1
|
Yuan L, Meng Y, Xiang J. SNX16 is required for hepatocellular carcinoma survival via modulating the EGFR-AKT signaling pathway. Sci Rep 2024; 14:13093. [PMID: 38849490 PMCID: PMC11161632 DOI: 10.1038/s41598-024-64015-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Sorting nexin 16 (SNX16), a pivotal sorting nexin, emerges in tumor progression complexity, fueling research interest. However, SNX16's biological impact and molecular underpinnings in hepatocellular carcinoma (HCC) remain elusive. This study probes SNX16's function, clinical relevance via mRNA, and protein expression in HCC. Overexpression/knockdown assays of SNX16 were employed to elucidate impacts on HCC cell invasion, proliferation, and EMT. Additionally, the study delved into SNX16's regulation of the EGFR-AKT signaling cascade mechanism. SNX16 overexpression in HCC correlates with poor patient survival; enhancing proliferation, migration, invasion, and tumorigenicity, while SNX16 knockdown suppresses these processes. SNX16 downregulation curbs phospho-EGFR, dampening AKT signaling. EGFR suppression counters SNX16-overexpression-induced HCC proliferation, motility, and invasiveness. Our findings delineate SNX16's regulatory role in HCC, implicating it as a prospective therapeutic target.
Collapse
Affiliation(s)
- Lebin Yuan
- Department of General Surgery, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China
| | - Yanqiu Meng
- Oncology Department, First Affiliated Hospital of Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiajia Xiang
- Molecular Centre Laboratory, Jiangxi Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
2
|
Chen Q, Sun M, Han X, Xu H, Liu Y. Structural determinants specific for retromer protein sorting nexin 5 in regulating subcellular retrograde membrane trafficking. J Biomed Res 2023; 37:492-506. [PMID: 37964759 PMCID: PMC10687533 DOI: 10.7555/jbr.37.20230112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 11/16/2023] Open
Abstract
The endosomal trafficking of signaling membrane proteins, such as receptors, transporters and channels, is mediated by the retromer-mediated sorting machinery, composed of a cargo-selective vacuolar protein sorting trimer and a membrane-deforming subunit of sorting nexin proteins. Recent studies have shown that the isoforms, sorting nexin 5 (SNX5) and SNX6, have played distinctive regulatory roles in retrograde membrane trafficking. However, the molecular insight determined functional differences within the proteins remains unclear. We reported that SNX5 and SNX6 had distinct binding affinity to the cargo protein vesicular monoamine transporter 2 (VMAT2). SNX5, but not SNX6, specifically interacted with VMAT2 through the Phox domain, which contains an alpha-helix binding motif. Using chimeric mutagenesis, we identified that several key residues within this domain were unique in SNX5, but not SNX6, and played an auxiliary role in its binding to VMAT2. Importantly, we generated a set of mutant SNX6, in which the corresponding key residues were mutated to those in SNX5. In addition to the gain in binding affinity to VMAT2, their overexpression functionally rescued the altered retrograde trafficking of VMAT2 induced by siRNA-mediated depletion of SNX5. These data strongly suggest that SNX5 and SNX6 have different functions in retrograde membrane trafficking, which is determined by the different structural elements within the Phox domain of two proteins. Our work provides a new information on the role of SNX5 and SNX6 in the molecular regulation of retrograde membrane trafficking and vesicular membrane targeting in monoamine neurotransmission and neurological diseases.
Collapse
Affiliation(s)
- Qing Chen
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Meiheng Sun
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongfei Xu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Department of Neuroscience, University of Pittsburgh Kenneth P. Dietrich School of Arts and Sciences, Pittsburgh, PA 15260, USA
| |
Collapse
|
3
|
Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Baños-Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrazaga A, Fernandez-Recio J, Rojas AL, Bonifacino JS, Castaño-Díez D, Hierro A. Architecture of the ESCPE-1 membrane coat. Nat Struct Mol Biol 2023; 30:958-969. [PMID: 37322239 PMCID: PMC10352136 DOI: 10.1038/s41594-023-01014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Recycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown. Herein, we show that ESCPE-1 has a single-layer coat organization and suggest how synergistic interactions between ESCPE-1 protomers, phosphoinositides and cargo molecules result in a global arrangement of amphipathic helices to drive tubule formation. Our results thus define a key process of tubule-based endosomal sorting.
Collapse
Affiliation(s)
| | | | | | - Morié Ishida
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - David Gil-Carton
- CIC bioGUNE, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- BREM Basque Resource for Electron Microscopy, Leioa, Spain
| | - Miguel Romero-Durana
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel Castaño-Díez
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Aitor Hierro
- CIC bioGUNE, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Hu B, Yin G, Sun X. Identification of specific role of SNX family in gastric cancer prognosis evaluation. Sci Rep 2022; 12:10231. [PMID: 35715463 PMCID: PMC9205943 DOI: 10.1038/s41598-022-14266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 06/03/2022] [Indexed: 11/10/2022] Open
Abstract
We here perform a systematic bioinformatic analysis to uncover the role of sorting nexin (SNX) family in clinical outcome of gastric cancer (GC). Comprehensive bioinformatic analysis were realized with online tools such as TCGA, GEO, String, Timer, cBioportal and Kaplan-Meier Plotter. Statistical analysis was conducted with R language or Perl, and artificial neural network (ANN) model was established using Python. Our analysis demonstrated that SNX4/5/6/7/8/10/13/14/15/16/20/22/25/27/30 were higher expressed in GC, whereas SNX1/17/21/24/33 were in the opposite expression profiles. GSE66229 was employed as verification of the differential expression analysis based on TCGA. Clustering results gave the relative transcriptional levels of 30 SNXs in tumor, and it was totally consistent to the inner relevance of SNXs at mRNA level. Protein-Protein Interaction map showed closely and complex connection among 33 SNXs. Tumor immune infiltration analysis asserted that SNX1/3/9/18/19/21/29/33, SNX1/17/18/20/21/29/31/33, SNX1/2/3/6/10/18/29/33, and SNX1/2/6/10/17/18/20/29 were strongly correlated with four kinds of survival related tumor-infiltrating immune cells, including cancer associated fibroblast, endothelial cells, macrophages and Tregs. Kaplan-Meier survival analysis based on GEO presented more satisfactory results than that based on TCGA-STAD did, and all the 29 SNXs were statistically significant, SNX23/26/28 excluded. SNXs alteration contributed to microsatellite instability (MSI) or higher level of MSI-H (hyper-mutated MSI or high level of MSI), and other malignancy encompassing mutation of TP53 and ARID1A, as well as methylation of MLH1.The multivariate cox model, visualized as a nomogram, performed excellently in patients risk classification, for those with higher risk-score suffered from shorter overall survival (OS). Compared to previous researches, our ANN models showed a predictive power at a middle-upper level, with AUC of 0.87/0.72, 0.84/0.72, 0.90/0.71 (GSE84437), 0.98/0.66, 0.86/0.70, 0.98/0.71 (GSE66229), 0.94/0.66, 0.83/0.71, 0.88/0.72 (GSE26253) corresponding to one-, three- and five-year OS and recurrence free survival (RFS) estimation, especially ANN model built with GSE66229 including exclusively SNXs as input data. The SNX family shows great value in postoperative survival evaluation of GC, and ANN models constructed using SNXs transcriptional data manifesting excellent predictive power in both OS and RFS prediction works as convincing verification to that.
