1
|
Vrzalova A, Vrzal R. Orchestra of ligand-activated transcription factors in the molecular symphony of SERPINE 1 / PAI-1 gene regulation. Biochimie 2025; 228:138-157. [PMID: 39321911 DOI: 10.1016/j.biochi.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Plasminogen activator inhibitor 1 (PAI-1) is a crucial serine protease inhibitor that prevents plasminogen activation by inhibiting tissue- and urokinase-type plasminogen activators (tPA, uPA). PAI-1 is well-known for its role in modulating hemocoagulation or extracellular matrix formation by inhibiting plasmin or matrix metalloproteinases, respectively. PAI-1 is induced by pro-inflammatory cytokines across various tissues, yet its regulation by ligand-activated transcription factors is partly disregarded. Therefore, we have attempted to summarize the current knowledge on the transcriptional regulation of PAI-1 expression by the most relevant xenobiotic and endocrine receptors implicated in modulating PAI-1 levels. This review aims to contribute to the understanding of the specific, often tissue-dependent regulation of PAI-1 and provide insights into the modulation of PAI-1 levels beyond its direct inhibition.
Collapse
Affiliation(s)
- Aneta Vrzalova
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Radim Vrzal
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
2
|
Takebe N, Hasegawa Y, Matsushita Y, Chiba H, Onodera K, Kinno H, Oda T, Nagasawa K, Segawa T, Takahashi Y, Okada K, Ishigaki Y. Association of plasminogen activator inhibitor-1 and fibroblastic growth factor 21 in 3 groups of type 2 diabetes: Without overweight/obesity, free of insulin resistance, and without hepatosteatosis. Medicine (Baltimore) 2023; 102:e34797. [PMID: 37657012 PMCID: PMC10476825 DOI: 10.1097/md.0000000000034797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/26/2023] [Indexed: 09/03/2023] Open
Abstract
The physiological effects of fibroblast growth factor 21 (FGF21), leading to beneficial metabolic outcomes, have been extensively revealed in recent decades. Significantly elevated serum levels of FGF21 in obesity and type 2 diabetes mellitus (T2DM) are referred to as FGF21 resistance. However, Asian population tend to develop metabolic disorders at a lesser degree of obesity than those of Western. This study aimed to explore factors potentially related to serum FGF21 according to the severity of metabolic disorders in patients with T2DM. This cross-sectional study included 176 T2DM patients. The patients were categorized according to whether they had hepatic steatosis (fatty liver index [FLI] ≥ 60), insulin resistance (homeostasis model assessment of insulin resistance [HOMA-R] ≥ median), and/or overweight/obesity (body mass index [BMI] ≥ 25.0 kg/m2). Independent predictors of serum FGF21 were determined using multiple linear regression analysis in these 3 groups of T2DM patients. Circulating FGF21 levels were correlated positively with BMI, abdominal fat areas, leptin, and plasminogen activator inhibitor-1 (PAI-1). After adjustment for potential confounders, multiple linear regression analysis identified leptin as a factor strongly associated with serum FGF21 levels in all patients. Moreover, PAI-1 was a significant predictor of FGF21 in those with FLI < 60, BMI < 25.0 kg/m2, and HOMA-R < median, while leptin was the only independent factor in each of their counterparts. The factors related to serum FGF21 differ according to the severity of metabolic disorders. FGF21 appears to be independently associated with PAI-1 in T2DM patients: without overweight/obesity, those free of insulin resistance, and those without hepatic steatosis.
