1
|
Yang Z, Tan Q, Cheng D, Zhang L, Zhang J, Gu EW, Fang W, Lu X, Liu X. The Changes of Intrinsic Excitability of Pyramidal Neurons in Anterior Cingulate Cortex in Neuropathic Pain. Front Cell Neurosci 2018; 12:436. [PMID: 30519160 PMCID: PMC6258991 DOI: 10.3389/fncel.2018.00436] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 12/13/2022] Open
Abstract
To find satisfactory treatment strategies for neuropathic pain syndromes, the cellular mechanisms should be illuminated. Central sensitization is a generator of pain hypersensitivity, and is mainly reflected in neuronal hyperexcitability in pain pathway. Neuronal excitability depends on two components, the synaptic inputs and the intrinsic excitability. Previous studies have focused on the synaptic plasticity in different forms of pain. But little is known about the changes of neuronal intrinsic excitability in neuropathic pain. To address this question, whole-cell patch clamp recordings were performed to study the synaptic transmission and neuronal intrinsic excitability 1 week after spared nerve injury (SNI) or sham operation in male C57BL/6J mice. We found increased spontaneous excitatory postsynaptic currents (sEPSC) frequency in layer II/III pyramidal neurons of anterior cingulate cortex (ACC) from mice with neuropathic pain. Elevated intrinsic excitability of these neurons after nerve injury was also picked up, which was reflected in gain of input-output curve, inter-spike interval (ISI), spike threshold and Refractory period (RP). Besides firing rate related to neuronal intrinsic excitability, spike timing also plays an important role in neural information processing. The precision of spike timing measured by standard deviation of spike timing (SDST) was decreased in neuropathic pain state. The electrophysiological studies revealed the elevated intrinsic excitation in layer II/III pyramidal neurons of ACC in mice with neuropathic pain, which might contribute to central excitation.
Collapse
Affiliation(s)
- Zhilai Yang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Qilian Tan
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Dan Cheng
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Lei Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Jiqian Zhang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Er-Wei Gu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Weiping Fang
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xianfu Lu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xuesheng Liu
- Department of Anesthesiology, First Affiliated Hospital, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
PKC and CaMK-II inhibitions coordinately rescue ischemia-induced GABAergic neuron dysfunction. Oncotarget 2018; 8:39309-39322. [PMID: 28445148 PMCID: PMC5503615 DOI: 10.18632/oncotarget.16947] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia leads to neuronal death for stroke, in which the imbalance between glutamatergic neurons and GABAergic neurons toward neural excitotoxicity is presumably involved. GABAergic neurons are vulnerable to pathological factors and impaired in an early stage of ischemia. The rescue of GABAergic neurons is expected to be the strategy to reserve ischemic neuronal impairment. As protein kinase C (PKC) and calmodulin-dependent protein kinase II (CaMK-II) are activated during ischemia, we have investigated whether the inhibitions of these kinases rescue the ischemic impairment of cortical GABAergic neurons. The functions of GABAergic neurons were analyzed by whole-cell recording in the cortical slices during ischemia and in presence of 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (CaMK-II inhibitor) and chelerythrine chloride (PKC inhibitor). Our results indicate that PKC inhibitor or CaMK-II inhibitor partially prevents ischemia-induced functional deficits of cortical GABAergic neurons. Moreover, the combination of PKC and CaMK-II inhibitors synergistically reverses this ischemia-induced deficit of GABAergic neurons. One of potential therapeutic strategies for ischemic stroke may be to rescue the ischemia-induced deficit of cortical GABAergic neurons by inhibiting PKC and CaMK-II.
Collapse
|
3
|
Lu W, Feng J, Wen B, Wang K, Wang JH. Activity-induced spontaneous spikes in GABAergic neurons suppress seizure discharges: an implication of computational modeling. Oncotarget 2018; 8:32384-32397. [PMID: 28427143 PMCID: PMC5464796 DOI: 10.18632/oncotarget.15660] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 02/13/2017] [Indexed: 11/28/2022] Open
Abstract
Background Epilepsy, a prevalent neurological disorder, appears self-termination. The endogenous mechanism for seizure self-termination remains to be addressed in order to develop new strategies for epilepsy treatment. We aim to examine the role of activity-induced spontaneous spikes at GABAergic neurons as an endogenous mechanism in the seizure self-termination. Methods and Results Neuronal spikes were induced by depolarization pulses at cortical GABAergic neurons from temporal lobe epilepsy patients and mice, in which some of these neurons fired activity-induced spontaneous spikes. Neural networks including excitatory and inhibitory neurons were computationally constructed, and their functional properties were based on our studies from whole-cell recordings. With the changes in the portion and excitability of inhibitory neurons that generated activity-induced spontaneous spike, the efficacies to suppress synchronous seizure activity were analyzed, such as its onset time, decay slope and spike frequency. The increases in the proportion and excitability of inhibitory neurons that generated activity-induced spontaneous spikes effectively suppressed seizure activity in neural networks. These factors synergistically strengthened the efficacy of seizure activity suppression. Conclusion Our study supports a notion that activity-induced spontaneous spikes in GABAergic neurons may be an endogenous mechanism for seizure self-termination. A potential therapeutic strategy for epilepsy is to upregulate the cortical inhibitory neurons that generate activity-induced spontaneous spikes.
Collapse
Affiliation(s)
- Wei Lu
- Qingdao University, School of Pharmacy, Qingdao, Shandong, China
| | - Jing Feng
- Qingdao University, School of Pharmacy, Qingdao, Shandong, China.,State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bo Wen
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kewei Wang
- Qingdao University, School of Pharmacy, Qingdao, Shandong, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Qingdao, Shandong, China.,State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Zhu Z, Wang G, Ma K, Cui S, Wang JH. GABAergic neurons in nucleus accumbens are correlated to resilience and vulnerability to chronic stress for major depression. Oncotarget 2018; 8:35933-35945. [PMID: 28415589 PMCID: PMC5482628 DOI: 10.18632/oncotarget.16411] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/14/2017] [Indexed: 11/30/2022] Open
Abstract
Background Major depression, persistent low mood, is one of common psychiatric diseases. Chronic stressful life is believed to be a major risk factor that leads to dysfunctions of the limbic system. However, a large number of the individuals with experiencing chronic stress do not suffer from major depression, called as resilience. Endogenous mechanisms underlying neuronal invulnerability to chronic stress versus major depression are largely unknown. As GABAergic neurons are vulnerable to chronic stress and their impairments is associated with major depression, we have examined whether the invulnerability of GABAergic neurons in the limbic system is involved in resilience. Results GABAergic neurons in the nucleus accumbens from depression-like mice induced by chronic unpredictable mild stress appear the decreases in their GABA release, spiking capability and excitatory input reception, compared with those in resilience mice. The levels of decarboxylase and vesicular GABA transporters decrease in depression-like mice, but not resilience. Materials and Methods Mice were treated by chronic unpredictable mild stress for three weeks. Depression-like behaviors or resilience was confirmed by seeing whether their behaviors change significantly in sucrose preference, Y-maze and forced swimming tests. Mice from controls as well as depression and resilience in response to chronic unpredictable mild stress were studied in terms of GABAergic neuron activity in the nucleus accumbens by cell electrophysiology and protein chemistry. Conclusions The impairment of GABAergic neurons in the nucleus accumbens is associated with major depression. The invulnerability of GABAergic neurons to chronic stress may be one of cellular mechanisms for the resilience to chronic stress.
