1
|
Silva HB, Rodrigues DC, Andrade R, Teixeira GHGSF, Stelling MP, Ponte CG, Nascimento JHM, Campos de Carvalho AC, Medei E. Expression of potassium channels is relevant for cell survival and migration in a murine bone marrow stromal cell line. J Cell Physiol 2019; 234:18086-18097. [PMID: 30887515 DOI: 10.1002/jcp.28441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/07/2019] [Accepted: 02/14/2019] [Indexed: 02/05/2023]
Abstract
S17 is a clonogenic bone marrow stromal (BMS) cell line derived from mouse that has been extensively used to assess both human and murine hematopoiesis support capacity. However, very little is known about the expression of potassium ion channels and their function in cell survival and migration in these cells. Thus, the present study was designed to characterize potassium ion channels using electrophysiological and molecular biological approaches in S17 BMS cells. The whole-cell configuration of the patch clamp technique has been applied to identify potassium ion currents and reverse transcription polymerase chain reaction (RT-PCR) used to determine their molecular identities. Based on gating kinetics and pharmacological modulation of the macroscopic currents we found the presence of four functional potassium ion channels in S17 BMS cells. These include a current rapidly activated and inactivated, tetraethylammonium-sensitive, (IKV ) in most (50%) cells; a fast activated and rapidly inactivating A-type K + current (IK A -like); a delayed rectifier K + current (IK DR ) and an inward rectifier potassium current (IK IR ), found in, respectively 4.5%, 26% and 24% of these cells. RT-PCR confirmed the presence of mRNA transcripts for the alpha subunit of the corresponding functional ion channels. Additionally, functional assays were performed to investigate the importance of potassium currents in cell survival and migration. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide analyses revealed a reduction in cell viability, while wound healing assays revealed reduced migration potential in cells incubated with different potassium channel blockers. In conclusion, our data suggested that potassium currents might play a role in the maintenance of overall S17 cell ionic homeostasis directly affecting cell survival and migration.
Collapse
Affiliation(s)
- Henrique B Silva
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Center for Neuroscience and Cell Biology, University of Coimbra Rua Larga, Faculty of Medicine, Coimbra, Portugal
| | - Deivid C Rodrigues
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Raiana Andrade
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel H G S F Teixeira
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana P Stelling
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Cristiano G Ponte
- Federal Institute of Education, Science and Technology of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José H M Nascimento
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Emiliano Medei
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Li L, Yang S, Zhang Y, Ji D, Jin Z, Duan X. ATP6V1H regulates the growth and differentiation of bone marrow stromal cells. Biochem Biophys Res Commun 2018; 502:84-90. [DOI: 10.1016/j.bbrc.2018.05.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/18/2018] [Indexed: 02/04/2023]
|
3
|
Calcium-gated K+ channels of the KCa1.1- and KCa3.1-type couple intracellular Ca2+ signals to membrane hyperpolarization in mesenchymal stromal cells from the human adipose tissue. Pflugers Arch 2016; 469:349-362. [DOI: 10.1007/s00424-016-1932-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 01/06/2023]
|
4
|
Forostyak O, Butenko O, Anderova M, Forostyak S, Sykova E, Verkhratsky A, Dayanithi G. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res 2016; 16:622-34. [PMID: 27062357 DOI: 10.1016/j.scr.2016.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 01/09/2023] Open
Abstract
Adherent, fibroblastic cells from different tissues are thought to contain subsets of tissue-specific stem/progenitor cells (often called mesenchymal stem cells). These cells display similar cell surface characteristics based on their fibroblastic nature, but also exhibit differences in molecular phenotype, growth rate, and their ability to differentiate into various cell phenotypes. The mechanisms underlying these differences remain poorly understood. We analyzed Ca(2+) signals and membrane properties in rat adipose-derived stromal cells (ADSCs) and bone marrow stromal cells (BMSCs) in basal conditions, and then following a switch into medium that contains factors known to modify their character. Modified ADSCs (mADSCs) expressed L-type Ca(2+) channels whereas both L- and P/Q- channels were operational in mBMSCs. Both mADSCs and mBMSCs possessed functional endoplasmic reticulum Ca(2+) stores, expressed ryanodine receptor-1 and -3, and exhibited spontaneous [Ca(2+)]i oscillations. The mBMSCs expressed P2X7 purinoceptors; the mADSCs expressed both P2X (but not P2X7) and P2Y (but not P2Y1) receptors. Both types of stromal cells exhibited [Ca(2+)]i responses to vasopressin (AVP) and expressed V1 type receptors. Functional oxytocin (OT) receptors were, in contrast, expressed only in modified ADSCs and BMSCs. AVP and OT-induced [Ca(2+)]i responses were dose-dependent and were blocked by their respective specific receptor antagonists. Electrophysiological data revealed that passive ion currents dominated the membrane conductance in ADSCs and BMSCs. Medium modification led to a significant shift in the reversal potential of passive currents from -40 to -50mV in cells in basal to -80mV in modified cells. Hence membrane conductance was mediated by non-selective channels in cells in basal conditions, whereas in modified medium conditions, it was associated with K(+)-selective channels. Our results indicate that modification of ADSCs and BMSCs by alteration in medium formulation is associated with significant changes in their Ca(2+) signaling and membrane properties.