Collapse
Affiliation(s)
- Beibei Hu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, North Nanjing Street 155, Shenyang, 110001, People's Republic of China
| | - Guohui Yin
- School of Civil Engineering and Transportation, Hebei University of Technology, Tianjin, 300401, People's Republic of China
| | - Xuren Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, North Nanjing Street 155, Shenyang, 110001, People's Republic of China.
| |
Collapse
|
5
|
EGF-SNX3-EGFR axis drives tumor progression and metastasis in triple-negative breast cancers. Oncogene 2022; 41:220-232. [PMID: 34718348 PMCID: PMC8883427 DOI: 10.1038/s41388-021-02086-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 01/14/2023]
Abstract
Epidermal growth factor receptor (EGFR) has critical roles in epithelial cell physiology. Over-expression and over-activation of EGFR have been implicated in diverse cancers, including triple-negative breast cancers (TNBCs), prompting anti-EGFR therapies. Therefore, developing potent therapies and addressing the inevitable drug resistance mechanisms necessitates deciphering of EGFR related networks. Here, we describe Sorting Nexin 3 (SNX3), a member of the recycling retromer complex, as a critical player in the epidermal growth factor (EGF) stimulated EGFR network in TNBCs. We show that SNX3 is an immediate and sustained target of EGF stimulation initially at the protein level and later at the transcriptional level, causing increased SNX3 abundance. Using a proximity labeling approach, we observed increased interaction of SNX3 and EGFR upon EGF stimulation. We also detected colocalization of SNX3 with early endosomes and endocytosed EGF. Moreover, we show that EGFR protein levels are sensitive to SNX3 loss. Transient RNAi models of SNX3 downregulation have a temporary reduction in EGFR levels. In contrast, long-term silencing forces cells to recover and overexpress EGFR mRNA and protein, resulting in increased proliferation, colony formation, migration, invasion in TNBC cells, and increased tumor growth and metastasis in syngeneic models. Consistent with these results, low SNX3 and high EGFR mRNA levels correlate with poor relapse-free survival in breast cancer patients. Overall, our results suggest that SNX3 is a critical player in the EGFR network in TNBCs with implications for other cancers dependent on EGFR activity.
Collapse
|
6
|
Kervin TA, Wiseman BC, Overduin M. Phosphoinositide Recognition Sites Are Blocked by Metabolite Attachment. Front Cell Dev Biol 2021; 9:690461. [PMID: 34368138 PMCID: PMC8340361 DOI: 10.3389/fcell.2021.690461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/18/2021] [Indexed: 12/16/2022] Open
Abstract
Membrane readers take part in trafficking and signaling processes by localizing proteins to organelle surfaces and transducing molecular information. They accomplish this by engaging phosphoinositides (PIs), a class of lipid molecules which are found in different proportions in various cellular membranes. The prototypes are the PX domains, which exhibit a range of specificities for PIs. Our meta-analysis indicates that recognition of membranes by PX domains is specifically controlled by modification of lysine and arginine residues including acetylation, hydroxyisobutyrylation, glycation, malonylation, methylation and succinylation of sidechains that normally bind headgroups of phospholipids including organelle-specific PI signals. Such metabolite-modulated residues in lipid binding elements are named MET-stops here to highlight their roles as erasers of membrane reader functions. These modifications are concentrated in the membrane binding sites of half of all 49 PX domains in the human proteome and correlate with phosphoregulatory sites, as mapped using the Membrane Optimal Docking Area (MODA) algorithm. As these motifs are mutated and modified in various cancers and the responsible enzymes serve as potential drug targets, the discovery of MET-stops as a widespread inhibitory mechanism may aid in the development of diagnostics and therapeutics aimed at the readers, writers and erasers of the PI code.
Collapse
Affiliation(s)
- Troy A Kervin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Brittany C Wiseman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,Molecular and Cellular Biology, MacEwan University, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| | - Michael Overduin
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.,SMALP Network, Edmonton, AB, Canada
| |
Collapse
|
7
|
Huang R, Zheng Z, Liu S, Yan P, Song D, Yin H, Hu P, Zhu X, Chang Z, Liu Y, Zhuang J, Meng T, Huang Z, Zhang J. Identification of prognostic and bone metastasis-related alternative splicing signatures in mesothelioma. Cancer Med 2021; 10:4478-4492. [PMID: 34041868 PMCID: PMC8267146 DOI: 10.1002/cam4.3977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023] Open
Abstract
Mesothelioma (MESO) is an infrequent tumor derived from mesothelial cells of pleura, peritoneum, pericardium, and tunica vaginalis testis. Despite advancement in technologies and better understanding of tumor progression mechanism, the prognosis of MESO remains poor. The role of alternative splicing events (ASEs) in the oncogenesis, tumor metastasis and drug resistance has been widely discussed in multiple cancers. But the prognosis and potential therapeutic value of ASEs in MESO were not clearly studied by now. We constructed a prognostic model using RNA sequencing data and matched ASE data of MESO patients obtained from the TCGA and TCGASpliceSeq database. A total of 3,993 ASEs were identified associated with overall survival using Cox regression analysis. Eight of them were finally figured out to institute the model by lasso regression analysis. The risk score of the model can predict the prognosis independently. Among the identified 390 splicing factors (SF), HSPA1A and DDX3Y was significantly associated with 43 OS-SEs. Among these OS-SEs, SNX5-58744-AT (p = 0.048) and SNX5-58745-AT (p = 0.048) were significantly associated with bone metastasis. Co-expression analysis of signal pathways and SNX5-58744-AT, SNX5-58745-AT was also depicted using GSVA. Finally, we proposed that splicing factor (SF) HSPA1A could regulate SNX5-58744-AT (R = -0.414) and SNX5-58745-AT (R = 0.414) through the pathway "Class I MHC mediated antigen processing and presentation" (R = 0.400). In this way, tumorigenesis and bone metastasis of MESO were controlled.
Collapse
Affiliation(s)
- Runzhi Huang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| | - Zixuan Zheng
- Tongji University School of Medicine, Shanghai, China
| | - Sijia Liu
- Tongji University School of Medicine, Shanghai, China
| | - Penghui Yan
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dianwen Song
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huabin Yin
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Peng Hu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaolong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyan Chang
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yihan Liu
- Tongji University School of Medicine, Shanghai, China
| | - Juanwei Zhuang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tong Meng
- Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zongqiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.,Division of Spine, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
8
|
Kervin TA, Overduin M. Regulation of the Phosphoinositide Code by Phosphorylation of Membrane Readers. Cells 2021; 10:cells10051205. [PMID: 34069055 PMCID: PMC8156045 DOI: 10.3390/cells10051205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
The genetic code that dictates how nucleic acids are translated into proteins is well known, however, the code through which proteins recognize membranes remains mysterious. In eukaryotes, this code is mediated by hundreds of membrane readers that recognize unique phosphatidylinositol phosphates (PIPs), which demark organelles to initiate localized trafficking and signaling events. The only superfamily which specifically detects all seven PIPs are the Phox homology (PX) domains. Here, we reveal that throughout evolution, these readers are universally regulated by the phosphorylation of their PIP binding surfaces based on our analysis of existing and modelled protein structures and phosphoproteomic databases. These PIP-stops control the selective targeting of proteins to organelles and are shown to be key determinants of high-fidelity PIP recognition. The protein kinases responsible include prominent cancer targets, underscoring the critical role of regulated membrane readership.