Collapse
Affiliation(s)
- Zhaoming Zhu
- Qingdao University, School of Pharmacy, Qingdao Shandong, 266021, China
| | - Guangyan Wang
- Qingdao University, School of Pharmacy, Qingdao Shandong, 266021, China
| | - Ke Ma
- Qingdao University, School of Pharmacy, Qingdao Shandong, 266021, China
| | - Shan Cui
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Hui Wang
- Qingdao University, School of Pharmacy, Qingdao Shandong, 266021, China.,State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
More sensitivity of cortical GABAergic neurons than glutamatergic neurons in response to acidosis. Neuroreport 2018; 27:610-6. [PMID: 27116702 DOI: 10.1097/wnr.0000000000000585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Acidosis impairs brain functions. Neuron-specific mechanisms underlying acidosis-induced brain dysfunction remain elusive. We studied the sensitivity of cortical GABAergic neurons and glutamatergic neurons to acidosis by whole-cell recording in brain slices. The acidification to the neurons was induced by perfusing artificial cerebral spinal fluid with lower pH. This acidification impairs excitability and synaptic transmission in the glutamatergic and GABAergic neurons. Acidosis impairs spiking capacity in the GABAergic neurons more than in the glutamatergic neurons. Acidosis also strengthens glutamatergic synaptic transmission and attenuates GABAergic synaptic transmission on the GABAergic neurons more than the glutamatergic neurons, which results in the functional impairment of these GABAergic neurons. This acidosis-induced dysfunction predominantly in the cortical GABAergic neurons drives the homeostasis of neuronal networks toward overexcitation and exacerbates neuronal impairment.
Collapse
|
6
|
Piriform cortical glutamatergic and GABAergic neurons express coordinated plasticity for whisker-induced odor recall. Oncotarget 2017; 8:95719-95740. [PMID: 29221161 PMCID: PMC5707055 DOI: 10.18632/oncotarget.21207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/17/2017] [Indexed: 12/15/2022] Open
Abstract
Neural plasticity occurs in learning and memory. Coordinated plasticity at glutamatergic and GABAergic neurons during memory formation remains elusive, which we investigate in a mouse model of associative learning by cellular imaging and electrophysiology. Paired odor and whisker stimulations lead to whisker-induced olfaction response. In mice that express this cross-modal memory, the neurons in the piriform cortex are recruited to encode newly acquired whisker signal alongside innate odor signal, and their response patterns to these associated signals are different. There are emerged synaptic innervations from barrel cortical neurons to piriform cortical neurons from these mice. These results indicate the recruitment of associative memory cells in the piriform cortex after associative memory. In terms of the structural and functional plasticity at these associative memory cells in the piriform cortex, glutamatergic neurons and synapses are upregulated, GABAergic neurons and synapses are downregulated as well as their mutual innervations are refined in the coordinated manner. Therefore, the associated activations of sensory cortices triggered by their input signals induce the formation of their mutual synapse innervations, the recruitment of associative memory cells and the coordinated plasticity between the GABAergic and glutamatergic neurons, which work for associative memory cells to encode cross-modal associated signals in their integration, associative storage and distinguishable retrieval.
Collapse
|
7
|
Liu Y, Ge R, Zhao X, Guo R, Huang L, Zhao S, Guan S, Lu W, Cui S, Wang S, Wang JH. Activity strengths of cortical glutamatergic and GABAergic neurons are correlated with transgenerational inheritance of learning ability. Oncotarget 2017; 8:112401-112416. [PMID: 29348834 PMCID: PMC5762519 DOI: 10.18632/oncotarget.19918] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/26/2017] [Indexed: 11/25/2022] Open
Abstract
The capabilities of learning and memory in parents are presumably transmitted to their offsprings, in which genetic codes and epigenetic regulations are thought as molecular bases. As neural plasticity occurs during memory formation as cellular mechanism, we aim to examine the correlation of activity strengths at cortical glutamatergic and GABAergic neurons to the transgenerational inheritance of learning ability. In a mouse model of associative learning, paired whisker and odor stimulations led to odorant-induced whisker motion, whose onset appeared fast (high learning efficiency, HLE) or slow (low learning efficiency, LLE). HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice were cross-mated to have their first generation of offsprings, filials (F1). The onset of odorant-induced whisker motion appeared a sequence of high-to-low efficiency in three groups of F1 mice that were from HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice. Activities related to glutamatergic neurons in barrel cortices appeared a sequence of high-to-low strength in these F1 mice from HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice. Activities related to GABAergic neurons in barrel cortices appeared a sequence of low-to-high strength in these F1 mice from HLE male and female mice, HLE female and LLE male mice as well as HLE male and LLE female mice. Neuronal activity strength was linearly correlated to learning efficiency among three groups. Thus, the coordinated activities at glutamatergic and GABAergic neurons may constitute the cellular basis for the transgenerational inheritance of learning ability.
Collapse
Affiliation(s)
- Yulong Liu
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Xin Zhao
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Rui Guo
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Sudong Guan
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China
| | - Wei Lu
- Qingdao University, School of Pharmacy, Shandong 266021, China
| | - Shan Cui
- Institute of Biophysics and University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shirlene Wang
- Department of Psychiatry, Northwestern University, Feinberg School of Medicine, Chicago, IL 60091, USA
| | - Jin-Hui Wang
- Department of Pathophysiology, Bengbu Medical College, Anhui 233000, China.,Institute of Biophysics and University of Chinese Academy of Sciences, Beijing 100101, China.,Qingdao University, School of Pharmacy, Shandong 266021, China
| |
Collapse
|
8
|
Yang Z, Chen N, Ge R, Qian H, Wang JH. Functional compatibility between Purkinje cell axon branches and their target neurons in the cerebellum. Oncotarget 2017; 8:72424-72437. [PMID: 29069799 PMCID: PMC5641142 DOI: 10.18632/oncotarget.19770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023] Open
Abstract
A neuron sprouts an axon, and its branches to innervate many target neurons that are divergent in their functions. In order to efficiently regulate the diversified cells, the axon branches should differentiate functionally to be compatible with their target neurons, i.e., a function compatibility between presynaptic and postsynaptic partners. We have examined this hypothesis by using electrophysiological method in the cerebellum, in which the main axon of Purkinje cell projected to deep nucleus cells and the recurrent axons innervated the adjacent Purkinje cells. The fidelity of spike propagation is superior in the recurrent branches than the main axon. The capabilities of encoding spikes and processing GABAergic inputs are advanced in Purkinje cells versus deep nucleus cells. The functional differences among Purkinje's axonal branches and their postsynaptic neurons are preset by the variable dynamics of their voltage-gated sodium channels. In addition, activity strengths between presynaptic and postsynaptic partners are proportionally correlated, i.e., active axonal branches innervate active target neurons, or vice versa. The physiological impact of the functional compatibility is to make the neurons in their circuits to be activated appropriately. In conclusion, each cerebellar Purkinje cell sprouts the differentiated axon branches to be compatible with the diversified target cells in their functions, in order to construct the homeostatic and efficient units for their coordinated activity in neural circuits.