Collapse
Affiliation(s)
- Oksana Forostyak
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic
| | - Olena Butenko
- Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic.
| | - Miroslava Anderova
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Cellular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Serhiy Forostyak
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Eva Sykova
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, Prague 15006, Czech Republic; Department of Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic
| | - Alexei Verkhratsky
- University of Manchester, School of Biological Sciences, D.4417 Michael Smith Building, Oxford Road, Manchester M13 9PT, UK; Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain; University of Nizhny Novgorod, Nizhny Novgorod 603022, Russia
| | - Govindan Dayanithi
- Department of Molecular Neurophysiology, Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, Prague 14220, Czech Republic; Institut National de la Santé et de la Recherche Médicale-U1198, Université Montpellier, Montpellier 34095, France; Ecole Pratique des Hautes Etudes-Sorbonne, Les Patios Saint-Jacques, 4-14 rue Ferrus, 75014 Paris, France.
| |
Collapse
|
5
|
Histamine-induced Ca²⁺ signalling is mediated by TRPM4 channels in human adipose-derived stem cells. Biochem J 2014; 463:123-34. [PMID: 25001294 DOI: 10.1042/bj20140065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intracellular Ca2+ oscillations are frequently observed during stem cell differentiation, and there is evidence that it may control adipogenesis. The transient receptor potential melastatin 4 channel (TRPM4) is a key regulator of Ca2+ signals in excitable and non-excitable cells. However, its role in human adipose-derived stem cells (hASCs), in particular during adipogenesis, is unknown. We have investigated TRPM4 in hASCs and examined its impact on histamine-induced Ca2+ signalling and adipogenesis. Using reverse transcription (RT)-PCR, we have identified TRPM4 gene expression in hASCs and human adipose tissue. Electrophysiological recordings revealed currents with the characteristics of those reported for the channel. Furthermore, molecular suppression of TRPM4 with shRNA diminished the Ca2+ signals generated by histamine stimulation, mainly via histamine receptor 1 (H1) receptors. The increases in intracellular Ca2+ were due to influx via voltage-dependent Ca2+ channels (VDCCs) of the L-type (Ca(v)1.2) and release from the endoplasmic reticulum. Inhibition of TRPM4 by shRNA inhibited adipogenesis as indicated by the reduction in lipid droplet accumulation and adipocyte gene expression. These results suggest that TRPM4 is an important regulator of Ca2+ signals generated by histamine in hASCs and is required for adipogenesis.