Collapse
|
9
|
Sun M, Han X, Chang F, Xu H, Colgan L, Liu Y. Regulatory role of sorting nexin 5 in protein stability and vesicular targeting of vesicular acetylcholine transporter to synaptic vesicle-like vesicles in PC12 cells. J Biomed Res 2020; 35:339-350. [PMID: 34230437 PMCID: PMC8502691 DOI: 10.7555/jbr.34.20200095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Accurate targeting of vesicular acetylcholine transporter (VAChT) to synaptic vesicles (SVs) is indispensable for efficient cholinergic transmission. Previous studies have suggested that the dileucine motif within the C-terminus of the transporter is sufficient for its targeting to SVs. However, the cytosolic machinery underlying specific regulation of VAChT trafficking and targeting to SVs is still unclear. Here we used the C-terminus of VAChT as a bait in a yeast two-hybrid screen to identify sorting nexin 5 (SNX5) as its novel interacting protein. SNX5 was detected in the SVs enriched LP2 subcellular fraction of rat brain homogenate and showed strong colocalization with VAChT in both brain sections and PC12 cells. Binding assays suggested that the C-terminal domain of VAChT can interact with both BAR and PX domain of SNX5. Depletion of SNX5 enhanced the degradation of VAChT and the process was mediated through the lysosomal pathway. More importantly, we found that, in PC12 cells, the depletion of SNX5 expression significantly decreased the synaptic vesicle-like vesicles (SVLVs) localization of VAChT. Therefore, the results suggest that SNX5 is a novel regulator for both stability and SV targeting of VAChT.
Collapse
Affiliation(s)
- Meihen Sun
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Chang
- Neuroscience Program, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Hongfei Xu
- Department of Neurology, University of California San Francisco School of Medicine, San Francisco, CA 94143, USA
| | - Lesley Colgan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL 33458, USA. E-mail: lesley.col
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, and Department of Medical Genetics, Nanjing Medical University, Nanjing, Jiangsu 211166, China. E-mail:
| |
Collapse
|
10
|
Shen Z, Li Y, Fang Y, Lin M, Feng X, Li Z, Zhan Y, Liu Y, Mou T, Lan X, Wang Y, Li G, Wang J, Deng H. SNX16 activates c-Myc signaling by inhibiting ubiquitin-mediated proteasomal degradation of eEF1A2 in colorectal cancer development. Mol Oncol 2020; 14:387-406. [PMID: 31876369 PMCID: PMC6998659 DOI: 10.1002/1878-0261.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/01/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sorting nexin 16 (SNX16), a member of the sorting nexin family, has been implicated in tumor development. However, the function of SNX16 has not yet been investigated in colorectal cancer (CRC). Here, we showed that SNX16 expression was significantly upregulated in CRC tissues compared with normal counterparts. Upregulated mRNA levels of SNX16 predicted poor survival of CRC patients. Functional experiments showed that SNX16 could promote CRC cells growth both in vitro and in vivo. Knockdown of SNX16 induced cell cycle arrest and apoptosis, whereas ectopic overexpression of SNX16 had the opposite effects. Mechanistically, SNX16‐eukaryotic translation elongation factor 1A2 (eEF1A2) interaction could inhibit the degradation and ubiquitination of eEF1A2, followed by activation of downstream c‐Myc signaling. Our study unveiled that the SNX16/eEF1A2/c‐Myc signaling axis could promote colorectal tumorigenesis and SNX16 might potentially serve as a novel biomarker for the diagnosis and an intervention of CRC.
Collapse
Affiliation(s)
- Zhiyong Shen
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongsheng Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Fang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingdao Lin
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaochuang Feng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenkang Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yizhi Zhan
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuechen Liu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Tingyu Mou
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoliang Lan
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanan Wang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiping Wang
- Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haijun Deng
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Zhou Q, Huang T, Jiang Z, Ge C, Chen X, Zhang L, Zhao F, Zhu M, Chen T, Cui Y, Li H, Yao M, Li J, Tian H. Upregulation of SNX5 predicts poor prognosis and promotes hepatocellular carcinoma progression by modulating the EGFR-ERK1/2 signaling pathway. Oncogene 2019; 39:2140-2155. [DOI: 10.1038/s41388-019-1131-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
|
12
|
Yan K, Zhang W, Han X, Chang F, Liu Y. Inhibitory role of peroxiredoxin 2 in LRRK2 kinase activity induced cellular pathogenesis. J Biomed Res 2019; 34:103-113. [PMID: 32305964 DOI: 10.7555/jbr.33.20190090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Parkinson's disease (PD) is a major neurodegenerative disease. One of the known genetic contributors to PD pathogenesis is leucine-rich repeat kinase 2 (LRRK2) whose mutations with elevated kinase activity could lead to both familial and sporadic PD. However, how the pathogenic kinase activity of LRRK2 is regulated remains largely unclear. Here we report that peroxiredoxin 2 (Prx2) was identified as a novel interacting protein to LRRK2 with preferential expression in dopaminergic neurons over other Prx proteins. We also confirmed that Prx2 interacted with LRRK2 through its COR domain and its overexpression significantly decreased the kinase activity of mutant LRRK2. Functionally, overexpressed Prx2 rescued the transfected cells from LRRK2 mutant induced apoptotic processes. Importantly, overexpressed Prx2 reversed the altered subcellular distribution of cation-independent mannose 6-phosphate receptor (CI-M6PR) induced by PD-mutant LRRK2. Our results suggest that, by interacting with LRRK2, Prx2 may play an inhibitory role in the LRRK2 mediated cellular toxicity in PD by inhibiting its kinase activity.
Collapse
Affiliation(s)
- Kang Yan
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wenfeng Zhang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xu Han
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fei Chang
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongjian Liu
- Jiangsu Key Laboratory of Xenotransplantation, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
13
|
Li F, Yang J, Villar VAM, Asico LD, Ma X, Armando I, Sanada H, Yoneda M, Felder RA, Jose PA, Wang X. Loss of renal SNX5 results in impaired IDE activity and insulin resistance in mice. Diabetologia 2018; 61:727-737. [PMID: 29080975 PMCID: PMC6342204 DOI: 10.1007/s00125-017-4482-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/02/2017] [Indexed: 01/16/2023]
Abstract
AIMS/HYPOTHESIS We hypothesised that renal sorting nexin 5 (SNX5) regulates the insulin-degrading enzyme (IDE) and, thus, circulating insulin levels. We therefore studied the dynamic interaction between SNX5 and IDE in human renal proximal tubule cells (hRPTCs), as well as in rat and mouse kidneys. METHODS The regulation of IDE by SNX5 expressed in the kidney was studied in vitro and in vivo. Snx5 or mock siRNA was added to immortalised hRPTCs (passage <20) in culture or selectively infused, via osmotic mini-pump, into the remnant kidney of uninephrectomised mice and rats. RESULTS SNX5 co-localised with IDE at the plasma membrane and perinuclear area of hRPTCs and in the brush border membrane of proximal tubules of human, rat, and mouse kidneys. Insulin increased the co-localisation and co-immunoprecipitation of SNX5 and IDE in hRPTCs. Silencing SNX5 in hRPTCs decreased IDE expression and activity. Renal-selective silencing of Snx5 (SNX5 protein: 100 ± 25 vs 29 ± 10, p < 0.05 [% of control]) in C57Bl/6J mice decreased IDE protein (100 ± 13 vs 57 ± 6, p < 0.05 [% of control]) and urinary insulin excretion, impaired the responses to insulin and glucose, and increased blood insulin and glucose levels. Spontaneously hypertensive rats (SHRs) had increased blood insulin and glucose levels and decreased renal SNX5 (100 ± 27 vs 29 ± 6, p < 0.05 [% of control]) and IDE (100 ± 5 vs 75 ± 4, p < 0.05 [% of control]) proteins, compared with normotensive Wistar-Kyoto (WKY) rats. Kidney Snx5-depleted WKY rats also had increased blood insulin and glucose levels. The expression of SNX5 and IDE was decreased in RPTCs from SHRs and hypertensive humans compared with cells from normotensive volunteers, indicating a common cause for hyperinsulinaemia and hypertension. CONCLUSIONS/INTERPRETATION Renal SNX5 positively regulates IDE expression and function. This study is the first to demonstrate the novel and crucial role of renal SNX5 in insulin and glucose metabolism.