Collapse
Affiliation(s)
- Zhilai Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Na Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Rongjing Ge
- Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| | - Hao Qian
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.,Qingdao University, School of Pharmacy, Shandong 266021, China.,Department of Physiology, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
9
|
Zhao X, Huang L, Guo R, Liu Y, Zhao S, Guan S, Ge R, Cui S, Wang S, Wang JH. Coordinated Plasticity among Glutamatergic and GABAergic Neurons and Synapses in the Barrel Cortex Is Correlated to Learning Efficiency. Front Cell Neurosci 2017; 11:221. [PMID: 28798668 PMCID: PMC5526921 DOI: 10.3389/fncel.2017.00221] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/12/2017] [Indexed: 01/29/2023] Open
Abstract
Functional plasticity at cortical synapses and neurons is presumably associated with learning and memory. Additionally, coordinated refinement between glutamatergic and GABAergic neurons occurs in associative memory. If these assumptions are present, neuronal plasticity strength and learning efficiency should be correlated. We have examined whether neuronal plasticity strength and learning efficiency are quantitatively correlated in a mouse model of associative learning. Paired whisker and odor stimulations in mice induce odorant-induced whisker motions. The fully establishment of this associative memory appears fast and slow, which are termed as high learning efficiency and low learning efficiency, respectively. In the study of cellular mechanisms underlying this differential learning efficiency, we have compared the strength of neuronal plasticity in the barrel cortices that store associative signals from the mice with high vs. low learning efficiencies. Our results indicate that the levels of learning efficiency are linearly correlated with the upregulated strengths of excitatory synaptic transmission on glutamatergic neurons and their excitability, as well as the downregulated strengths of GABAergic neurons' excitability, their excitatory synaptic inputs and inhibitory synaptic outputs in layers II~III of barrel cortices. The correlations between learning efficiency in associative memory formation and coordinated plasticity at cortical glutamatergic and GABAergic neurons support the notion that the plasticity of associative memory cells is a basis for memory strength.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Rui Guo
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Yulong Liu
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Sudong Guan
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China
| | - Shan Cui
- Laboratory of Brain and Cognitive Science, Institute of Biophysics and University of Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China
| | - Shirlene Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of MedicineChicago, IL, United States
| | - Jin-Hui Wang
- Department of Pathophysiology, Bengbu Medical CollegeBengbu, China.,Laboratory of Brain and Cognitive Science, Institute of Biophysics and University of Chinese Academy of SciencesBeijing, China.,University of Chinese Academy of SciencesBeijing, China.,School of Pharmacy, Qingdao UniversityQingdao, China
| |
Collapse
|
10
|
Guo R, Ge R, Zhao S, Liu Y, Zhao X, Huang L, Guan S, Lu W, Cui S, Wang S, Wang JH. Associative Memory Extinction Is Accompanied by Decayed Plasticity at Motor Cortical Neurons and Persistent Plasticity at Sensory Cortical Neurons. Front Cell Neurosci 2017; 11:168. [PMID: 28659764 PMCID: PMC5469894 DOI: 10.3389/fncel.2017.00168] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/31/2017] [Indexed: 01/04/2023] Open
Abstract
Associative memory is essential for cognition, in which associative memory cells and their plasticity presumably play important roles. The mechanism underlying associative memory extinction vs. maintenance remains unclear, which we have studied in a mouse model of cross-modal associative learning. Paired whisker and olfaction stimulations lead to a full establishment of odorant-induced whisker motion in training day 10, which almost disappears if paired stimulations are not given in a week, and then recovers after paired stimulation for an additional day. In mice that show associative memory, extinction and recovery, we have analyzed the dynamical plasticity of glutamatergic neurons in layers II–III of the barrel cortex and layers IV–V of the motor cortex. Compared with control mice, the rate of evoked spikes as well as the amplitude and frequency of excitatory postsynaptic currents increase, whereas the amplitude and frequency of inhibitory postsynaptic currents (IPSC) decrease at training day 10 in associative memory mice. Without paired training for a week, these plastic changes are persistent in the barrel cortex and decayed in the motor cortex. If paired training is given for an additional day to revoke associative memory, neuronal plasticity recovers in the motor cortex. Our study indicates persistent neuronal plasticity in the barrel cortex for cross-modal memory maintenance as well as the dynamical change of neuronal plasticity in the motor cortex for memory retrieval and extinction. In other words, the sensory cortices are essential for long-term memory while the behavior-related cortices with the inability of memory retrieval are correlated to memory extinction.
Collapse
Affiliation(s)
- Rui Guo
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Rongjing Ge
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Yulong Liu
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Xin Zhao
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Sodong Guan
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China
| | - Wei Lu
- School of Pharmacy, Qingdao UniversityQingdao, China
| | - Shan Cui
- Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China
| | - Shirlene Wang
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern UniversityChicago, IL, United States
| | - Jin-Hui Wang
- Department of Pathophysiology, Bengbu Medical CollegeAnhui, China.,School of Pharmacy, Qingdao UniversityQingdao, China.,Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China.,Department of Biology, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
11
|
Gao Z, Chen L, Fan R, Lu W, Wang D, Cui S, Huang L, Zhao S, Guan S, Zhu Y, Wang JH. Associations of Unilateral Whisker and Olfactory Signals Induce Synapse Formation and Memory Cell Recruitment in Bilateral Barrel Cortices: Cellular Mechanism for Unilateral Training Toward Bilateral Memory. Front Cell Neurosci 2016; 10:285. [PMID: 28018178 PMCID: PMC5160353 DOI: 10.3389/fncel.2016.00285] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022] Open
Abstract
Somatosensory signals and operative skills learned by unilateral limbs can be retrieved bilaterally. In terms of cellular mechanism underlying this unilateral learning toward bilateral memory, we hypothesized that associative memory cells in bilateral cortices and synapse innervations between them were produced. In the examination of this hypothesis, we have observed that paired unilateral whisker and odor stimulations led to odorant-induced whisker motions in bilateral sides, which were attenuated by inhibiting the activity of barrel cortices. In the mice that showed bilateral cross-modal responses, the neurons in both sides of barrel cortices became to encode this new odor signal alongside the innate whisker signal. Axon projections and synapse formations from the barrel cortex, which was co-activated with the piriform cortex, toward its contralateral barrel cortex (CBC) were upregulated. Glutamatergic synaptic transmission in bilateral barrel cortices was upregulated and GABAergic synaptic transmission was downregulated. The associative activations of the sensory cortices facilitate new axon projection, glutamatergic synapse formation and GABAergic synapse downregulation, which drive the neurons to be recruited as associative memory cells in the bilateral cortices. Our data reveal the productions of associative memory cells and synapse innervations in bilateral sensory cortices for unilateral training toward bilateral memory.
Collapse
Affiliation(s)
- Zilong Gao
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Lei Chen
- Department of Pathophysiology, Bengbu Medical College Bengbu, China
| | - Ruicheng Fan
- Department of Pathophysiology, Bengbu Medical College Bengbu, China
| | - Wei Lu
- School of Pharmacy, Qingdao University Shandong, China
| | - Dangui Wang
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences Beijing, China
| | - Shan Cui
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences Beijing, China
| | - Li Huang
- Department of Pathophysiology, Bengbu Medical College Bengbu, China
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College Bengbu, China
| | - Sudong Guan
- Department of Pathophysiology, Bengbu Medical College Bengbu, China
| | - Yan Zhu
- Department of Pathophysiology, Bengbu Medical College Bengbu, China
| | - Jin-Hui Wang
- State Key Lab of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China; Department of Pathophysiology, Bengbu Medical CollegeBengbu, China; School of Pharmacy, Qingdao UniversityShandong, China
| |
Collapse
|
12
|
Coordinated Plasticity between Barrel Cortical Glutamatergic and GABAergic Neurons during Associative Memory. Neural Plast 2016; 2016:5648390. [PMID: 28070425 PMCID: PMC5192352 DOI: 10.1155/2016/5648390] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/16/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022] Open
Abstract
Neural plasticity is associated with memory formation. The coordinated refinement and interaction between cortical glutamatergic and GABAergic neurons remain elusive in associative memory, which we examine in a mouse model of associative learning. In the mice that show odorant-induced whisker motion after pairing whisker and odor stimulations, the barrel cortical glutamatergic and GABAergic neurons are recruited to encode the newly learnt odor signal alongside the innate whisker signal. These glutamatergic neurons are functionally upregulated, and GABAergic neurons are refined in a homeostatic manner. The mutual innervations between these glutamatergic and GABAergic neurons are upregulated. The analyses by high throughput sequencing show that certain microRNAs related to regulating synapses and neurons are involved in this cross-modal reflex. Thus, the coactivation of the sensory cortices through epigenetic processes recruits their glutamatergic and GABAergic neurons to be the associative memory cells as well as drive their coordinated refinements toward the optimal state for the storage of the associated signals.
