-25. [PMID: 22333533 PMCID: PMC3305988 DOI: 10.1101/gad.182345.111] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/20/2012] [Indexed: 11/25/2022]
Abstract
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CdiA effector proteins are exported onto the surface of CDI(+) inhibitor cells, where they interact with susceptible bacteria and deliver effectors/toxins derived from their C-terminal regions (CdiA-CT). CDI(+) cells also produce an immunity protein that binds the CdiA-CT and blocks its activity to prevent autoinhibition. Here, we show that the CdiA-CT from uropathogenic Escherichia coli strain 536 (UPEC536) is a latent tRNase that requires activation by the biosynthetic enzyme CysK (O-acetylserine sulfhydrylase A). UPEC536 CdiA-CT exhibits no nuclease activity in vitro, but cleaves within transfer RNA (tRNA) anti-codon loops when purified CysK is added. CysK and CdiA-CT form a stable complex, and their binding interaction appears to mimic that of the CysK/CysE cysteine synthase complex. CdiA-CT activation is also required for growth inhibition. Synthesis of CdiA-CT in E. coli cysK(+) cells arrests cell growth, whereas the growth of ΔcysK mutants is unaffected by the toxin. Moreover, E. coli ΔcysK cells are completely resistant to inhibitor cells expressing UPEC536 CdiA, indicating that CysK is required to activate the tRNase during CDI. Thus, CysK acts as a permissive factor for CDI, providing a potential mechanism to modulate growth inhibition in target cells.
Collapse
Affiliation(s)
- Elie J. Diner
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Christina M. Beck
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Julia S. Webb
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - David A. Low
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Christopher S. Hayes
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
25
|
Amori L, Katkevica S, Bruno A, Campanini B, Felici P, Mozzarelli A, Costantino G. Design and synthesis of trans-2-substituted-cyclopropane-1-carboxylic acids as the first non-natural small molecule inhibitors of O-acetylserine sulfhydrylase. MEDCHEMCOMM 2012. [DOI: 10.1039/c2md20100c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
26
|
Wang T, Leyh TS. Three-stage assembly of the cysteine synthase complex from Escherichia coli. J Biol Chem 2011; 287:4360-7. [PMID: 22179612 DOI: 10.1074/jbc.m111.288423] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Control of sulfur metabolism in plants and bacteria is linked, in significant measure, to the behavior of the cysteine synthase complex (CSC). The complex is comprised of the two enzymes that catalyze the final steps in cysteine biosynthesis: serine O-acetyltransferase (SAT, EC 2.3.1.30), which produces O-acetyl-L-serine, and O-acetyl-L-serine sulfhydrylase (OASS, EC 2.5.1.47), which converts it to cysteine. SAT (a dimer of homotrimers) binds a maximum of two molecules of OASS (a dimer) in an interaction believed to involve docking of the C terminus from a protomer in an SAT trimer into an OASS active site. This interaction inactivates OASS catalysis and prevents further binding to the trimer; thus, the system exhibits a contact-induced inactivation of half of each biomolecule. To better understand the dynamics and energetics that underlie formation of the CSC, the interactions of OASS and SAT from Escherichia coli were studied at equilibrium and in the pre-steady state. Using an experimental strategy that initiates dissociation of the CSC at different points in the CSC-forming reaction, three stable forms of the complex were identified. Comparison of the binding behaviors of SAT and its C-terminal peptide supports a mechanism in which SAT interacts with OASS in a non-allosteric interaction involving its C terminus. This early docking event appears to fasten the proteins in close proximity and thus prepares the system to engage in a series of subsequent, energetically favorable isomerizations that inactivate OASS and produce the fully isomerized CSC.