Collapse
Affiliation(s)
- Fengmin Li
- Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC, USA
| | - Jian Yang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Van Anthony M Villar
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
| | - Laureano D Asico
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
| | - Xiaobo Ma
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
| | - Ines Armando
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
| | - Hironobu Sanada
- Division of Health Science Research, Fukushima Welfare Federation of Agricultural Cooperatives, Fukushima, Japan
| | - Minoru Yoneda
- Division of Health Science Research, Fukushima Welfare Federation of Agricultural Cooperatives, Fukushima, Japan
| | - Robin A Felder
- Department of Pathology, The University of Virginia, Charlottesville, VA, USA
| | - Pedro A Jose
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA
- Department of Pharmacology and Physiology, The George Washington University, Washington, DC, USA
| | - Xiaoyan Wang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Walter G. Ross Hall, Suite 740-C, 2300 I Street, N.W., Washington, DC, 20037, USA.
| |
Collapse
|
14
|
Fluorescence-Based Assays to Analyse Phosphatidylinositol 5-Phosphate in Autophagy. Methods Enzymol 2017. [PMID: 28253963 DOI: 10.1016/bs.mie.2016.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Autophagosome formation is stimulated by VPS34-dependent PI(3)P formation and by alternative VPS34-independent pathways. We recently described that PI(5)P regulates autophagosome biogenesis and rescues autophagy in VPS34-inactivated cells, suggesting that PI(5)P contributes to canonical autophagy. Our analysis revealed a hitherto unknown functional interplay between PIKfyve and PIPK type II in controlling PI(5)P levels in the context of autophagy. Among phosphoinositides, visualization of PI(5)P in intact cells has remained difficult. While PI(5)P has been implicated in signaling pathways, chromatin organization, bacterial invasion, and cytoskeletal remodeling, our study is the first report showing PI(5)P localization on autophagosomes and early autophagosomal structures when autophagy is induced by nutrient deprivation (amino acids or glucose starvation). We provided a detailed analysis of PI(5)P distribution by the use of super-resolution structured illuminated microscopy. Here, we present a set of tools for detection of PI(5)P during autophagy by confocal microscopy, live-cell imaging, and super-resolution microscopy.
Collapse
|
15
|
Li C, Ma W, Yin S, Liang X, Shu X, Pei D, Egan TM, Huang J, Pan A, Li Z. Sorting Nexin 11 Regulates Lysosomal Degradation of Plasma Membrane TRPV3. Traffic 2016; 17:500-14. [DOI: 10.1111/tra.12379] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Caiyue Li
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Wenbo Ma
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Shikui Yin
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Xin Liang
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Xiaodong Shu
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Duanqing Pei
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
| | - Terrance M. Egan
- Pharmacological and Physiological Science, School of Medicine; Saint Louis University; St. Louis MO USA
| | - Jufang Huang
- Department of Anatomy and Neurobiology, Xiangya School of Medicine; Central South University; Changsha China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Xiangya School of Medicine; Central South University; Changsha China
| | - Zhiyuan Li
- Key Laboratory of Regenerative Biology, Chinese Academy of Sciences and Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou China
- Department of Anatomy and Neurobiology, Xiangya School of Medicine; Central South University; Changsha China
| |
Collapse
|
16
|
Li F, Yang J, Jones JE, Villar VAM, Yu P, Armando I, Felder RA, Jose PA. Sorting nexin 5 and dopamine d1 receptor regulate the expression of the insulin receptor in human renal proximal tubule cells. Endocrinology 2015; 156:2211-21. [PMID: 25825816 PMCID: PMC4430625 DOI: 10.1210/en.2014-1638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sorting nexin 5 (SNX5) belongs to the SNX family, which is composed of a diverse group of proteins that mediate trafficking of plasma membrane proteins, receptors, and transporters. SNX5 is important in the resensitization of the dopamine D1-like receptor (D1R). D1R is uncoupled from its effector proteins in hypertension and diabetes, and treatment of diabetes restores D1R function and insulin receptor (IR) expression. We tested the hypothesis that the D1R and SNX5 regulate IR by studying the expression, distribution, dynamics, and functional consequences of their interaction in human renal proximal tubule cells (hRPTCs). D1R, SNX5, and IR were expressed and colocalized in the brush border of RPTs. Insulin promoted the colocalization of SNX5 and IR at the perinuclear area of hRPTCs. Unlike SNX5, the D1R colocalized and coimmunoprecipitated with IR, and this interaction was enhanced by insulin. To evaluate the role of SNX5 and D1R on IR signaling, we silenced via RNA interference the endogenous expression of SNX5 or the D1R gene DRD1 in hRPTCs. We observed a decrease in IR expression and abundance of phosphorylated IR substrate and phosphorylated protein kinase B, which are crucial components of the IR signal transduction pathway. Our data indicate that SNX5 and D1R are necessary for normal IR expression and activity. It is conceivable that D1R and SNX5 may interact to increase the sensitivity to insulin via a positive regulation of IR and insulin signaling.
Collapse
Affiliation(s)
- Fengmin Li
- Department of Physiology and Biophysics (F.L., P.A.J.), Georgetown University Medical Center, Washington, DC 20057; Liver Disease Branch (F.L.), National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; Department of Nutrition (J.Y.), Daping Hospital, The Third Military Medical University, Chongqing 400042, People's Republic of China; Division of Nephrology (J.Y.J.E.J., V.A.M.V., P.Y., I.A., P.A.J.), Department of Medicine, and Department of Physiology (P.A.J.), University of Maryland School of Medicine, Baltimore, Maryland 21201; and University of Virginia Health Sciences Center (R.A.F.), Charlottesville, Virginia 22908
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sun Y, Hedman AC, Tan X, Schill NJ, Anderson RA. Endosomal type Iγ PIP 5-kinase controls EGF receptor lysosomal sorting. Dev Cell 2013; 25:144-55. [PMID: 23602387 DOI: 10.1016/j.devcel.2013.03.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 01/24/2013] [Accepted: 03/15/2013] [Indexed: 12/24/2022]
Abstract
Endosomal trafficking and degradation of epidermal growth factor receptor (EGFR) play an essential role in the control of its signaling. Phosphatidylinositol-4,5-bisphosphate (PtdIns4,5P(2)) is an established regulator of endocytosis, whereas PtdIns3P modulates endosomal trafficking. However, we demonstrate here that type I gamma phosphatidylinositol phosphate 5-kinase i5 (PIPKIγi5), an enzyme that synthesizes PtdIns4,5P(2), controls endosome-to-lysosome sorting of EGFR. In this pathway, PIPKIγi5 interacts with sorting nexin 5 (SNX5), a protein that binds PtdIns4,5P(2) and other phosphoinositides. PIPKIγi5 and SNX5 localize to endosomes, and loss of either protein blocks EGFR sorting into intraluminal vesicles (ILVs) of the multivesicular body. Loss of ILV sorting greatly enhances and prolongs EGFR signaling. PIPKIγi5 and SNX5 prevent Hrs ubiquitination, and this facilitates the Hrs association with EGFR that is required for ILV sorting. These findings reveal that PIPKIγi5 and SNX5 form a signaling nexus that controls EGFR endosomal sorting, degradation, and signaling.