Collapse
|
13
|
Xu A, Cui S, Wang JH. Incoordination among Subcellular Compartments Is Associated with Depression-Like Behavior Induced by Chronic Mild Stress. Int J Neuropsychopharmacol 2016; 19:pyv122. [PMID: 26506857 PMCID: PMC4886664 DOI: 10.1093/ijnp/pyv122] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/16/2015] [Accepted: 10/23/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Major depressive disorder is characterized as persistent low mood. A chronically stressful life in genetically susceptible individuals is presumably the major etiology that leads to dysfunctions of monoamine and hypothalamus-pituitary-adrenal axis. These pathogenic factors cause neuron atrophy in the limbic system for major depressive disorder. Cell-specific pathophysiology is unclear, so we investigated prelimbic cortical GABAergic neurons and their interaction with glutamatergic neurons in depression-like mice. METHODS Mice were treated with chronic unpredictable mild stress for 3 weeks until they expressed depression-like behaviors confirmed by sucrose preference, Y-maze, and forced swimming tests. The structures and functions of GABAergic and glutamatergic units in prelimbic cortices were studied by cell imaging and electrophysiology in chronic unpredictable mild stress-induced depression mice vs controls. RESULTS In depression-like mice, prelimbic cortical GABAergic neurons show incoordination among the subcellular compartments, such as decreased excitability and synaptic outputs as well as increased reception from excitatory inputs. GABAergic synapses on glutamatergic cells demonstrate decreased presynaptic innervation and increased postsynaptic responsiveness. CONCLUSIONS Chronic unpredictable mild stress-induced incoordination in prelimbic cortical GABAergic and glutamatergic neurons dysregulates their target neurons, which may be the pathological basis for depressive mood. The rebalance of compatibility among subcellular compartments would be an ideal strategy to treat neural disorders.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- Chronic Disease
- Depressive Disorder, Major/etiology
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Depressive Disorder, Major/psychology
- Dietary Sucrose/administration & dosage
- Disease Models, Animal
- Excitatory Postsynaptic Potentials
- Food Preferences
- GABAergic Neurons/metabolism
- Glutamic Acid/metabolism
- In Vitro Techniques
- Inhibitory Postsynaptic Potentials
- Male
- Maze Learning
- Mice, Transgenic
- Motor Activity
- Neural Inhibition
- Neural Pathways/metabolism
- Neural Pathways/physiopathology
- Prefrontal Cortex/metabolism
- Prefrontal Cortex/physiopathology
- Stress, Psychological/complications
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Stress, Psychological/psychology
- Swimming
- Time Factors
Collapse
Affiliation(s)
- Aiping Xu
- College of Life Science, University of Science and Technology of China, Hefei Anhui, China (Ms Xu and Dr Wang); State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (Ms Xu, Ms Cui, and Dr Wang); University of Chinese Academy of Sciences, Beijing, China (Dr Wang)
| | - Shan Cui
- College of Life Science, University of Science and Technology of China, Hefei Anhui, China (Ms Xu and Dr Wang); State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (Ms Xu, Ms Cui, and Dr Wang); University of Chinese Academy of Sciences, Beijing, China (Dr Wang)
| | - Jin-Hui Wang
- College of Life Science, University of Science and Technology of China, Hefei Anhui, China (Ms Xu and Dr Wang); State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China (Ms Xu, Ms Cui, and Dr Wang); University of Chinese Academy of Sciences, Beijing, China (Dr Wang).
| |
Collapse
|
14
|
Huang L, Zhao S, Lu W, Guan S, Zhu Y, Wang JH. Acidosis-Induced Dysfunction of Cortical GABAergic Neurons through Astrocyte-Related Excitotoxicity. PLoS One 2015; 10:e0140324. [PMID: 26474076 PMCID: PMC4608795 DOI: 10.1371/journal.pone.0140324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Acidosis impairs cognitions and behaviors presumably by acidification-induced changes in neuronal metabolism. Cortical GABAergic neurons are vulnerable to pathological factors and their injury leads to brain dysfunction. How acidosis induces GABAergic neuron injury remains elusive. As the glia cells and neurons interact each other, we intend to examine the role of the astrocytes in acidosis-induced GABAergic neuron injury. RESULTS Experiments were done at GABAergic cells and astrocytes in mouse cortical slices. To identify astrocytic involvement in acidosis-induced impairment, we induced the acidification in single GABAergic neuron by infusing proton intracellularly or in both neurons and astrocytes by using proton extracellularly. Compared the effects of intracellular acidification and extracellular acidification on GABAergic neurons, we found that their active intrinsic properties and synaptic outputs appeared more severely impaired in extracellular acidosis than intracellular acidosis. Meanwhile, extracellular acidosis deteriorated glutamate transporter currents on the astrocytes and upregulated excitatory synaptic transmission on the GABAergic neurons. Moreover, the antagonists of glutamate NMDA-/AMPA-receptors partially reverse extracellular acidosis-induced injury in the GABAergic neurons. CONCLUSION Our studies suggest that acidosis leads to the dysfunction of cortical GABAergic neurons by astrocyte-mediated excitotoxicity, in addition to their metabolic changes as indicated previously.
Collapse
Affiliation(s)
- Li Huang
- Department of Pathophysiology, Bengbu Medical College, Bengbu Anhui, China 233000
| | - Shidi Zhao
- Department of Pathophysiology, Bengbu Medical College, Bengbu Anhui, China 233000
| | - Wei Lu
- Collaborative Innovation Center for Neurodegenerative Disorders in Shandong, Qingdao University, Medical College, 38 Dengzhou, Shandong China 266021
| | - Sudong Guan
- Department of Pathophysiology, Bengbu Medical College, Bengbu Anhui, China 233000
| | - Yan Zhu
- Department of Pathophysiology, Bengbu Medical College, Bengbu Anhui, China 233000
| | - Jin-Hui Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing China 100101
| |
Collapse
|
15
|
Wen B, Qian H, Feng J, Ge RJ, Xu X, Cui ZQ, Zhu RY, Pan LS, Lin ZP, Wang JH. A portion of inhibitory neurons in human temporal lobe epilepsy are functionally upregulated: an endogenous mechanism for seizure termination. CNS Neurosci Ther 2014; 21:204-14. [PMID: 25475128 DOI: 10.1111/cns.12336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/15/2014] [Accepted: 09/18/2014] [Indexed: 01/08/2023] Open
Abstract
MAIN PROBLEM Epilepsy is one of the more common neurological disorders. The medication is often ineffective to the patients suffering from intractable temporal lobe epilepsy (TLE). As their seizures are usually self-terminated, the elucidation of the mechanism underlying endogenous seizure termination will help to find a new strategy for epilepsy treatment. We aim to examine the role of inhibitory interneurons in endogenous seizure termination in TLE patients. METHODS Whole-cell recordings were conducted on inhibitory interneurons in seizure-onset cortices of intractable TLE patients and the temporal lobe cortices of nonseizure individuals. The intrinsic property of the inhibitory interneurons and the strength of their GABAergic synaptic outputs were measured. The quantitative data were introduced into the computer-simulated neuronal networks to figure out a role of these inhibitory units in the seizure termination. RESULTS In addition to functional downregulation, a portion of inhibitory interneurons in seizure-onset cortices were upregulated in encoding the spikes and controlling their postsynaptic neurons. A patch-like upregulation of inhibitory neurons in the local network facilitated seizure termination. The upregulations of both inhibitory neurons and their output synapses synergistically shortened seizure duration, attenuated seizure strength, and terminated seizure propagation. CONCLUSION Automatic seizure termination is likely due to the fact that a portion of the inhibitory neurons and synapses are upregulated in the seizure-onset cortices. This mechanism may create novel therapeutic strategies to treat intractable epilepsy, such as the simultaneous upregulation of cortical inhibitory neurons and their output synapses.
Collapse
Affiliation(s)
- Bo Wen
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang Z, Wang JH. Frequency-dependent reliability of spike propagation is function of axonal voltage-gated sodium channels in cerebellar Purkinje cells. THE CEREBELLUM 2014; 12:862-9. [PMID: 23775547 DOI: 10.1007/s12311-013-0499-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The spike propagation on nerve axons, like synaptic transmission, is essential to ensure neuronal communication. The secure propagation of sequential spikes toward axonal terminals has been challenged in the neurons with a high firing rate, such as cerebellar Purkinje cells. The shortfall of spike propagation makes some digital spikes disappearing at axonal terminals, such that the elucidation of the mechanisms underlying spike propagation reliability is crucial to find the strategy of preventing loss of neuronal codes. As the spike propagation failure is influenced by the membrane potentials, this process is likely caused by altering the functional status of voltage-gated sodium channels (VGSC). We examined this hypothesis in Purkinje cells by using pair-recordings at their somata and axonal blebs in cerebellar slices. The reliability of spike propagation was deteriorated by elevating spike frequency. The frequency-dependent reliability of spike propagation was attenuated by inactivating VGSCs and improved by removing their inactivation. Thus, the functional status of axonal VGSCs influences the reliability of spike propagation.