Collapse
Affiliation(s)
- Noriko Takebe
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yutaka Hasegawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yuriko Matsushita
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Hiraku Chiba
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Ken Onodera
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Hirofumi Kinno
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Tomoyasu Oda
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kan Nagasawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Toshie Segawa
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yoshihiko Takahashi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kenta Okada
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| | - Yasushi Ishigaki
- Division of Diabetes, Metabolism, and Endocrinology, Department of Internal Medicine, Iwate Medical University, Yahaba, Iwate, Japan
| |
Collapse
|
3
|
Comparative Study of PPAR γ Targets in Human Extravillous and Villous Cytotrophoblasts. PPAR Res 2020; 2020:9210748. [PMID: 32308672 PMCID: PMC7152979 DOI: 10.1155/2020/9210748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/26/2020] [Accepted: 02/11/2020] [Indexed: 12/15/2022] Open
Abstract
Trophoblasts, as the cells that make up the main part of the placenta, undergo cell differentiation processes such as invasion, migration, and fusion. Abnormalities in these processes can lead to a series of gestational diseases whose underlying mechanisms are still unclear. One protein that has proven to be essential in placentation is the peroxisome proliferator-activated receptor γ (PPARγ), which is expressed in the nuclei of extravillous cytotrophoblasts (EVCTs) in the first trimester and villous cytotrophoblasts (VCTs) throughout pregnancy. Here, we aimed to explore the genome-wide effects of PPARγ on EVCTs and VCTs via treatment with the PPARγ-agonist rosiglitazone. EVCTs and VCTs were purified from human chorionic villi, cultured in vitro, and treated with rosiglitazone. The transcriptomes of both types of cells were then quantified using microarray profiling. Differentially expressed genes (DEGs) were filtered and submitted for gene ontology (GO) annotation and pathway analysis with ClueGO. The online tool STRING was used to predict PPARγ and DEG protein interactions, while iRegulon was used to predict the binding sites for PPARγ and DEG promoters. GO and pathway terms were compared between EVCTs and VCTs with clusterProfiler. Visualizations were prepared in Cytoscape. From our microarray data, 139 DEGs were detected in rosiglitazone-treated EVCTs (RT-EVCTs) and 197 DEGs in rosiglitazone-treated VCTs (RT-VCTs). Downstream annotation analysis revealed the similarities and differences between RT-EVCTs and RT-VCTs with respect to the biological processes, molecular functions, cellular components, and KEGG pathways affected by the treatment, as well as predicted binding sites for both protein-protein interactions and transcription factor-target gene interactions. These results provide a broad perspective of PPARγ-activated processes in trophoblasts; further analysis of the transcriptomic signatures of RT-EVCTs and RT-VCTs should open new avenues for future research and contribute to the discovery of possible drug-targeted genes or pathways in the human placenta.
Collapse
|
4
|
Ikeda Y, Tsuchiya H, Hama S, Kajimoto K, Kogure K. Resistin regulates the expression of plasminogen activator inhibitor-1 in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2014; 448:129-33. [PMID: 24667608 DOI: 10.1016/j.bbrc.2014.03.076] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/27/2022]
Abstract
Resistin and plasminogen activator inhibitor-1 (PAI-1) are adipokines, which are secreted from adipocytes. Increased plasma resistin and PAI-1 levels aggravate metabolic syndrome through exacerbation of insulin resistance and induction of chronic inflammation. However, the relationship between resistin and PAI-1 gene expression remains unclear. Previously, we found that resistin regulates lipid metabolism via carbohydrate responsive element-binding protein (ChREBP) during adipocyte maturation (Ikeda et al., 2013) [6]. In this study, to clarify the relationship between expression of resistin and PAI-1, PAI-1 expression in differentiated 3T3-L1 adipocytes was measured after transfection with anti-resistin siRNA. We found that PAI-1 gene expression and secreted PAI-1 protein were significantly decreased by resistin knockdown. Furthermore, phosphorylation of Akt, which can inhibit PAI-1 expression, was accelerated and the activity of protein phosphatase 2A (PP2A) was suppressed in resistin knockdown 3T3-L1 adipocytes. In addition, the expression of glucose transporter type 4, a ChREBP target gene, was reduced and was associated with inhibition of PP2A. The addition of culture medium collected from COS7 cells transfected with a resistin expression plasmid rescued the suppression of PAI-1 expression in resistin knockdown 3T3-L1 adipocytes. Our findings suggest that resistin regulates PAI-1 expression in 3T3-L1 adipocytes via Akt phosphorylation.