Collapse
Affiliation(s)
- Yue Sun
- University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
18
|
Im SK, Jeong H, Jeong HW, Kim KT, Hwang D, Ikegami M, Kong YY. Disruption of sorting nexin 5 causes respiratory failure associated with undifferentiated alveolar epithelial type I cells in mice. PLoS One 2013; 8:e58511. [PMID: 23526992 PMCID: PMC3602295 DOI: 10.1371/journal.pone.0058511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 02/05/2013] [Indexed: 01/16/2023] Open
Abstract
Sorting nexin 5 (Snx5) has been posited to regulate the degradation of epidermal growth factor receptor and the retrograde trafficking of cation-independent mannose 6-phosphate receptor/insulin-like growth factor II receptor. Snx5 has also been suggested to interact with Mind bomb-1, an E3 ubiquitin ligase that regulates the activation of Notch signaling. However, the in vivo functions of Snx5 are largely unknown. Here, we report that disruption of the Snx5 gene in mice (Snx5-/- mice) resulted in partial perinatal lethality; 40% of Snx5-/- mice died shortly after birth due to cyanosis, reduced air space in the lungs, and respiratory failure. Histological analysis revealed that Snx5-/- mice exhibited thickened alveolar walls associated with undifferentiated alveolar epithelial type I cells. In contrast, alveolar epithelial type II cells were intact, exhibiting normal surfactant synthesis and secretion. Although the expression levels of surfactant proteins and saturated phosphatidylcholine in the lungs of Snx5-/- mice were comparable to those of Snx5+/+ mice, the expression levels of T1α, Aqp5, and Rage, markers for distal alveolar epithelial type I cells, were significantly decreased in Snx5-/- mice. These results demonstrate that Snx5 is necessary for the differentiation of alveolar epithelial type I cells, which may underlie the adaptation to air breathing at birth.
Collapse
Affiliation(s)
- Sun-Kyoung Im
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - HyoBin Jeong
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Hyun-Woo Jeong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
| | - Kyong-Tai Kim
- Department of Life Science, Division of Molecular and Life Science, POSTECH, Pohang, South Korea
| | - Daehee Hwang
- School of Interdisciplinary Biosciences and Bioengineering, POSTECH, Pohang, South Korea
| | - Machiko Ikegami
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Young-Yun Kong
- School of Biological Science, College of Natural Sciences, Seoul National University, Seoul, South Korea
- * E-mail:
| |
Collapse
|
19
|
de Kreuk BJ, Anthony EC, Geerts D, Hordijk PL. The F-BAR protein PACSIN2 regulates epidermal growth factor receptor internalization. J Biol Chem 2012; 287:43438-53. [PMID: 23129763 DOI: 10.1074/jbc.m112.391078] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling via growth factor receptors, including the epidermal growth factor (EGF) receptor, is key to various cellular processes, such as proliferation, cell survival, and cell migration. In a variety of human diseases such as cancer, aberrant expression and activation of growth factor receptors can lead to disturbed signaling. Intracellular trafficking is crucial for proper signaling of growth factor receptors. As a result, the level of cell surface expression of growth factor receptors is an important determinant for the outcome of downstream signaling. BAR domain-containing proteins represent an important family of proteins that regulate membrane dynamics. In this study, we identify a novel role for the F-BAR protein PACSIN2 in the regulation of EGF receptor signaling. We show that internalized EGF as well as the (activated) EGF receptor translocated to PACSIN2-positive endosomes. Furthermore, loss of PACSIN2 increased plasma membrane expression of the EGF receptor in resting cells and increased EGF-induced phosphorylation of the EGF receptor. As a consequence, EGF-induced activation of Erk and Akt as well as cell proliferation were enhanced in PACSIN2-depleted cells. In conclusion, this study identifies a novel role for the F-BAR-domain protein PACSIN2 in regulating EGF receptor surface levels and EGF-induced downstream signaling.
Collapse
Affiliation(s)
- Bart-Jan de Kreuk
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Plesmanlaan 125, 1066CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
20
|
Pedersen NM, Raiborg C, Brech A, Skarpen E, Roxrud I, Platta HW, Liestøl K, Stenmark H. The PtdIns3P-binding protein Phafin 2 mediates epidermal growth factor receptor degradation by promoting endosome fusion. Traffic 2012; 13:1547-63. [PMID: 22816767 DOI: 10.1111/j.1600-0854.2012.01400.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/17/2012] [Accepted: 07/20/2012] [Indexed: 12/16/2022]
Abstract
Phosphatidylinositol 3-phosphate (PtdIns3P) orchestrates endosomal cargo transport, fusion and motility by recruiting FYVE or PX domain-containing effector proteins to endosomal membranes. In an attempt to discover novel PtdIns3P effectors involved in the termination of growth factor receptor signalling, we performed an siRNA screen for epidermal growth factor (EGF) degradation, targeting FYVE and PX domain proteins in the human proteome. This screen identified several potential regulators of EGF degradation, including HRS (used as positive control), PX kinase, MTMR4 and Phafin2/PLEKHF2. As Phafin2 has not previously been shown to be required for EGF receptor (EGFR) degradation, we performed further functional studies on this protein. Loss of Phafin2 was found to decrease early endosome size, whereas overexpression of Phafin2 resulted in enlarged endosomes. Moreover, both the EGFR and the fluid-phase marker dextran were retained in abnormally small endosomes in Phafin2-depleted cells. In yeast two-hybrid analysis we identified Phafin2 as a novel interactor of the endosomal-tethering protein EEA1, and Phafin2 colocalized strongly with EEA1 in microdomains of the endosome membrane. Our results suggest that Phafin2 controls receptor trafficking and fluid-phase transport through early endosomes by facilitating endosome fusion in concert with EEA1.
Collapse
Affiliation(s)
- Nina Marie Pedersen
- Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, N-0310, Oslo, Norway
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lim JP, Teasdale RD, Gleeson PA. SNX5 is essential for efficient macropinocytosis and antigen processing in primary macrophages. Biol Open 2012; 1:904-14. [PMID: 23213485 PMCID: PMC3507233 DOI: 10.1242/bio.20122204] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/19/2012] [Indexed: 12/14/2022] Open
Abstract
Macropinocytosis mediates the bulk endocytosis of solute molecules, nutrients and antigens. As this endocytic pathway is considered important in functions associated with immune responses, the molecular mechanisms regulating this pathway in immune cells is of particular significance. However, the regulators of macropinocytosis in primary cells remain poorly defined. Members of the sorting nexin (SNX) family have been implicated in macropinosome biogenesis in cultured cells and here we have analyzed the role of two SNX family members, SNX1 and its binding partner SNX5, in macropinocytosis of mouse primary macrophages. We show that endogenous SNX1 and SNX5 are localised to newly-formed macropinosomes in primary mouse macrophages and, moreover, demonstrate that SNX5 plays an essential role in macropinosome biogenesis. Depletion of SNX5 in bone marrow-derived macrophages dramatically decreased both the number and size of macropinosomes. Depletion of SNX5 also resulted in dramatic reduction in uptake and processing of soluble ovalbumin in macrophages, indicating that the majority of antigen uptake and delivery to late endosomes is via macropinocytosis. By contrast, the absence of SNX1 had no effect on endogenous SNX5 localisation and macropinosome biogenesis using macrophages from SNX1 knockout mice. Therefore, SNX5 can function independently of SNX1 and is a modulator of macropinocytosis that influences the uptake and processing of soluble antigen in primary mouse macrophages.