Collapse
Affiliation(s)
- Zhilai Yang
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | | |
Collapse
|
17
|
Lu W, Wen B, Zhang F, Wang JH. Voltage-independent sodium channels emerge for an expression of activity-induced spontaneous spikes in GABAergic neurons. Mol Brain 2014; 7:38. [PMID: 24886791 PMCID: PMC4039334 DOI: 10.1186/1756-6606-7-38] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/13/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cerebral overexcitation needs inhibitory neurons be functionally upregulated to rebalance excitation vs. inhibition. For example, the intensive activities of GABAergic neurons induce spontaneous spikes, i.e., activity-induced spontaneous spikes (AISS). The mechanisms underlying AISS onset remain unclear. We investigated the roles of sodium channels in AISS induction and expression at hippocampal GABAergic neurons by electrophysiological approach. RESULTS AISS expression includes additional spike capability above evoked spikes, and the full spikes in AISS comprise early phase (spikelets) and late phase, implying the emergence of new spikelet component. Compared with the late phase, the early phase is characterized as voltage-independent onset, less voltage-dependent upstroke and sensitivity to TTX. AISS expression and induction are independent of membrane potential changes. Therefore, AISS's spikelets express based on voltage-independent sodium channels. In terms of AISS induction, the facilitation of voltage-gated sodium channel (VGSC) activation accelerates AISS onset, or vice versa. CONCLUSION AISS expression in GABAergic neurons is triggered by the spikelets based on the functional emergence of voltage-independent sodium channels, which is driven by intensive VGSCs' activities.
Collapse
Affiliation(s)
- Wei Lu
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wen
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyu Zhang
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Jin-Hui Wang
- State Key lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
- Qingdao University, Medical College, 38, Dengzhou, Shandong 266021, China
| |
Collapse
|
18
|
Ge R, Qian H, Chen N, Wang JH. Input-dependent subcellular localization of spike initiation between soma and axon at cortical pyramidal neurons. Mol Brain 2014; 7:26. [PMID: 24708847 PMCID: PMC4022375 DOI: 10.1186/1756-6606-7-26] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/26/2014] [Indexed: 11/10/2022] Open
Abstract
Background Action potentials can be initiated at various subcellular compartments, such as axonal hillock, soma and dendrite. Mechanisms and physiological impacts for this relocation remain elusive, which may rely on input signal patterns and intrinsic properties in these subcellular compartments. We examined this hypothesis at the soma and axon of cortical pyramidal neurons by analyzing their spike capability and voltage-gated sodium channel dynamics in response to different input signals. Results Electrophysiological recordings were simultaneously conducted at the somata and axons of identical pyramidal neurons in the cortical slices. The somata dominantly produced sequential spikes in response to long-time steady depolarization pulse, and the axons produced more spikes in response to fluctuated pulse. Compared with the axons, the somata possessed lower spike threshold and shorter refractory periods in response to long-time steady depolarization, and somatic voltage-gated sodium channels demonstrated less inactivation and easier reactivation in response to steady depolarization. Based on local VGSC dynamics, computational simulated spike initiation locations were consistent with those from the experiments. In terms of physiological impact, this input-dependent plasticity of spike initiation location made neuronal encoding to be efficient. Conclusions Long-time steady depolarization primarily induces somatic spikes and short-time pulses induce axonal spikes. The input signal patterns influence spike initiations at the axon or soma of cortical pyramidal neurons through modulating local voltage-gated sodium channel dynamics.
Collapse
Affiliation(s)
| | | | | | - Jin-Hui Wang
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101 Beijing, China.
| |
Collapse
|
19
|
Yang Z, Gu E, Lu X, Wang JH. Essential role of axonal VGSC inactivation in time-dependent deceleration and unreliability of spike propagation at cerebellar Purkinje cells. Mol Brain 2014; 7:1. [PMID: 24382121 PMCID: PMC3880351 DOI: 10.1186/1756-6606-7-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 12/11/2013] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The output of the neuronal digital spikes is fulfilled by axonal propagation and synaptic transmission to influence postsynaptic cells. Similar to synaptic transmission, spike propagation on the axon is not secure, especially in cerebellar Purkinje cells whose spiking rate is high. The characteristics, mechanisms and physiological impacts of propagation deceleration and infidelity remain elusive. The spike propagation is presumably initiated by local currents that raise membrane potential to the threshold of activating voltage-gated sodium channels (VGSC). RESULTS We have investigated the natures of spike propagation and the role of VGSCs in this process by recording spikes simultaneously on the somata and axonal terminals of Purkinje cells in cerebellar slices. The velocity and fidelity of spike propagation decreased during long-lasting spikes, to which the velocity change was more sensitive than fidelity change. These time-dependent deceleration and infidelity of spike propagation were improved by facilitating axonal VGSC reactivation, and worsen by intensifying VGSC inactivation. CONCLUSION Our studies indicate that the functional status of axonal VGSCs is essential to influencing the velocity and fidelity of spike propagation.
Collapse
Affiliation(s)
- Zhilai Yang
- Institute of Biophysics, State Key lab for Brain and Cognitive Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Erwei Gu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xianfu Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Jin-Hui Wang
- Institute of Biophysics, State Key lab for Brain and Cognitive Sciences, Chinese Academy of Sciences, Beijing 100101, China
- Qingdao University, Medical College, 38 Dengzhou, Shandong 266021, China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Zhang S, Sun P, Sun Z, Zhang J, Zhou J, Gu Y. Cortical GABAergic neurons are more severely impaired by alkalosis than acidosis. BMC Neurol 2013; 13:192. [PMID: 24314112 PMCID: PMC3879204 DOI: 10.1186/1471-2377-13-192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 11/27/2013] [Indexed: 11/10/2022] Open
Abstract
Background Acid–base imbalance in various metabolic disturbances leads to human brain dysfunction. Compared with acidosis, the patients suffered from alkalosis demonstrate more severe neurological signs that are difficultly corrected. We hypothesize a causative process that the nerve cells in the brain are more vulnerable to alkalosis than acidosis. Methods The vulnerability of GABAergic neurons to alkalosis versus acidosis was compared by analyzing their functional changes in response to the extracellular high pH and low pH. The neuronal and synaptic functions were recorded by whole-cell recordings in the cortical slices. Results The elevation or attenuation of extracellular pH impaired these GABAergic neurons in terms of their capability to produce spikes, their responsiveness to excitatory synaptic inputs and their outputs via inhibitory synapses. Importantly, the dysfunction of these active properties appeared severer in alkalosis than acidosis. Conclusions The severer impairment of cortical GABAergic neurons in alkalosis patients leads to more critical neural excitotoxicity, so that alkalosis-induced brain dysfunction is difficultly corrected, compared to acidosis. The vulnerability of cortical GABAergic neurons to high pH is likely a basis of severe clinical outcomes in alkalosis versus acidosis.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin 150001, P,R, China.
| | | | | | | | | | | |
Collapse
|
21
|
mGluR1,5 activation protects cortical astrocytes and GABAergic neurons from ischemia-induced impairment. Neurosci Res 2013; 75:160-6. [DOI: 10.1016/j.neures.2012.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 10/02/2012] [Accepted: 12/11/2012] [Indexed: 11/22/2022]
|
22
|
Zhang G, Gao Z, Guan S, Zhu Y, Wang JH. Upregulation of excitatory neurons and downregulation of inhibitory neurons in barrel cortex are associated with loss of whisker inputs. Mol Brain 2013; 6:2. [PMID: 23286328 PMCID: PMC3548736 DOI: 10.1186/1756-6606-6-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 12/28/2012] [Indexed: 11/10/2022] Open
Abstract
Loss of a sensory input causes the hypersensitivity in other modalities. In addition to cross-modal plasticity, the sensory cortices without receiving inputs undergo the plastic changes. It is not clear how the different types of neurons and synapses in the sensory cortex coordinately change after input deficits in order to prevent loss of their functions and to be used for other modalities. We studied this subject in the barrel cortices from whiskers-trimmed mice vs. controls. After whisker trimming for a week, the intrinsic properties of pyramidal neurons and the transmission of excitatory synapses were upregulated in the barrel cortex, but inhibitory neurons and GABAergic synapses were downregulated. The morphological analyses indicated that the number of processes and spines in pyramidal neurons increased, whereas the processes of GABAergic neurons decreased in the barrel cortex. The upregulation of excitatory neurons and the downregulation of inhibitory neurons boost the activity of network neurons in the barrel cortex to be high levels, which prevent the loss of their functions and enhances their sensitivity to sensory inputs. These changes may prepare for attracting the innervations from sensory cortices and/or peripheral nerves for other modalities during cross-modal plasticity.