Collapse
Affiliation(s)
- Ting Wang
- Department of Microbiology and Immunology, The Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | |
Collapse
|
27
|
Mozzarelli A, Bettati S, Campanini B, Salsi E, Raboni S, Singh R, Spyrakis F, Kumar VP, Cook PF. The multifaceted pyridoxal 5'-phosphate-dependent O-acetylserine sulfhydrylase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1497-510. [PMID: 21549222 DOI: 10.1016/j.bbapap.2011.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/17/2011] [Accepted: 04/20/2011] [Indexed: 12/14/2022]
Abstract
Cysteine is the final product of the reductive sulfate assimilation pathway in bacteria and plants and serves as the precursor for all sulfur-containing biological compounds, such as methionine, S-adenosyl methionine, iron-sulfur clusters and glutathione. Moreover, in several microorganisms cysteine plays a role as a reducing agent, eventually counteracting host oxidative defense strategies. Cysteine is synthesized by the PLP-dependent O-acetylserine sulfhydrylase, a dimeric enzyme belonging to the fold type II, catalyzing a beta-replacement reaction. In this review, the spectroscopic properties, catalytic mechanism, three-dimensional structure, conformational changes accompanying catalysis, determinants of enzyme stability, role of selected amino acids in catalysis, and the regulation of enzyme activity by ligands and interaction with serine acetyltransferase, the preceding enzyme in the biosynthetic pathway, are described. Given the key biological role played by O-acetylserine sulfhydrylase in bacteria, inhibitors with potential antibiotic activity have been developed. This article is part of a Special Issue entitled: Pyridoxal Phospate Enzymology.
Collapse
Affiliation(s)
- Andrea Mozzarelli
- Department of Biochemistry and Molecular Biology, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kumar S, Raj I, Nagpal I, Subbarao N, Gourinath S. Structural and biochemical studies of serine acetyltransferase reveal why the parasite Entamoeba histolytica cannot form a cysteine synthase complex. J Biol Chem 2011; 286:12533-41. [PMID: 21297164 PMCID: PMC3069455 DOI: 10.1074/jbc.m110.197376] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/28/2011] [Indexed: 11/06/2022] Open
Abstract
Cysteine (Cys) plays a major role in growth and survival of the human parasite Entamoeba histolytica. We report here the crystal structure of serine acetyltransferase (SAT) isoform 1, a cysteine biosynthetic pathway enzyme from E. histolytica (EhSAT1) at 1.77 Å, in complex with its substrate serine (Ser) at 1.59 Å and inhibitor Cys at 1.78 Å resolution. EhSAT1 exists as a trimer both in solution as well as in crystal structure, unlike hexamers formed by other known SATs. The difference in oligomeric state is due to the N-terminal region of the EhSAT1, which has very low sequence similarity to known structures, also differs in orientation and charge distribution. The Ser and Cys bind to the same site, confirming that Cys is a competitive inhibitor of Ser. The disordered C-terminal region and the loop near the active site are responsible for solvent-accessible acetyl-CoA binding site and, thus, lose inhibition to acetyl-CoA by the feedback inhibitor Cys. Docking and fluorescence studies show that EhSAT1 C-terminal-mimicking peptides can bind to O-acetyl serine sulfhydrylase (EhOASS), whereas native C-terminal peptide does not show any binding. To test further, C-terminal end of EhSAT1 was mutated and found that it inhibits EhOASS, confirming modified EhSAT1 can bind to EhOASS. The apparent inability of EhSAT1 to form a hexamer and differences in the C-terminal region are likely to be the major reasons for the lack of formation of the large cysteine synthase complex and loss of a complex regulatory mechanism in E. histolytica.
Collapse
Affiliation(s)
| | - Isha Raj
- From the School of Life Sciences
| | | | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | |
Collapse
|
29
|
Wirtz M, Birke H, Heeg C, Müller C, Hosp F, Throm C, König S, Feldman-Salit A, Rippe K, Petersen G, Wade RC, Rybin V, Scheffzek K, Hell R. Structure and function of the hetero-oligomeric cysteine synthase complex in plants. J Biol Chem 2010; 285:32810-32817. [PMID: 20720017 PMCID: PMC2963375 DOI: 10.1074/jbc.m110.157446] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/17/2010] [Indexed: 11/06/2022] Open
Abstract
Cysteine synthesis in bacteria and plants is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol)-lyase (OAS-TL), which form the hetero-oligomeric cysteine synthase complex (CSC). In plants, but not in bacteria, the CSC is assumed to control cellular sulfur homeostasis by reversible association of the subunits. Application of size exclusion chromatography, analytical ultracentrifugation, and isothermal titration calorimetry revealed a hexameric structure of mitochondrial SAT from Arabidopsis thaliana (AtSATm) and a 2:1 ratio of the OAS-TL dimer to the SAT hexamer in the CSC. Comparable results were obtained for the composition of the cytosolic SAT from A. thaliana (AtSATc) and the cytosolic SAT from Glycine max (Glyma16g03080, GmSATc) and their corresponding CSCs. The hexameric SAT structure is also supported by the calculated binding energies between SAT trimers. The interaction sites of dimers of AtSATm trimers are identified using peptide arrays. A negative Gibbs free energy (ΔG = -33 kcal mol(-1)) explains the spontaneous formation of the AtCSCs, whereas the measured SAT:OAS-TL affinity (K(D) = 30 nm) is 10 times weaker than that of bacterial CSCs. Free SAT from bacteria is >100-fold more sensitive to feedback inhibition by cysteine than AtSATm/c. The sensitivity of plant SATs to cysteine is further decreased by CSC formation, whereas the feedback inhibition of bacterial SAT by cysteine is not affected by CSC formation. The data demonstrate highly similar quaternary structures of the CSCs from bacteria and plants but emphasize differences with respect to the affinity of CSC formation (K(D)) and the regulation of cysteine sensitivity of SAT within the CSC.