Collapse
Affiliation(s)
- Jet Phey Lim
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Victoria 3010 , Australia
| | | | | |
Collapse
|
22
|
Berger P, Tersar K, Ballmer-Hofer K, Suter U. The CMT4B disease-causing proteins MTMR2 and MTMR13/SBF2 regulate AKT signalling. J Cell Mol Med 2012; 15:307-15. [PMID: 19912440 PMCID: PMC3822797 DOI: 10.1111/j.1582-4934.2009.00967.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Charcot-Marie-Tooth disease type 4B is caused by mutations in the genes encoding either the lipid phosphatase myotubularin-related protein-2 (MTMR2) or its regulatory binding partner MTMR13/SBF2. Mtmr2 dephosphorylates PI-3-P and PI-3,5-P2 to form phosphatidylinositol and PI-5-P, respectively, while Mtmr13/Sbf2 is an enzymatically inactive member of the myotubularin protein family. We have found altered levels of the critical signalling protein AKT in mouse mutants for Mtmr2 and Mtmr13/Sbf2. Thus, we analysed the influence of Mtmr2 and Mtmr13/Sbf2 on signalling processes. We found that overexpression of Mtmr2 prevents the degradation of the epidermal growth factor receptor (EGFR) and leads to sustained Akt activation whereas Erk activation is not affected. Mtmr13/Sbf2 counteracts the blockage of EGFR degradation without affecting prolonged Akt activation. Our data indicate that Mtmr2 and Mtmr13/Sbf2 play critical roles in the sorting and modulation of cellular signalling which are likely to be disturbed in CMT4B.
Collapse
Affiliation(s)
- Philipp Berger
- Molecular Cell Biology, Paul Scherrer Institut, Villigen, Switzerland
| | | | | | | |
Collapse
|
23
|
Kani K, Faca VM, Hughes LD, Zhang W, Fang Q, Shahbaba B, Luethy R, Erde J, Schmidt J, Pitteri SJ, Zhang Q, Katz JE, Gross ME, Plevritis SK, McIntosh MW, Jain A, Hanash S, Agus DB, Mallick P. Quantitative proteomic profiling identifies protein correlates to EGFR kinase inhibition. Mol Cancer Ther 2012; 11:1071-81. [PMID: 22411897 DOI: 10.1158/1535-7163.mct-11-0852] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Clinical oncology is hampered by lack of tools to accurately assess a patient's response to pathway-targeted therapies. Serum and tumor cell surface proteins whose abundance, or change in abundance in response to therapy, differentiates patients responding to a therapy from patients not responding to a therapy could be usefully incorporated into tools for monitoring response. Here, we posit and then verify that proteomic discovery in in vitro tissue culture models can identify proteins with concordant in vivo behavior and further, can be a valuable approach for identifying tumor-derived serum proteins. In this study, we use stable isotope labeling of amino acids in culture (SILAC) with proteomic technologies to quantitatively analyze the gefitinib-related protein changes in a model system for sensitivity to EGF receptor (EGFR)-targeted tyrosine kinase inhibitors. We identified 3,707 intracellular proteins, 1,276 cell surface proteins, and 879 shed proteins. More than 75% of the proteins identified had quantitative information, and a subset consisting of 400 proteins showed a statistically significant change in abundance following gefitinib treatment. We validated the change in expression profile in vitro and screened our panel of response markers in an in vivo isogenic resistant model and showed that these were markers of gefitinib response and not simply markers of phospho-EGFR downregulation. In doing so, we also were able to identify which proteins might be useful as markers for monitoring response and which proteins might be useful as markers for a priori prediction of response.
Collapse
Affiliation(s)
- Kian Kani
- University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Insights into the PX (phox-homology) domain and SNX (sorting nexin) protein families: structures, functions and roles in disease. Biochem J 2011; 441:39-59. [DOI: 10.1042/bj20111226] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The mammalian genome encodes 49 proteins that possess a PX (phox-homology) domain, responsible for membrane attachment to organelles of the secretory and endocytic system via binding of phosphoinositide lipids. The PX domain proteins, most of which are classified as SNXs (sorting nexins), constitute an extremely diverse family of molecules that play varied roles in membrane trafficking, cell signalling, membrane remodelling and organelle motility. In the present review, we present an overview of the family, incorporating recent functional and structural insights, and propose an updated classification of the proteins into distinct subfamilies on the basis of these insights. Almost all PX domain proteins bind PtdIns3P and are recruited to early endosomal membranes. Although other specificities and localizations have been reported for a select few family members, the molecular basis for binding to other lipids is still not clear. The PX domain is also emerging as an important protein–protein interaction domain, binding endocytic and exocytic machinery, transmembrane proteins and many other molecules. A comprehensive survey of the molecular interactions governed by PX proteins highlights the functional diversity of the family as trafficking cargo adaptors and membrane-associated scaffolds regulating cell signalling. Finally, we examine the mounting evidence linking PX proteins to different disorders, in particular focusing on their emerging importance in both pathogen invasion and amyloid production in Alzheimer's disease.
Collapse
|
25
|
Quiñones GA, Oro AE. BAR domain competition during directional cellular migration. Cell Cycle 2011; 9:2522-8. [PMID: 20581461 DOI: 10.4161/cc.9.13.12123] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
While directed cellular migration facilitates the coordinated movement of cells during development and tissue repair, the precise mechanisms regulating the interplay between the extracellular environment, the actin cytoskeleton, and the overlying plasma membrane remain inadequately understood. The BAR domain family of lipid binding, actin cytoskeletal regulators are gaining greater appreciation for their role in these critical processes. BAR domain proteins are involved as both positive and negative regulators of endocytosis, membrane plasticity, and directional cell migration. This review focuses on the functional relationship between different classes of BAR domain proteins and their role in guiding cell migration through regulation of the endocytic machinery. Competition for key signaling substrates by positive and negative BAR domain endocytic regulators appears to mediate control of directional cell migration, and may have wider applicability to other trafficking functions associated with development and carcinogenesis.
Collapse
Affiliation(s)
- Gabriel A Quiñones
- Program in Epithelial Biology and Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
26
|
Wang JTH, Kerr MC, Karunaratne S, Jeanes A, Yap AS, Teasdale RD. The SNX-PX-BAR family in macropinocytosis: the regulation of macropinosome formation by SNX-PX-BAR proteins. PLoS One 2010; 5:e13763. [PMID: 21048941 PMCID: PMC2966440 DOI: 10.1371/journal.pone.0013763] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 10/08/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (>0.2 µm in diameter) endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX) family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture further implicates their functional involvement in macropinosome formation. METHODOLOGY/PRINCIPAL FINDINGS We exploited the tractability of macropinosomes through image-based screening and systematic overexpression of SNX-PX-BAR proteins to quantitate their effect on macropinosome formation. SNX1 (40.9+/-3.19 macropinosomes), SNX5 (36.99+/-4.48 macropinosomes), SNX9 (37.55+/-2.4 macropinosomes), SNX18 (88.2+/-8 macropinosomes), SNX33 (65.25+/-6.95 macropinosomes) all exhibited statistically significant (p<0.05) increases in average macropinosome numbers per 100 transfected cells as compared to control cells (24.44+/-1.81 macropinosomes). SNX1, SNX5, SNX9, and SNX18 were also found to associate with early-stage macropinosomes within 5 minutes following organelle formation. The modulation of intracellular PI(3,4,5)P(3) levels through overexpression of PTEN or a lipid phosphatase-deficient mutant PTEN(G129E) was also observed to significantly reduce or elevate macropinosome formation respectively; coexpression of PTEN(G129E) with SNX9 or SNX18 synergistically elevated macropinosome formation to 119.4+/-7.13 and 91.4+/-6.37 macropinosomes respectively (p<0.05). CONCLUSIONS/SIGNIFICANCE SNX1, SNX5, SNX9, SNX18, and SNX33 were all found to elevate macropinosome formation and (with the exception of SNX33) associate with early-stage macropinosomes. Moreover the effects of SNX9 and SNX18 overexpression in elevating macropinocytosis is likely to be synergistic with the increase in PI(3,4,5)P(3) levels, which is known to accumulate on the cell surface and early-stage macropinocytic cups. Together these findings represent the first systematic functional study into the impact of the SNX-PX-BAR family on macropinocytosis.