Collapse
Affiliation(s)
- Guanjun Zhang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui Province 233000, China
| | | | | | | | | |
Collapse
|
23
|
Liu Z, Huo W, Sun W, Lv M, Li F, Su Z. A sequential impairment of cortical astrocytes and GABAergic neurons during ischemia is improved by mGluR1,5 activation. Neurol Sci 2012; 34:1189-95. [DOI: 10.1007/s10072-012-1220-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
24
|
Lu Y, Yi L, Liu D, Li J, Sun L, Zhang Z. Alkalosis leads to the over-activity of cortical principal neurons. Neurosci Lett 2012; 525:117-22. [DOI: 10.1016/j.neulet.2012.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/08/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
|
25
|
Ye B, Huang L, Gao Z, Chen P, Ni H, Guan S, Zhu Y, Wang JH. The functional upregulation of piriform cortex is associated with cross-modal plasticity in loss of whisker tactile inputs. PLoS One 2012; 7:e41986. [PMID: 22927919 PMCID: PMC3424151 DOI: 10.1371/journal.pone.0041986] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/27/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cross-modal plasticity is characterized as the hypersensitivity of remaining modalities after a sensory function is lost in rodents, which ensures their awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain unclear. We aim to study the role of different types of neurons in cross-modal plasticity. METHODOLOGY/PRINCIPAL FINDINGS In addition to behavioral tasks in mice, whole-cell recordings at the excitatory and inhibitory neurons, and their two-photon imaging, were conducted in piriform cortex. We produced a mouse model of cross-modal sensory plasticity that olfactory function was upregulated by trimming whiskers to deprive their sensory inputs. In the meantime of olfactory hypersensitivity, pyramidal neurons and excitatory synapses were functionally upregulated, as well as GABAergic cells and inhibitory synapses were downregulated in piriform cortex from the mice of cross-modal sensory plasticity, compared with controls. A crosswire connection between barrel cortex and piriform cortex was established in cross-modal plasticity. CONCLUSION/SIGNIFICANCE An upregulation of pyramidal neurons and a downregulation of GABAergic neurons strengthen the activities of neuronal networks in piriform cortex, which may be responsible for olfactory hypersensitivity after a loss of whisker tactile input. This finding provides the clues for developing therapeutic strategies to promote sensory recovery and substitution.
Collapse
Affiliation(s)
- Bing Ye
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Li Huang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Zilong Gao
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ping Chen
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Hong Ni
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Sudong Guan
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Zhu
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Jin-Hui Wang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Zhang F, Liu B, Lei Z, Wang JH. mGluR₁,5 activation improves network asynchrony and GABAergic synapse attenuation in the amygdala: implication for anxiety-like behavior in DBA/2 mice. Mol Brain 2012; 5:20. [PMID: 22681774 PMCID: PMC3475049 DOI: 10.1186/1756-6606-5-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/09/2012] [Indexed: 12/28/2022] Open
Abstract
Anxiety is a prevalent psychological disorder, in which the atypical expression of certain genes and the abnormality of amygdala are involved. Intermediate processes between genetic defects and anxiety, pathophysiological characteristics of neural network, remain unclear. Using behavioral task, two-photon cellular imaging and electrophysiology, we studied the characteristics of neural networks in basolateral amygdala and the influences of metabotropic glutamate receptor (mGluR) on their dynamics in DBA/2 mice showing anxiety-related genetic defects. Amygdala neurons in DBA/2 high anxiety mice express asynchronous activity and diverse excitability, and their GABAergic synapses demonstrate weak transmission, compared to those in low anxiety FVB/N mice. mGluR1,5 activation improves the anxiety-like behaviors of DBA/2 mice, synchronizes the activity of amygdala neurons and strengthens the transmission of GABAergic synapses. The activity asynchrony of amygdala neurons and the weakness of GABA synaptic transmission are associated with anxiety-like behavior.
Collapse
Affiliation(s)
- Fengyu Zhang
- State Key Laboratory, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | | | | | | |
Collapse
|
27
|
Sun L, Zhang K, Li J, Liu D, Lu Y, Zhang Z. An impairment of cortical GABAergic neurons is involved in alkalosis-induced brain dysfunctions. Biochem Biophys Res Commun 2012; 419:627-31. [PMID: 22369942 DOI: 10.1016/j.bbrc.2012.02.061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 02/09/2012] [Indexed: 10/28/2022]
Abstract
Acid-base imbalance leads to pathological cognition and behaviors in the clinical practices. In the comparison with acidosis, the cellular mechanisms underlying alkalosis-induced brain dysfunction remain unclear. By using electrophysiological approach, we investigated the influences of high extracellular pH environment on cortical GABAergic neurons in terms of their responsiveness to synaptic inputs and their ability to produce action potentials. Artificial cerebral spinal fluid in high pH impairs excitatory synaptic transmission and spike initiation in cortical GABAergic neurons. The alkalosis-induced dysfunction of GABAergic neurons is associated with the decrease of receptor responsiveness and the increases of spike refractory periods and threshold potentials. Our studies reveal that alkalosis impairs cortical GABAergic neurons and subsequently deteriorate brain functions. The molecular targets for alkalosis action include glutamate receptor-channels and voltage-gated sodium channels on GABAergic neurons.
Collapse
Affiliation(s)
- Ling Sun
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | | | | | | | | | | |
Collapse
|
28
|
Zhao H, Cai Y, Yang Z, He D, Shen B. Acidosis leads to neurological disorders through overexciting cortical pyramidal neurons. Biochem Biophys Res Commun 2011; 415:224-8. [DOI: 10.1016/j.bbrc.2011.08.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 08/04/2011] [Indexed: 01/30/2023]
|
29
|
Li F, Liu X, Su Z, Sun R. Acidosis leads to brain dysfunctions through impairing cortical GABAergic neurons. Biochem Biophys Res Commun 2011; 410:775-9. [DOI: 10.1016/j.bbrc.2011.06.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/06/2011] [Indexed: 01/19/2023]
|
30
|
Acupuncture to point Baihui prevents ischemia-induced functional impairment of cortical GABAergic neurons. J Neurol Sci 2011; 307:139-43. [PMID: 21570693 DOI: 10.1016/j.jns.2011.04.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 04/22/2011] [Indexed: 11/23/2022]
Abstract
Ischemia impairs brain function and networks, in which the vulnerability of GABAergic neurons causes neural excitotoxicity and nerve cell death. Acupuncture presumably improves the outcome of stroke patients; however, cellular mechanisms underlying this improvement remain to be elusive. We have investigated whether electrical stimuli to acupoint Baihui prevent ischemia- induced impairment of cortical GABAergic neurons. After acupuncture to a Baihui-point of mice for a week, we examined the responses of cortical GABAergic neurons to ischemia by whole-cell recording. Compared with the data from a group of ischemia only, the acupuncture prevents the impairments of spike encoding and synaptic transmission at GABAergic neurons from ischemia. This prevention is associated with the resistance of these cells to ischemia-induced changes in spike threshold potentials and refractory periods Therefore, acupuncture to Baihui-point improves ischemic stroke via preventing the impairment of cortical GABAergic neurons.