Collapse
Affiliation(s)
- Markus Wirtz
- From the Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg
| | - Hannah Birke
- From the Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg
| | - Corinna Heeg
- From the Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg
| | - Christopher Müller
- From the Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg
| | - Fabian Hosp
- From the Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg
| | - Christian Throm
- From the Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg
| | - Stephan König
- From the Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg
| | | | - Karsten Rippe
- BioQuant, University of Heidelberg, 69120 Heidelberg
| | | | - Rebecca C Wade
- Heidelberg Institute for Theoretical Studies, 69118 Heidelberg
| | | | | | - Rüdiger Hell
- From the Heidelberg Institute for Plant Sciences, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg.
| |
Collapse
|
30
|
Salsi E, Campanini B, Bettati S, Raboni S, Roderick SL, Cook PF, Mozzarelli A. A two-step process controls the formation of the bienzyme cysteine synthase complex. J Biol Chem 2010; 285:12813-22. [PMID: 20164178 DOI: 10.1074/jbc.m109.075762] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The regulation of enzyme activity through the transient formation of multiprotein assemblies plays an important role in the control of biosynthetic pathways. One of the first regulatory complexes to be discovered was cysteine synthase (CS), formed by the pyridoxal 5'-phosphate-dependent enzyme O-acetylserine sulfhydrylase (OASS) and serine acetyltransferase (SAT). These enzymes are at the branch point of the sulfur, carbon, and nitrogen assimilation pathways. Understanding the mechanism of complex formation helps to clarify the role played by CS in the regulation of sulfur assimilation in bacteria and plants. To this goal, stopped-flow fluorescence spectroscopy was used to characterize the interaction of SAT with OASS, at different temperatures and pH values, and in the presence of the physiological regulators cysteine and bisulfide. Results shed light on the mechanism of complex formation and regulation, so far poorly understood. Cysteine synthase assembly occurs via a two-step mechanism involving rapid formation of an encounter complex between the two enzymes, followed by a slow conformational change. The conformational change likely results from the closure of the active site of OASS upon binding of the SAT C-terminal peptide. Bisulfide, the second substrate and a feedback inhibitor of OASS, stabilizes the CS complex mainly by decreasing the back rate of the isomerization step. Cysteine, the product of the OASS reaction and a SAT inhibitor, slightly affects the kinetics of CS formation leading to destabilization of the complex.
Collapse
Affiliation(s)
- Enea Salsi
- Dipartimento di Biochimica e Biologia Molecolare, Università di Parma, 43100 Parma, Italy
| | | | | | | | | | | | | |
Collapse
|
31
|
Salsi E, Bayden AS, Spyrakis F, Amadasi A, Campanini B, Bettati S, Dodatko T, Cozzini P, Kellogg GE, Cook PF, Roderick SL, Mozzarelli A. Design of O-acetylserine sulfhydrylase inhibitors by mimicking nature. J Med Chem 2010; 53:345-56. [PMID: 19928859 DOI: 10.1021/jm901325e] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibition of cysteine biosynthesis in prokaryotes and protozoa has been proposed to be relevant for the development of antibiotics. Haemophilus influenzae O-acetylserine sulfhydrylase (OASS), catalyzing l-cysteine formation, is inhibited by the insertion of the C-terminal pentapeptide (MNLNI) of serine acetyltransferase into the active site. Four-hundred MNXXI pentapeptides were generated in silico, docked into OASS active site using GOLD, and scored with HINT. The terminal P5 Ile accounts for about 50% of the binding energy. Glu or Asp at position P4 and, to a lesser extent, at position P3 also significantly contribute to the binding interaction. The predicted affinity of 14 selected pentapeptides correlated well with the experimentally determined dissociation constants. The X-ray structure of three high affinity pentapeptide-OASS complexes were compared with the docked poses. These results, combined with a GRID analysis of the active site, allowed us to define a pharmacophoric scaffold for the design of peptidomimetic inhibitors.