Collapse
|
6
|
Zhang J, Ho JCY, Chan YC, Lian Q, Siu CW, Tse HF. Overexpression of myocardin induces partial transdifferentiation of human-induced pluripotent stem cell-derived mesenchymal stem cells into cardiomyocytes. Physiol Rep 2014; 2:e00237. [PMID: 24744906 PMCID: PMC3966242 DOI: 10.1002/phy2.237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) derived from human‐induced pluripotent stem cells (iPSCs) show superior proliferative capacity and therapeutic potential than those derived from bone marrow (BM). Ectopic expression of myocardin further improved the therapeutic potential of BM‐MSCs in a mouse model of myocardial infarction. The aim was of this study was to assess whether forced myocardin expression in iPSC‐MSCs could further enhance their transdifferentiation to cardiomyocytes and improve their electrophysiological properties for cardiac regeneration. Myocardin was overexpressed in iPSC‐MSCs using viral vectors (adenovirus or lentivirus). The expression of smooth muscle cell and cardiomyocyte markers, and ion channel genes was examined by reverse transcription‐polymerase chain reaction (RT‐PCR), immunofluorescence staining and patch clamp. The conduction velocity of the neonatal rat ventricular cardiomyocytes cocultured with iPSC‐MSC monolayer was measured by multielectrode arrays recording plate. Myocardin induced the expression of α‐MHC, GATA4, α‐actinin, cardiac MHC, MYH11, calponin, and SM α‐actin, but not cTnT, β‐MHC, and MLC2v in iPSC‐MSCs. Overexpression of myocardin in iPSC‐MSC enhanced the expression of SCN9A and CACNA1C, but reduced that of KCa3.1 and Kir2.2 in iPSC‐MSCs. Moreover, BKCa, IKir, ICl, Ito and INa.TTX were detected in iPSC‐MSC with myocardin overexpression; while only BKCa, IKir, ICl, IKDR, and IKCa were noted in iPSC‐MSC transfected with green florescence protein. Furthermore, the conduction velocity of iPSC‐MSC was significantly increased after myocardin overexpression. Overexpression of myocardin in iPSC‐MSCs resulted in partial transdifferentiation into cardiomyocytes phenotype and improved the electrical conduction during integration with mature cardiomyocytes. Forced myocardin expression in human‐induced pluripotent stem cell (hiPSC)‐derived mesenchymal stem cells lead to partial transdifferentiation into cardiomyocytes and smooth muscle cells phenotypes through modification in ion channel expression profile and electrical conduction velocity.
Collapse
Affiliation(s)
- Jiao Zhang
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Jenny Chung-Yee Ho
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yau-Chi Chan
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| | - Qizhou Lian
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China ; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chung-Wah Siu
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Division of Cardiology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China ; Research Centre of Heart, Brain, Hormone & Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
7
|
Calloni R, Viegas GS, Türck P, Bonatto D, Pegas Henriques JA. Mesenchymal stromal cells from unconventional model organisms. Cytotherapy 2013; 16:3-16. [PMID: 24113426 DOI: 10.1016/j.jcyt.2013.07.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 07/22/2013] [Accepted: 07/23/2013] [Indexed: 12/23/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent, plastic, adherent cells able to differentiate into osteoblasts, chondroblasts and adipocytes. MSCs can be isolated from many different body compartments of adult and fetal individuals. The most commonly studied MSCs are isolated from humans, mice and rats. However, studies are also being conducted with the use of MSCs that originate from different model organisms, such as cats, dogs, guinea pigs, ducks, chickens, buffalo, cattle, sheep, goats, horses, rabbits and pigs. MSCs derived from unconventional model organisms all present classic fibroblast-like morphology, the expression of MSC-associated cell surface markers such as CD44, CD73, CD90 and CD105 and the absence of CD34 and CD45. Moreover, these MSCs have the ability to differentiate into osteoblasts, chondroblasts and adipocytes. The MSCs isolated from unconventional model organisms are being studied for their potential to heal different tissue defects and injuries and for the development of scaffold compositions that improve the proliferation and differentiation of MSCs for tissue engineering.
Collapse
Affiliation(s)
- Raquel Calloni
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Gabrihel Stumpf Viegas
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Patrick Türck
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Diego Bonatto
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil.
| | - João Antonio Pegas Henriques
- Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Departamento de Biologia Molecular e Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| |
Collapse
|
8
|
Voltage-gated K+ channels in adipogenic differentiation of bone marrow-derived human mesenchymal stem cells. Acta Pharmacol Sin 2013; 34:129-36. [PMID: 23222271 DOI: 10.1038/aps.2012.142] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIM To determine the presence of voltage-gated K(+) (Kv) channels in bone marrow-derived human mesenchymal stem cells (hMSCs) and their impact on differentiation of hMSCs into adipocytes. METHODS For adipogenic differentiation, hMSCs were cultured in adipogenic medium for 22 d. The degrees of adipogenic differentiation were examined using Western blot, Oil Red O staining and Alamar assay. The expression levels of Kv channel subunits Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv2.1, Kv3.1, Kv3.3, Kv4.2, Kv4.3, and Kv9.3 in the cells were detected using RT-PCR and Western blot analysis. RESULTS The expression levels of Kv2.1 and Kv3.3 subunits were markedly increased on d 16 and 22. In contrast, the expression levels of other Kv channel subunits, including Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv4.2, Kv4.3, and Kv9.3, were decreased as undifferentiated hMSCs differentiated into adipocytes. Addition of the Kv channel blocker tetraethylammonium (TEA, 10 mmol/L) into the adipogenic medium for 6 or 12 d caused a significant decrease, although not complete, in lipid droplet formation and adipocyte fatty acid-binding protein 2 (aP(2)) expressions. Addition of the selective Kv2.1 channel blocker guangxitoxin (GxTX-1, 40 nmol/L) into the adipogenic medium for 21 d also suppressed adipogenic differentiation of the cells. CONCLUSION The results demonstrate that subsets of Kv channels including Kv2.1 and Kv3.3 may play an important role in the differentiation of hMSCs into adipocytes.