Collapse
|
31
|
Physiological synaptic signals initiate sequential spikes at soma of cortical pyramidal neurons. Mol Brain 2011; 4:19. [PMID: 21549002 PMCID: PMC3113741 DOI: 10.1186/1756-6606-4-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 05/08/2011] [Indexed: 11/10/2022] Open
Abstract
The neurons in the brain produce sequential spikes as the digital codes whose various patterns manage well-organized cognitions and behaviors. A source for the physiologically integrated synaptic signals to initiate digital spikes remains unknown, which we studied at pyramidal neurons of cortical slices. In dual recordings from the soma vs. axon, the signals recorded in vivo induce somatic spikes with higher capacity, which is associated with lower somatic thresholds and shorter refractory periods mediated by voltage-gated sodium channels. The introduction of these parameters from the soma and axon into NEURON model simulates sequential spikes being somatic in origin. Physiological signals integrated from synaptic inputs primarily trigger the soma to encode neuronal digital spikes.
Collapse
|
32
|
Song R, Zhang L, Yang Z, Tian X. Acidosis and alkalosis impair brain functions through weakening spike encoding at cortical GABAergic neurons. J Neurol Sci 2011; 304:122-6. [PMID: 21353681 DOI: 10.1016/j.jns.2011.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 01/26/2011] [Indexed: 11/30/2022]
Abstract
Acidosis and alkalosis, associated with metabolic disorders, lead to the pathological changes of cognition and behaviors in clinical practices of neurology and psychology. Cellular mechanisms for these functional disorders in the central nervous system remain unclear. We have investigated the influences of acidosis and alkalosis on the functions of cortical GABAergic neurons. Both acidosis and alkalosis impair the ability of encoding sequential spikes at these GABAergic neurons. The impairments of their spiking are associated with the increases of refractory periods, threshold potential and afterhyperpolarization. Our studies reveal that acidosis and alkalosis impair cortical GABAergic neurons and in turn deteriorate brain functions, in which their final targets may be voltage-gated channels of sodium and potassium.
Collapse
Affiliation(s)
- Rongrong Song
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, PR China
| | | | | | | |
Collapse
|
33
|
Zhang S, Yang Z, Zhang Z, Sun Z. Cortical GABAergic neurons and cerebellar Purkinje cells respond to ischemia-pathogenic factors differently. Brain Res 2011; 1382:291-7. [PMID: 21262202 DOI: 10.1016/j.brainres.2011.01.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/29/2022]
Abstract
GABAergic neurons in the central nervous system are vulnerable to hazard situations, such as ischemia and toxic substances, under which their dysfunction results in neuronal excitotoxicity and subsequently cell death. How ischemia-related pathogenic factors influence the functions of different GABAergic neurons remains to be documented. We investigated this issue at cortical GABAergic neurons and cerebellar Purkinje cells in brain slices by whole-cell recordings. Our results demonstrate that ischemia, cellular Ca(2+)-overload and acidosis lower the spike capacity of cortical GABAergic neurons, but elevate that of cerebellar Purkinje cells. These changes of spike encoding at two types of GABAergic cells are associated with the different effects of three factors on spike refractory periods and threshold potentials, which are mediated by voltage-gated sodium channels. Mechanisms underlying such differences are discussed.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Neurology, the Fourth Affiliated Hospital in Harbin Medical University, Harbin, Heilongjiang 150001, China
| | | | | | | |
Collapse
|
34
|
Ni H, Huang L, Chen N, Zhang F, Liu D, Ge M, Guan S, Zhu Y, Wang JH. Upregulation of barrel GABAergic neurons is associated with cross-modal plasticity in olfactory deficit. PLoS One 2010; 5:e13736. [PMID: 21060832 PMCID: PMC2966404 DOI: 10.1371/journal.pone.0013736] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 10/02/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Loss of a sensory function is often followed by the hypersensitivity of other modalities in mammals, which secures them well-awareness to environmental changes. Cellular and molecular mechanisms underlying cross-modal sensory plasticity remain to be documented. METHODOLOGY/PRINCIPAL FINDINGS Multidisciplinary approaches, such as electrophysiology, behavioral task and immunohistochemistry, were used to examine the involvement of specific types of neurons in cross-modal plasticity. We have established a mouse model that olfactory deficit leads to a whisking upregulation, and studied how GABAergic neurons are involved in this cross-modal plasticity. In the meantime of inducing whisker tactile hypersensitivity, the olfactory injury recruits more GABAergic neurons and their fine processes in the barrel cortex, as well as upregulates their capacity of encoding action potentials. The hyperpolarization driven by inhibitory inputs strengthens the encoding ability of their target cells. CONCLUSION/SIGNIFICANCE The upregulation of GABAergic neurons and the functional enhancement of neuronal networks may play an important role in cross-modal sensory plasticity. This finding provides the clues for developing therapeutic approaches to help sensory recovery and substitution.
Collapse
Affiliation(s)
- Hong Ni
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Li Huang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Na Chen
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Fengyu Zhang
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongbo Liu
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Ming Ge
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Sudong Guan
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Zhu
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
| | - Jin-Hui Wang
- Department of Physiology, Bengbu Medical College, Bengbu, Anhui, China
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Chen N, Yu J, Qian H, Ge R, Wang JH. Axons amplify somatic incomplete spikes into uniform amplitudes in mouse cortical pyramidal neurons. PLoS One 2010; 5:e11868. [PMID: 20686619 PMCID: PMC2912328 DOI: 10.1371/journal.pone.0011868] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 07/01/2010] [Indexed: 11/23/2022] Open
Abstract
Background Action potentials are the essential unit of neuronal encoding. Somatic sequential spikes in the central nervous system appear various in amplitudes. To be effective neuronal codes, these spikes should be propagated to axonal terminals where they activate the synapses and drive postsynaptic neurons. It remains unclear whether these effective neuronal codes are based on spike timing orders and/or amplitudes. Methodology/Principal Findings We investigated this fundamental issue by simultaneously recording the axon versus soma of identical neurons and presynaptic vs. postsynaptic neurons in the cortical slices. The axons enable somatic spikes in low amplitude be enlarged, which activate synaptic transmission in consistent patterns. This facilitation in the propagation of sequential spikes through the axons is mechanistically founded by the short refractory periods, large currents and high opening probability of axonal voltage-gated sodium channels. Conclusion/Significance An amplification of somatic incomplete spikes into axonal complete ones makes sequential spikes to activate consistent synaptic transmission. Therefore, neuronal encoding is likely based on spike timing order, instead of graded analogues.
Collapse
Affiliation(s)
- Na Chen
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jiandong Yu
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Hao Qian
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rongjing Ge
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jin-Hui Wang
- State Key Lab for Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Huang L, Chen N, Ge M, Zhu Y, Guan S, Wang JH. Ca2+ and acidosis synergistically lead to the dysfunction of cortical GABAergic neurons during ischemia. Biochem Biophys Res Commun 2010; 394:709-14. [PMID: 20227392 DOI: 10.1016/j.bbrc.2010.03.056] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
Abstract
Cell death in cerebral ischemia is presumably initiated by neural excitotoxicity resulted from the dysfunction of inhibitory neurons in early stage. Molecular processes underlying the ischemic injury of inhibitory neurons remain to be elusive, which we investigated by biochemical manipulations with cellular imaging and patch clamp at GFP-labeled GABAergic cells in cortical slices. Ischemia induces Ca(2+) elevation, acidosis and dysfunction in GABAergic cells. An elevation of cytoplasmic Ca(2+) or H(+) impairs the encoding of action potentials in these neurons. The effects of Ca(2+) and H(+) are additive in nature and occlude ischemic outcomes. Ischemia impairs spike production through prolonging spike refractory periods and raising threshold potentials. Therefore, calcium toxicity and acidosis during ischemia synergistically impair the dynamics of sodium channels and function of cortical GABAergic neurons, which lead to neural excitotoxicity. Our results also suggest that the cocktail therapeutics is needed to prevent neuronal death from ischemia.