Collapse
Affiliation(s)
- Yoshito Ikeda
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Hiroyuki Tsuchiya
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Susumu Hama
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Kazuaki Kajimoto
- Laboratory of Innovative Nanomedicine, Graduate School of Pharmaceutical Sciences, Hokkaido University, Hokkaido 060-0808, Japan
| | - Kentaro Kogure
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| |
Collapse
|
5
|
Segond N, Degrelle SA, Berndt S, Clouqueur E, Rouault C, Saubamea B, Dessen P, Fong KSK, Csiszar K, Badet J, Evain-Brion D, Fournier T. Transcriptome analysis of PPARγ target genes reveals the involvement of lysyl oxidase in human placental cytotrophoblast invasion. PLoS One 2013; 8:e79413. [PMID: 24265769 PMCID: PMC3827157 DOI: 10.1371/journal.pone.0079413] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 09/24/2013] [Indexed: 12/14/2022] Open
Abstract
Human placental development is characterized by invasion of extravillous cytotrophoblasts (EVCTs) into the uterine wall during the first trimester of pregnancy. Peroxisome proliferator-activated receptor γ (PPARγ) plays a major role in placental development, and activation of PPARγ by its agonists results in inhibition of EVCT invasion in vitro. To identify PPARγ target genes, microarray analysis was performed using GeneChip technology on EVCT primary cultures obtained from first-trimester human placentas. Gene expression was compared in EVCTs treated with the PPARγ agonist rosiglitazone versus control. A total of 139 differentially regulated genes were identified, and changes in the expression of the following 8 genes were confirmed by reverse transcription-quantitative polymerase chain reaction: a disintegrin and metalloproteinase domain12 (ADAM12), connexin 43 (CX43), deleted in liver cancer 1 (DLC1), dipeptidyl peptidase 4 (DPP4), heme oxygenase 1 (HMOX-1), lysyl oxidase (LOX), plasminogen activator inhibitor 1 (PAI-1) and PPARγ. Among the upregulated genes, lysyl oxidase (LOX) was further analyzed. In the LOX family, only LOX, LOXL1 and LOXL2 mRNA expression was significantly upregulated in rosiglitazone-treated EVCTs. RNA and protein expression of the subfamily members LOX, LOXL1 and LOXL2 were analyzed by absolute RT-qPCR and western blotting, and localized by immunohistochemistry and immunofluorescence-confocal microscopy. LOX protein was immunodetected in the EVCT cytoplasm, while LOXL1 was found in the nucleus and nucleolus. No signal was detected for LOXL2 protein. Specific inhibition of LOX activity by β-aminopropionitrile in cell invasion assays led to an increase in EVCT invasiveness. These results suggest that LOX, LOXL1 and LOXL2 are downstream PPARγ targets and that LOX activity is a negative regulator of trophoblastic cell invasion.