Collapse
Affiliation(s)
- Jack T. H. Wang
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Markus C. Kerr
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Seetha Karunaratne
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Angela Jeanes
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
| | - Rohan D. Teasdale
- Institute for Molecular Bioscience and Australia Research Council (ARC) Centre of Excellence in Bioinformatics, The University of Queensland, St. Lucia, Brisbane, Australia
- * E-mail:
| |
Collapse
|
27
|
Liu H, Li W, Ahmad M, Miller TM, Rose ME, Poloyac SM, Uechi G, Balasubramani M, Hickey RW, Graham SH. Modification of ubiquitin-C-terminal hydrolase-L1 by cyclopentenone prostaglandins exacerbates hypoxic injury. Neurobiol Dis 2010; 41:318-28. [PMID: 20933087 DOI: 10.1016/j.nbd.2010.09.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 09/03/2010] [Accepted: 09/29/2010] [Indexed: 11/19/2022] Open
Abstract
Cyclopentenone prostaglandins (CyPGs), such as 15-deoxy-Δ(12,14) -prostaglandin J(2) (15d-PGJ(2)), are active prostaglandin metabolites exerting a variety of biological effects that may be important in the pathogenesis of neurological diseases. Ubiquitin-C-terminal hydrolase L1 (UCH-L1) is a brain specific deubiquitinating enzyme whose aberrant function has been linked to neurodegenerative disorders. We report that [15d-PGJ(2)] detected by quadrapole mass spectrometry (MS) increases in rat brain after temporary focal ischemia, and that treatment with 15d-PGJ(2) induces accumulation of ubiquitinated proteins and exacerbates cell death in normoxic and hypoxic primary neurons. 15d-PGJ(2) covalently modifies UCH-L1 and inhibits its hydrolase activity. Pharmacologic inhibition of UCH-L1 exacerbates hypoxic neuronal death while transduction with a TAT-UCH-L1 fusion protein protects neurons from hypoxia. These studies indicate that UCH-L1 function is important in hypoxic neuronal death and that excessive production of CyPGs after stroke may exacerbate ischemic injury by modification and inhibition of UCH-L1.
Collapse
Affiliation(s)
- Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare Center, PA 15206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Affiliation(s)
- Naomi Attar
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|
29
|
Koharudin LMI, Furey W, Liu H, Liu YJ, Gronenborn AM. The phox domain of sorting nexin 5 lacks phosphatidylinositol 3-phosphate (PtdIns(3)P) specificity and preferentially binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). J Biol Chem 2009; 284:23697-707. [PMID: 19553671 PMCID: PMC2749144 DOI: 10.1074/jbc.m109.008995] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 06/08/2009] [Indexed: 11/06/2022] Open
Abstract
Subcellular retrograde transport of cargo receptors from endosomes to the trans-Golgi network is critically involved in a broad range of physiological and pathological processes and highly regulated by a genetically conserved heteropentameric complex, termed retromer. Among the retromer components identified in mammals, sorting nexin 5 and 1 (SNX5; SNX1) have recently been found to interact, possibly controlling the membrane binding specificity of the complex. To elucidate how the unique sequence features of the SNX5 phox domain (SNX5-PX) influence retrograde transport, we have determined the SNX5-PX structure by NMR and x-ray crystallography at 1.5 A resolution. Although the core fold of SNX5-PX resembles that of other known PX domains, we found novel structural features exclusive to SNX5-PX. It is most noteworthy that in SNX5-PX, a long helical hairpin is added to the core formed by a new alpha2'-helix and a much longer alpha3-helix. This results in a significantly altered overall shape of the protein. In addition, the unique double PXXP motif is tightly packed against the rest of the protein, rendering this part of the structure compact, occluding parts of the putative phosphatidylinositol (PtdIns) binding pocket. The PtdIns binding and specificity of SNX5-PX was evaluated by NMR titrations with eight different PtdIns and revealed that SNX5-PX preferentially and specifically binds to phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). The distinct structural and PtdIns binding characteristics of SNX5-PX impart specific properties on SNX5, influencing retromer-mediated regulation of retrograde trafficking of transmembrane cargo receptors.
Collapse
Affiliation(s)
| | - William Furey
- Pharmacology and Chemical Biology
- the Biocrystallography Laboratory, Veterans Affairs Medical Center, Pittsburgh, Pennsylvania 15240
| | | | - Yong-Jian Liu
- Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260 and
| | | |
Collapse
|
30
|
Function and dysfunction of the PI system in membrane trafficking. EMBO J 2008; 27:2457-70. [PMID: 18784754 PMCID: PMC2536629 DOI: 10.1038/emboj.2008.169] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 08/05/2008] [Indexed: 02/01/2023] Open
Abstract
The phosphoinositides (PIs) function as efficient and finely tuned switches that control the assembly–disassembly cycles of complex molecular machineries with key roles in membrane trafficking. This important role of the PIs is mainly due to their versatile nature, which is in turn determined by their fast metabolic interconversions. PIs can be tightly regulated both spatially and temporally through the many PI kinases (PIKs) and phosphatases that are distributed throughout the different intracellular compartments. In spite of the enormous progress made in the past 20 years towards the definition of the molecular details of PI–protein interactions and of the regulatory mechanisms of the individual PIKs and phosphatases, important issues concerning the general principles of the organisation of the PI system and the coordination of the different PI-metabolising enzymes remain to be addressed. The answers should come from applying a systems biology approach to the study of the PI system, through the integration of analyses of the protein interaction data of the PI enzymes and the PI targets with those of the ‘phenomes' of the genetic diseases that involve these PI-metabolising enzymes.
Collapse
|
31
|
Hara S, Kiyokawa E, Iemura SI, Natsume T, Wassmer T, Cullen PJ, Hiai H, Matsuda M. The DHR1 domain of DOCK180 binds to SNX5 and regulates cation-independent mannose 6-phosphate receptor transport. Mol Biol Cell 2008; 19:3823-35. [PMID: 18596235 DOI: 10.1091/mbc.e08-03-0314] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
DOCK180 is the archetype of the DOCK180-family guanine nucleotide exchange factor for small GTPases Rac1 and Cdc42. DOCK180-family proteins share two conserved domains, called DOCK homology region (DHR)-1 and -2. Although the function of DHR2 is to activate Rac1, DHR1 is required for binding to phosphoinositides. To better understand the function of DHR1, we searched for its binding partners by direct nanoflow liquid chromatography/tandem mass spectrometry, and we identified sorting nexins (SNX) 1, 2, 5, and 6, which make up a multimeric protein complex mediating endosome-to-trans-Golgi-network (TGN) retrograde transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Among these SNX proteins, SNX5 was coimmunoprecipitated with DOCK180 most efficiently. In agreement with this observation, DOCK180 colocalized with SNX5 at endosomes. The RNA interference-mediated knockdowns of SNX5 and DOCK180, but not Rac1, resulted in the redistribution of CI-MPR from TGN to endosomes. Furthermore, expression of the DOCK180 DHR1 domain was sufficient to restore the perturbed CI-MPR distribution in DOCK180 knockdown cells. These data suggest that DOCK180 regulates CI-MPR trafficking via SNX5 and that this function is independent of its guanine nucleotide exchange factor activity toward Rac1.