Collapse
Affiliation(s)
- Li Huang
- Department of Physiology, Bengbu Medical College, Bengbu Anhui 233000, China
| | | | | | | | | | | |
Collapse
|
37
|
Ge R, Chen N, Wang JH. Real-time neuronal homeostasis by coordinating VGSC intrinsic properties. Biochem Biophys Res Commun 2009; 387:585-9. [PMID: 19616515 DOI: 10.1016/j.bbrc.2009.07.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/14/2009] [Indexed: 11/26/2022]
Abstract
Homeostasis of internal environment and cellular metabolism ensures cells' functions to be stable in living organisms. Cellular homeostasis is believed to be maintained via feedback or feedforward manners. We report a novel mechanism that maintains neuronal homeostasis through coordinating the intrinsic properties of single molecules concurrently. Spike encoding and sodium channel dynamics at cortical neurons were studied by patch-clamp recording. Voltage-gated sodium channels set refractory period and threshold potential toward different directions to stabilize the energetic barrier for firing sequential action potentials. This neuronal homeostasis is not affected by intracellular Ca(2+) signals and membrane potentials. Real-time homeostasis maintains precise and reliable neuronal encoding without any destabilization.
Collapse
Affiliation(s)
- Rongjing Ge
- Department of Physiology, Bengbu Medical College, Anhui, China
| | | | | |
Collapse
|
38
|
Intracellular Ca2+ regulates spike encoding at cortical GABAergic neurons and cerebellar Purkinje cells differently. Biochem Biophys Res Commun 2009; 381:129-33. [PMID: 19351606 DOI: 10.1016/j.bbrc.2009.02.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 11/24/2022]
Abstract
Spike encoding at GABAergic neurons plays an important role in maintaining the homeostasis of brain functions for well-organized behaviors. The rise of intracellular Ca2+ in GABAergic neurons causes synaptic plasticity. It is not clear how intracellular Ca2+ influences their spike encoding. We have investigated this issue at GFP-labeled GABAergic cortical neurons and cerebellar Purkinje cells by whole-cell recording in mouse brain slices. Our results show that an elevation of intracellular Ca2+ by infusing adenophostin-A lowers spike encoding at GABAergic cortical neurons and enhances encoding ability at cerebellar Purkinje cells. These differential effects of cytoplasmic Ca2+ on spike encoding are mechanistically associated with Ca2+-induced changes in the refractory periods and threshold potentials of sequential spikes, as well as with various expression ratios of CaM-KII to calcineurin in GABAergic cortical neurons and cerebellar Purkinje cells.
Collapse
|
39
|
Wang Q, Liu X, Ge R, Guan S, Zhu Y, Wang JH. The postnatal development of intrinsic properties and spike encoding at cortical GABAergic neurons. Biochem Biophys Res Commun 2008; 378:706-10. [PMID: 19059212 DOI: 10.1016/j.bbrc.2008.11.104] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
GABAergic neurons play a critical role in maintaining the homeostasis of brain functions for well-organized behaviors. It is not known about the dynamical change in signal encoding at these neurons during postnatal development. We investigated this issue at GFP-labeled GABAergic neurons by whole-cell recording in cortical slices of mice. Our results show that the ability of spike encoding at GABAergic neurons is improved during postnatal development. This change is associated with the reduction of refractory periods and threshold potentials of sequential spikes, as well as the improvement of linear correlations between intrinsic properties and spike capacity. Therefore, the postnatal maturation of the spike encoding capacity at GABAergic neurons will stabilize the excitatory state of cerebral cortex.
Collapse
Affiliation(s)
- Qiyi Wang
- Department of Physiology, Bengbu Medical College, Bengbu Anhui, China
| | | | | | | | | | | |
Collapse
|
40
|
Chen N, Chen X, Wang JH. Homeostasis established by coordination of subcellular compartment plasticity improves spike encoding. J Cell Sci 2008; 121:2961-71. [PMID: 18697837 DOI: 10.1242/jcs.022368] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Homeostasis in cells maintains their survival and functions. The plasticity at neurons and synapses may destabilize their signal encoding. The rapid recovery of cellular homeostasis is needed to secure the precise and reliable encoding of neural signals necessary for well-organized behaviors. We report a homeostatic process that is rapidly established through Ca(2+)-induced coordination of functional plasticity among subcellular compartments. An elevation of cytoplasmic Ca(2+) levels raises the threshold potentials and refractory periods of somatic spikes, and strengthens the signal transmission at glutamatergic and GABAergic synapses, in which synaptic potentiation shortens refractory periods and lowers threshold potentials. Ca(2+) signals also induce an inverse change of membrane excitability at the soma versus the axon. The integrative effect of Ca(2+)-induced plasticity among the subcellular compartments is homeostatic in nature, because it stabilizes neuronal activities and improves spike timing precision. Our study of neuronal homeostasis that is fulfilled by rapidly coordinating subcellular compartments to improve neuronal encoding sheds light on exploring homeostatic mechanisms in other cell types.
Collapse
Affiliation(s)
- Na Chen
- State Key Labs for Macrobiomolecules and Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, The People's Republic of China
| | | | | |
Collapse
|
41
|
Wang JH, Wei J, Chen X, Yu J, Chen N, Shi J. Gain and fidelity of transmission patterns at cortical excitatory unitary synapses improve spike encoding. J Cell Sci 2008; 121:2951-60. [PMID: 18697836 DOI: 10.1242/jcs.025684] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuronal spike encoding and synaptic transmission in the brain need be precise and reliable for well-organized behavior and cognition. Little is known about how a unitary synapse reliably transmits presynaptic sequential spikes and how multiple unitary synapses precisely drive their postsynaptic neurons to encode spikes. To address these questions, we investigated the dynamics of glutamatergic unitary synapses as well as their role in driving the encoding of cortical fast-spiking neurons. Synaptic transmission patterns randomly fluctuate among facilitation, depression and parallel over time. The postsynaptic calmodulin-signaling pathway enhances initial responses and converts this fluctuation to a synaptic depression. We integrated current pulses mathematically based on synaptic plasticity and found that they improve spike capacity and timing precision by shortening the spike refractory period at postsynaptic neurons. Our results indicate that the gain and fidelity of synaptic patterns enable reliable transmission of presynaptic signals by the synapse and precise encoding of spikes by postsynaptic neurons. These reproducible neural codes may be involved in controlling well-organized behavior.
Collapse
Affiliation(s)
- Jin-Hui Wang
- State Key Labs for Macrobiomolecules and Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, The People's Republic of China.
| | | | | | | | | | | |
Collapse
|
42
|
Zhao S, Chen N, Yang Z, Huang L, Zhu Y, Guan S, Chen Q, Wang JH. Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca2+. Biochem Biophys Res Commun 2008; 366:401-7. [DOI: 10.1016/j.bbrc.2007.11.173] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
|
43
|
Chen N, Chen X, Yu J, Wang J. Afterhyperpolarization improves spike programming through lowering threshold potentials and refractory periods mediated by voltage-gated sodium channels. Biochem Biophys Res Commun 2006; 346:938-45. [PMID: 16777065 DOI: 10.1016/j.bbrc.2006.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Accepted: 06/01/2006] [Indexed: 11/16/2022]
Abstract
Neurons program various patterns of sequential spikes as neural codes to guide animal behavior. Studies show that spike programming (capacity and timing precision) is influenced by inhibitory synaptic inputs and membrane afterhyperpolarization (AHP). Less is clear about how these inhibitory components regulate spike programming, which we investigated at the cortical neurons. Whole-cell current-clamp recording for action potentials and single channel recording for voltage-gated sodium channels (VGSC) were conducted at regular-spiking and fast-spiking neurons in the cortical slices. With quantifying the threshold potentials and refractory periods of sequential spikes, we found that fast-spiking neurons expressing AHP possess lower threshold potentials and shorter refractory periods, and the hyperpolarization pulse immediately after each of spikes lowers threshold potentials and shortens refractory periods at regular-spiking neurons. Moreover, the hyperpolarization pulses shorten the refractory periods for VGSC reactivation and threshold potentials for its sequential activation. Our data indicate that inhibitory components immediately after spikes, such as AHP and recurrent inhibition, improve spike capacity and timing precision via lowering the refractory periods and threshold potentials mediated by voltage-gated sodium channels.
Collapse
Affiliation(s)
- Na Chen
- State Key Lab for Brain and Cognitive Sciences, National Lab for Protein Sciences, Institute of Biophysics Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|