Collapse
Affiliation(s)
- Nadine Segond
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Séverine A. Degrelle
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Sarah Berndt
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Elodie Clouqueur
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Christine Rouault
- INSERM, UMR 872, Equipe 7, Paris, France
- Université Pierre et Marie Curie, Paris, France
| | - Bruno Saubamea
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- INSERM, U705, Paris, France
- CNRS, UMR 8206, Paris, France
| | | | - Keith S. K. Fong
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Katalin Csiszar
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Josette Badet
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Danièle Evain-Brion
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| | - Thierry Fournier
- INSERM, UMR-S767, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- PremUP Foundation, Paris, France
| |
Collapse
|
6
|
Oishi K, Tomita T, Itoh N, Ohkura N. PPARγ activation induces acute PAI-1 gene expression in the liver but not in adipose tissues of diabetic model mice. Thromb Res 2011; 128:e81-5. [DOI: 10.1016/j.thromres.2011.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 05/20/2011] [Accepted: 06/21/2011] [Indexed: 10/17/2022]
|
7
|
Park UH, Yoon SK, Park T, Kim EJ, Um SJ. Additional sex comb-like (ASXL) proteins 1 and 2 play opposite roles in adipogenesis via reciprocal regulation of peroxisome proliferator-activated receptor {gamma}. J Biol Chem 2010; 286:1354-63. [PMID: 21047783 DOI: 10.1074/jbc.m110.177816] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our previous studies have suggested that the mammalian additional sex comb-like 1 protein functions as a coactivator or repressor of retinoic acid receptors in a cell-specific manner. Here, we investigated the roles of additional sex comb-like 1 proteins in regulating peroxisome proliferator-activated receptors (PPARs). In pulldown assays in vitro and in immunoprecipitation assays in vivo, ASXL1 and its paralog, ASXL2, interacted with PPARα and PPARγ. In 3T3-L1 preadipocyte cells, overexpression of ASXL1 inhibited the induction of PPARγ activity by rosiglitazone, as shown by transcription assays, and completely suppressed adipogenesis, as shown by Oil Red O staining. In contrast, overexpression of ASXL2 greatly enhanced rosiglitazone-induced PPARγ activity and enhanced adipogenesis. Deletion of the heterochromatin protein 1 (HP1)-binding domain from ASXL1 caused the mutant protein to enhance adipogenesis similarly to ASXL2, indicating that HP1 binding is required for the adipogenesis-suppressing activity of ASXL1. Adipocyte differentiation was associated with a gradual decrease in ASXL1 expression but did not affect ASXL2 expression. Knockdown of ASXL1 and ASXL2 had reciprocal effects on adipogenesis. In chromatin immunoprecipitation assays in 3T3-L1 cells, ASXL1 occupied the promoter of the PPARγ target gene aP2 together with HP1α and Lys-9-methylated histone H3, whereas ASXL2 occupied the aP2 promoter together with histone-lysine N-methyltransferase MLL1 and Lys-9-acetylated and Lys-4-methylated H3 histones. Finally, microarray analysis demonstrated that ASXL1 represses, whereas ASXL2 increases, the expression of adipogenic genes, most of which are PPARγ targets. These results suggest that members of the additional sex comb-like family provide complex regulation of adipogenesis via differential modulation of PPARγ activity.
Collapse
Affiliation(s)
- Ui-Hyun Park
- Department of Bioscience and Biotechnology, BK21 Graduate Program, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747, Korea
| | | | | | | | | |
Collapse
|
8
|
Hayashida S, Kuramoto Y, Koyanagi S, Oishi K, Fujiki J, Matsunaga N, Ikeda E, Ohdo S, Shimeno H, Soeda S. Proxisome proliferator-activated receptor-α mediates high-fat, diet-enhanced daily oscillation of plasminogen activator inhibitor-1 activity in mice. Chronobiol Int 2010; 27:1735-53. [PMID: 20969520 DOI: 10.3109/07420528.2010.515324] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Acute thrombotic events frequently occur in the early morning among hyperlipidemic patients. The activity of plasminogen activator inhibitor-1 (PAI-1), a potent inhibitor of the fibrinolytic system, oscillates daily, and this is considered one mechanism that underlies the morning onset of acute thrombotic events in hyperlipidemia. Although several studies have reported the expression of the PAI-1 gene is under the control of the circadian clock system, the molecular mechanism of the circadian transactivation of PAI-1 gene under hyperlipidemic conditions remains to be elucidated. Here, the authors investigated whether hyperlipidemia induced by a high-fat diet (HFD) enhances the daily oscillation of plasma PAI-1 activity in mice. The mRNA levels of the PAI-1 gene were increased and rhythmically fluctuated with high-oscillation amplitude in the livers of wild-type mice fed with the HFD. Circadian expression of proxisome proliferator-activated receptor-α (PPARα) mRNA was also augmented as well as that of PAI-1. Chromatin immunoprecipitation showed the HFD-induced hyperlipidemia significantly increased the binding of PPARα to the PAI-1 promoter. Luciferase reporter analysis using primary hepatocytes revealed CLOCK/BMAL1-mediated PAI-1 promoter activity was synergistically enhanced by cotransfection with PPARα/retinoid X receptor-α (RXRα), and this synergistic transactivation was repressed by negative limbs of the circadian clock, PERIOD2 and CRYPTOCHROME1. As expected, HFD-induced PAI-1 mRNA expression was significantly attenuated in PPARα-null mice. These results suggest a molecular link between the circadian clock and lipid metabolism system in the regulation of PAI-1 gene expression, and provide an aid for understanding why hyperlipidemia increases the risk of acute thrombotic events in the morning.