Collapse
Affiliation(s)
- Enea Salsi
- Department of Biochemistry and Molecular Biology, University of Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Soutourina O, Poupel O, Coppée JY, Danchin A, Msadek T, Martin-Verstraete I. CymR, the master regulator of cysteine metabolism inStaphylococcus aureus, controls host sulphur source utilization and plays a role in biofilm formation. Mol Microbiol 2009; 73:194-211. [DOI: 10.1111/j.1365-2958.2009.06760.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Tanous C, Soutourina O, Raynal B, Hullo MF, Mervelet P, Gilles AM, Noirot P, Danchin A, England P, Martin-Verstraete I. The CymR regulator in complex with the enzyme CysK controls cysteine metabolism in Bacillus subtilis. J Biol Chem 2008; 283:35551-60. [PMID: 18974048 DOI: 10.1074/jbc.m805951200] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Several enzymes have evolved as sensors in signal transduction pathways to control gene expression, thereby allowing bacteria to adapt efficiently to environmental changes. We recently identified the master regulator of cysteine metabolism in Bacillus subtilis, CymR, which belongs to the poorly characterized Rrf2 family of regulators. We now report that the signal transduction mechanism controlling CymR activity in response to cysteine availability involves the formation of a stable complex with CysK, a key enzyme for cysteine biosynthesis. We carried out a comprehensive quantitative characterization of this regulator-enzyme interaction by surface plasmon resonance and analytical ultracentrifugation. We also showed that O-acetylserine plays a dual role as a substrate of CysK and as an effector modulating the CymR-CysK complex formation. The ability of B. subtilis CysK to bind to CymR appears to be correlated to the loss of its capacity to form a cysteine synthase complex with CysE. We propose an original model, supported by the determination of the intracellular concentrations of the different partners, by which CysK positively regulates CymR in sensing the bacterial cysteine pool.
Collapse
Affiliation(s)
- Catherine Tanous
- Institut Pasteur, UnitédeGénétique des Génomes Bactériens, Plate-forme de Biophysique des Macromolécules et de leurs Interactions, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Rich RL, Myszka DG. Survey of the year 2006 commercial optical biosensor literature. J Mol Recognit 2007; 20:300-66. [DOI: 10.1002/jmr.862] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Kumada Y, Katoh S, Imanaka H, Imamura K, Nakanishi K. Development of a one-step ELISA method using an affinity peptide tag specific to a hydrophilic polystyrene surface. J Biotechnol 2007; 127:288-99. [PMID: 16950537 DOI: 10.1016/j.jbiotec.2006.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/28/2006] [Accepted: 07/07/2006] [Indexed: 11/20/2022]
Abstract
Glutathione S-transferase genetically fused with an affinity peptide tag, PS19 (RAFIASRRIKRP) having a specific affinity for a hydrophilic polystyrene (PS) surface, was preferentially immobilized on a hydrophilic PS (phi-PS) plate without suffering from interference by coexisting protein molecules. Furthermore, rabbit IgG chemically conjugated with a peptide, KPS19R10, in which (10)Lys in PS19 was replaced with Arg and one Lys residue was added at the N-terminus as a coupling site for glutaraldehyde, showed a higher immobilization affinity to the phi-PS plate than that conjugated with the PS19 peptide. On the basis of these findings, the use of a phi-PS plate and peptide tag-linked ligand proteins permitted a one-step or two-step enzyme-linked immunosorbent assay (ELISA) to be achieved, resulting in a substantial reduction in operational time compared with the conventional ELISA method using a hydrophobic PS (pho-PS) plate, while maintaining a high sensitivity. Furthermore, the sensitivity was increased to a greater extent compared to the conventional ELISA meihod when the one-step ELISA was applied to the detection of bovine insulin in a sandwich mode, due to the reduced number of washing and incubation steps. The method proposed here would be a versatile method for use in various ELISA techniques such as sandwich and competitive ELISAs using an antigen, an antibody and streptavidin that are genetically fused or chemically conjugated with the PS-specific affinity peptide as the ligand protein.
Collapse
Affiliation(s)
- Yoichi Kumada
- Department of Bioscience and Biotechnology, Okayama University, Okayama 700-8530, Japan
| | | | | | | | | |
Collapse
|