Collapse
Affiliation(s)
- Shigeo Hara
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cullen PJ. Endosomal sorting and signalling: an emerging role for sorting nexins. Nat Rev Mol Cell Biol 2008; 9:574-82. [DOI: 10.1038/nrm2427] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Retromer. Curr Opin Cell Biol 2008; 20:427-36. [PMID: 18472259 DOI: 10.1016/j.ceb.2008.03.009] [Citation(s) in RCA: 392] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Revised: 03/20/2008] [Accepted: 03/20/2008] [Indexed: 01/17/2023]
Abstract
The retromer is a heteropentameric complex that associates with the cytosolic face of endosomes and mediates retrograde transport of transmembrane cargo from endosomes to the trans-Golgi network. The mammalian retromer complex comprises a sorting nexin dimer composed of a still undefined combination of SNX1, SNX2, SNX5 and SNX6, and a cargo-recognition trimer composed of Vps26, Vps29 and Vps35. The SNX subunits contain PX and BAR domains that allow binding to PI(3)P enriched, highly curved membranes of endosomal vesicles and tubules, while Vps26, Vps29 and Vps35 have arrestin, phosphoesterase and alpha-solenoid folds, respectively. Recent studies have implicated retromer in a broad range of physiological, developmental and pathological processes, underscoring the critical nature of retrograde transport mediated by this complex.
Collapse
|
34
|
Colgan L, Liu H, Huang SY, Liu YJ. Dileucine motif is sufficient for internalization and synaptic vesicle targeting of vesicular acetylcholine transporter. Traffic 2008; 8:512-22. [PMID: 17451554 DOI: 10.1111/j.1600-0854.2007.00555.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Efficient cholinergic transmission requires accurate targeting of vesicular acetylcholine transporter (VAChT) to synaptic vesicles (SVs). However, the signals that regulate this vesicular targeting are not well characterized. Although previous studies suggest that the C-terminus of the transporter is required for its SV targeting, it is not clear whether this region is sufficient for this process. Furthermore, a synaptic vesicle-targeting motif (SVTM) within this sequence remains to be identified. Here we use a chimeric protein, TacA, between an unrelated plasma membrane protein, Tac, and the C-terminus of VAChT to demonstrate the sufficiency of the C-terminus for targeting to synaptic vesicle-like vesicles (SVLVs) in PC12 cells. TacA shows colocalization and cosedimentation with the SV marker synaptophysin. Deletion mutation analysis of TacA demonstrates that a short, dileucine motif-containing sequence is required and sufficient to direct this targeting. Dialanine mutation analysis within this sequence suggests indistinguishable signals for both internalization and SV sorting. Using additional chimeras as controls, we confirm the specificity of this region for SVLVs targeting. Therefore, we suggest that the dileucine-containing motif is sufficient as a dual signal for both internalization and SV targeting during VAChT trafficking.
Collapse
Affiliation(s)
- Lesley Colgan
- Department of Neurology, University of Pittsburgh School of Medicine, S512 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
35
|
Champine PJ, Michaelson J, Weimer BC, Welch DR, DeWald DB. Microarray analysis reveals potential mechanisms of BRMS1-mediated metastasis suppression. Clin Exp Metastasis 2007; 24:551-65. [PMID: 17896182 PMCID: PMC2214901 DOI: 10.1007/s10585-007-9092-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Accepted: 07/27/2007] [Indexed: 12/14/2022]
Abstract
We used Affymetrix microarrays to compare gene expression profiles of the metastatic parental breast cancer cell line MDA-MB-435 (435) and the non-metastatic daughter cell line created by the stable expression of the BReast cancer Metastasis Suppressor 1 (BRMS1) gene in 435 cells, MDA-MB-435-BRMS1 (435/BRMS1). Analysis of microarray data provided insight into some of the potential mechanisms by which BRMS1 inhibits tumor formation at secondary sites. Furthermore, due to the importance of the microenvironment, we also examined gene expression under different growth conditions (i.e., plus or minus serum). Expression of 565 genes was significantly (adjusted P-value <0.05) altered regardless of in vitro growth conditions. BRMS1 expression significantly increased multiple major histocompatability complex (MHC) genes and significantly decreased expression of several genes associated with protein localization and secretion. The pattern of gene expression associated with BRMS1 expression suggests that metastasis suppression may be mediated by enhanced immune recognition, altered transport, and/or secretion of metastasis-associated proteins.
Collapse
Affiliation(s)
- Patricia J. Champine
- Center for Integrated BioSystems, Utah State University, Logan, Utah 84322-4700, USA
| | - Jacob Michaelson
- Center for Integrated BioSystems, Utah State University, Logan, Utah 84322-4700, USA
| | - Bart C. Weimer
- Center for Integrated BioSystems, Utah State University, Logan, Utah 84322-4700, USA
| | - Danny R. Welch
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- National Foundation for Cancer Research, Center for Metastasis Research, Logan, Utah 84322-5305, USA
| | - Daryll B. DeWald
- National Foundation for Cancer Research, Center for Metastasis Research, Logan, Utah 84322-5305, USA
- Department of Biology, Utah State University, Logan, Utah 84322-5305, USA
- Correspondence to: D.B. DeWald, Department of Biology and Center for Integrated BioSystems, Utah State University, Logan, Utah 84322-5305 (435)-797-1909
| |
Collapse
|
36
|
Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ. A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 2006; 120:45-54. [PMID: 17148574 DOI: 10.1242/jcs.03302] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mammalian retromer is a multimeric protein complex involved in mediating endosome-to-trans-Golgi-network retrograde transport of the cation-independent mannose-6-phosphate receptor. The retromer is composed of two subcomplexes, one containing SNX1 and forming a membrane-bound coat, the other comprising VPS26, VPS29 and VPS35 and being cargo-selective. In yeast, an additional sorting nexin--Vps17p--is a component of the membrane bound coat. It remains unclear whether the mammalian retromer requires a functional equivalent of Vps17p. Here, we have used an RNAi loss-of-function screen to examine whether any of the other 30 mammalian sorting nexins are required for retromer-mediated endosome-to-trans-Golgi-network retrieval of the cation-independent mannose-6-phosphate receptor. Using this screen, we identified two proteins, SNX5 and SNX6, that, when suppressed, induced a phenotype similar to that observed upon suppression of known retromer components. Whereas SNX5 and SNX6 colocalised with SNX1 on early endosomes, in immunoprecipitation experiments only SNX6 appeared to exist in a complex with SNX1. Interestingly, suppression of SNX5 and/or SNX6 resulted in a significant loss of SNX1, an effect that seemed to result from post-translational regulation of the SNX1 level. Such data suggest that SNX1 and SNX6 exist in a stable, endosomally associated complex that is required for retromer-mediated retrieval of the cation-independent mannose-6-phosphate receptor. SNX5 and SNX6 may therefore constitute functional equivalents of Vps17p in mammals.
Collapse
Affiliation(s)
- Thomas Wassmer
- The Henry Wellcome Integrated Signalling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | |
Collapse
|
37
|
Runyan CE, Poncelet AC, Schnaper HW. TGF-beta receptor-binding proteins: complex interactions. Cell Signal 2006; 18:2077-88. [PMID: 16824734 DOI: 10.1016/j.cellsig.2006.05.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 05/11/2006] [Indexed: 01/06/2023]
Abstract
Members of the Smad protein family are fundamental downstream mediators of TGF-beta signals. However, the basic, linear Smad signaling pathway is unlikely to be the sole contributor to the plethora of cell type-specific TGF-beta responses. Investigators have identified a number of molecules that interact with the TGF-beta receptors (TbetaRs) and may explain, at least in part, the tight regulation of TGF-beta effects. Understanding these TbetaR-interacting molecules is thus a matter of great potential significance for elucidating TGF-beta-family signal transduction. The present article reviews our current understanding of the roles and mechanisms of action of this relatively understudied group of molecules.
Collapse
Affiliation(s)
- Constance E Runyan
- Department of Pediatrics, Feinberg School of Medicine, Chicago, IL, USA.
| | | | | |
Collapse
|