Collapse
Affiliation(s)
- Satoru Hayashida
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma Jonan-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Oishi K, Uchida D, Ohkura N, Horie S. PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPARγ activation in the liver. Biochem Biophys Res Commun 2010; 401:313-8. [DOI: 10.1016/j.bbrc.2010.09.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 09/14/2010] [Indexed: 01/06/2023]
|
10
|
Oishi K, Ohkura N. Strain- and tissue-dependent induction of plasminogen activator inhibitor-1 gene expression in fasted mice. Biol Pharm Bull 2010; 33:530-1. [PMID: 20190422 DOI: 10.1248/bpb.33.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Plasminogen activator inhibitor-1 (PAI-1), the primary physiological inhibitor of plasminogen activators, is an important contributor to hypofibrinolysis in the presence of metabolic disorders such as diabetes and obesity. The C57BLKS/J (BKS) inbred mouse strain is a popular animal model of type 2 diabetes. We previously described that food deprivation (FD) induces adipose PAI-1 expression in both lean BKS mice and BKS-db/db mice carrying a mutation in the leptin receptor gene. To evaluate the effects of the background of mouse strains, we examined FD-induced PAI-1 expression in the liver, heart and epididymal adipose tissues of BKS, C57BL/6J (B6), C3H/HeN and ICR mice. We found that PAI-1 expression is significantly induced in the heart and liver of fasted mice, although levels of expression in adipose tissues are strain-dependent. The effect of FD on plasma PAI-1 levels is also strain-dependent. Genetic background seems to be an important factor that should be considered when investigating thrombosis and fibrinolysis relative to metabolic changes in mice.
Collapse
Affiliation(s)
- Katsutaka Oishi
- Clock Cell Biology Research Group, Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8566, Japan.
| | | |
Collapse
|
11
|
Oishi K, Koyanagi S, Matsunaga N, Kadota K, Ikeda E, Hayashida S, Kuramoto Y, Shimeno H, Soeda S, Ohdo S. Bezafibrate induces plasminogen activator inhibitor-1 gene expression in a CLOCK-dependent circadian manner. Mol Pharmacol 2010; 78:135-41. [PMID: 20400680 DOI: 10.1124/mol.110.064402] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A functional interaction between peroxisome proliferator-activated receptor alpha (PPARalpha) and components of the circadian clock has been suggested, but whether these transcriptional factors interact to regulate the expression of their target genes remains obscure. Here we used a PPARalpha ligand, bezafibrate, to search for PPARalpha-regulated genes that are expressed in a CLOCK-dependent circadian manner. Microarray analyses using hepatic RNA isolated from bezafibrate treated-wild type, Clock mutant (Clk/Clk), and PPARalpha-null mice revealed that 136 genes are transcriptionally regulated by PPARalpha in a CLOCK-dependent manner. Among them, we focused on the plasminogen activator inhibitor-1 (PAI-1) gene, because its expression typically shows circadian variation, and it has transcriptional response elements for both PPAR and CLOCK. The bezafibrate-induced expression of PAI-1 mRNA was attenuated in Clk/Clk mice and in PPARalpha-null mice. The protein levels of PPARalpha were reduced in Clk/Clk hepatocytes. However, the overexpression of PPARalpha could not rescue bezafibrate-induced PAI-1 expression in Clk/Clk hepatocytes, suggesting that impaired bezafibrate-induced PAI-1 expression in Clk/Clk mice is not due to reduced PPARalpha expression. Luciferase reporter and chromatin immunoprecipitation analyses using primary hepatocytes demonstrated that DNA binding of both PPARalpha and CLOCK is essential for bezafibrate-induced PAI-1 gene expression. Pull-down assays in vitro showed that both PPARalpha and its heterodimerized partner retinoic acid receptor-alpha can serve as potential interaction targets of CLOCK. The present findings revealed that molecular interaction between the circadian clock and the lipid metabolism regulator affects the bezafibrate-induced gene expression.
Collapse
Affiliation(s)
- Katsutaka Oishi
- Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Oishi K, Uchida D, Ohkura N, Doi R, Ishida N, Kadota K, Horie S. Ketogenic Diet Disrupts the Circadian Clock and Increases Hypofibrinolytic Risk by Inducing Expression of Plasminogen Activator Inhibitor-1. Arterioscler Thromb Vasc Biol 2009; 29:1571-7. [DOI: 10.1161/atvbaha.109.190140] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Katsutaka Oishi
- From the Clock Cell Biology Research Group (K.O., D.U., R.D., N.I.), Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; the Graduate School of Life and Environmental Sciences (D.U., R.D., N.I.), University of Tsukuba, Ibaraki, Japan; the Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences (N.O.), Teikyo University, Sagamihara, Kanagawa, Japan; the Agricultural Bioinformatics Research
| | - Daisuke Uchida
- From the Clock Cell Biology Research Group (K.O., D.U., R.D., N.I.), Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; the Graduate School of Life and Environmental Sciences (D.U., R.D., N.I.), University of Tsukuba, Ibaraki, Japan; the Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences (N.O.), Teikyo University, Sagamihara, Kanagawa, Japan; the Agricultural Bioinformatics Research
| | - Naoki Ohkura
- From the Clock Cell Biology Research Group (K.O., D.U., R.D., N.I.), Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; the Graduate School of Life and Environmental Sciences (D.U., R.D., N.I.), University of Tsukuba, Ibaraki, Japan; the Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences (N.O.), Teikyo University, Sagamihara, Kanagawa, Japan; the Agricultural Bioinformatics Research
| | - Ryosuke Doi
- From the Clock Cell Biology Research Group (K.O., D.U., R.D., N.I.), Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; the Graduate School of Life and Environmental Sciences (D.U., R.D., N.I.), University of Tsukuba, Ibaraki, Japan; the Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences (N.O.), Teikyo University, Sagamihara, Kanagawa, Japan; the Agricultural Bioinformatics Research
| | - Norio Ishida
- From the Clock Cell Biology Research Group (K.O., D.U., R.D., N.I.), Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; the Graduate School of Life and Environmental Sciences (D.U., R.D., N.I.), University of Tsukuba, Ibaraki, Japan; the Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences (N.O.), Teikyo University, Sagamihara, Kanagawa, Japan; the Agricultural Bioinformatics Research
| | - Koji Kadota
- From the Clock Cell Biology Research Group (K.O., D.U., R.D., N.I.), Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; the Graduate School of Life and Environmental Sciences (D.U., R.D., N.I.), University of Tsukuba, Ibaraki, Japan; the Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences (N.O.), Teikyo University, Sagamihara, Kanagawa, Japan; the Agricultural Bioinformatics Research
| | - Shuichi Horie
- From the Clock Cell Biology Research Group (K.O., D.U., R.D., N.I.), Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan; the Graduate School of Life and Environmental Sciences (D.U., R.D., N.I.), University of Tsukuba, Ibaraki, Japan; the Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences (N.O.), Teikyo University, Sagamihara, Kanagawa, Japan; the Agricultural Bioinformatics Research
| |
Collapse
|
13
|
Williams FMK, Carter AM, Kato B, Falchi M, Bathum L, Surdulescu G, Kyvik KO, Palotie A, Spector TD, Grant PJ. Identification of quantitative trait loci for fibrin clot phenotypes: the EuroCLOT study. Arterioscler Thromb Vasc Biol 2009; 29:600-5. [PMID: 19150881 PMCID: PMC3508477 DOI: 10.1161/atvbaha.108.178103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Fibrin makes up the structural basis of an occlusive arterial thrombus, and variability in fibrin phenotype relates to cardiovascular risk. The aims of the current study from the EU consortium EuroCLOT were to (1) determine the heritability of fibrin phenotypes and (2) identify QTLs associated with fibrin phenotypes. METHODS AND RESULTS 447 dizygotic (DZ) and 460 monozygotic (MZ) pairs of healthy UK white female twins and 199 DZ twin pairs from Denmark were studied. D-dimer, an indicator of fibrin turnover, was measured by ELISA and measures of clot formation, morphology, and lysis were determined by turbidimetric assays. Heritability estimates and genome-wide linkage analysis were performed. Estimates of heritability for d-dimer and turbidometric variables were in the range 17% to 46%, with highest levels for maximal absorbance which provides an estimate of clot density. Genome-wide linkage analysis revealed 6 significant regions with LOD >3 on 5 chromosomes (5, 6, 9, 16, and 17). CONCLUSIONS The results indicate a significant genetic contribution to variability in fibrin phenotypes and highlight regions in the human genome which warrant further investigation in relation to ischemic cardiovascular disorders and their therapy.
Collapse
Affiliation(s)
- Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Hospital, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Zandbergen F, Plutzky J. PPARalpha in atherosclerosis and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:972-82. [PMID: 17631413 PMCID: PMC2083576 DOI: 10.1016/j.bbalip.2007.04.021] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 04/30/2007] [Indexed: 02/01/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha is a nuclear receptor activated by natural ligands such as fatty acids as well as by synthetic ligands such as fibrates currently used to treat dyslipidemia. PPARalpha regulates the expression of genes encoding proteins that are involved in lipid metabolism, fatty acid oxidation, and glucose homeostasis, thereby improving markers for atherosclerosis and insulin resistance. In addition, PPARalpha exerts anti-inflammatory effects both in the vascular wall and the liver. Here we provide an overview of the mechanisms through which PPARalpha affects the initiation and progression of atherosclerosis, with emphasis on the modulation of atherosclerosis-associated inflammatory responses. PPARalpha activation interferes with early steps in atherosclerosis by reducing leukocyte adhesion to activated endothelial cells of the arterial vessel wall and inhibiting subsequent transendothelial leukocyte migration. In later stages of atherosclerosis, evidence suggests activation of PPARalpha inhibits the formation of macrophage foam cells by regulating expression of genes involved in reverse cholesterol transport, formation of reactive oxygen species (ROS), and associated lipoprotein oxidative modification among others. Furthermore, PPARalpha may increase the stability of atherosclerotic plaques and limit plaque thrombogenicity. These various effects may be linked to the generation of PPARalpha ligands by endogenous mechanisms of lipoprotein metabolism. In spite of this dataset, other reports implicate PPARalpha in responses such as hypertension and diabetic cardiomyopathy. Although some clinical trials data with fibrates suggest that fibrates may decrease cardiovascular events, other studies have been less clear, in terms of benefit. Independent of the clinical effects of currently used drugs purported to achieve PPARalpha, extensive data establish the importance of PPARalpha in the transcriptional regulation of lipid metabolism, atherosclerosis, and inflammation.
Collapse
Affiliation(s)
- Fokko Zandbergen
- From the Donald W. Reynolds Cardiovascular Clinical Research Center, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, U.S.A
| | - Jorge Plutzky
- From the Donald W. Reynolds Cardiovascular Clinical Research Center, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, U.S.A
| |
Collapse
|