Collapse
|
9
|
Zhang J, Chan YC, Ho JCY, Siu CW, Lian Q, Tse HF. Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel. Am J Physiol Cell Physiol 2012; 303:C115-25. [DOI: 10.1152/ajpcell.00326.2011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The successful generation of a high yield of mesenchymal stem cells (MSCs) from human induced pluripotent stem cells (iPSCs) may represent an unlimited cell source with superior therapeutic benefits for tissue regeneration to bone marrow (BM)-derived MSCs. We investigated whether the differential expression of ion channels in iPSC-MSCs was responsible for their higher proliferation capacity than BM-MSCs. The expression of ion channels for K+, Na+, Ca2+, and Cl− was examined by RT-PCR. The electrophysiological properties of iPSC-MSCs and BM-MSCs were then compared by patch-clamp experiments to verify their functional roles. Significant mRNA expression of ion channel genes including KCa1.1, KCa3.1, KCNH1, Kir2.1, SCN9A, CACNA1C, and Clcn3 was observed in both human iPSC-MSCs and BM-MSCs, whereas Kir2.2 and Kir2.3 were only detected in human iPSC-MSCs. Five types of currents [big-conductance Ca2+-activated K+ current (BKCa), delayed rectifier K+ current ( IKDR), inwardly rectifying K+ current ( IKir), Ca2+-activated K+ current ( IKCa), and chloride current ( ICl)] were found in iPSC-MSCs (83%, 47%, 11%, 5%, and 4%, respectively) but only four of them (BKCa, IKDR, IKir, and IKCa) were identified in BM-MSCs (76%, 25%, 22%, and 11%, respectively). Cell proliferation was examined with MTT or bromodeoxyuridine assay, and doubling times were 2.66 and 3.72 days for iPSC-MSCs and BM-MSCs, respectively, showing a 1.4-fold discrepancy. Blockade of IKDR with short hairpin RNA or human ether-à-go-go 1 (hEAG1) channel blockers, 4-AP and astemizole, significantly reduced the rate of proliferation of human iPSC-MSCs. These treatments also decreased the rate of proliferation of human BM-MSCs albeit to a lesser extent. These findings demonstrate that the hEAG1 channel plays a crucial role in controlling the proliferation rate of human iPSC-MSCs and to a lesser extent in BM-MSCs.
Collapse
Affiliation(s)
- Jiao Zhang
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Yau-Chi Chan
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
| | - Jenny Chung-Yee Ho
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Chung-Wah Siu
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| | - Qizhou Lian
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
- Eye Institute, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, University of Hong Kong, Hong Kong
- Research Centre of Heart, Brain, Hormone, and Healthy Aging, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong; and
| |
Collapse
|
10
|
Firth AL, Yuan JXJ. "Ether-à-go-go" proliferation of iPSC-derived mesenchymal stem cells. Focus on "Regulation of cell proliferation of human induced pluripotent stem cell-derived mesenchymal stem cells via ether-à-go-go 1 (hEAG1) potassium channel". Am J Physiol Cell Physiol 2012; 303:C113-4. [PMID: 22572851 DOI: 10.1152/ajpcell.00160.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Tao R, Sun HY, Lau CP, Tse HF, Lee HC, Li GR. Cyclic ADP ribose is a novel regulator of intracellular Ca2+ oscillations in human bone marrow mesenchymal stem cells. J Cell Mol Med 2012; 15:2684-96. [PMID: 21251217 PMCID: PMC4373437 DOI: 10.1111/j.1582-4934.2011.01263.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone marrow mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine. However, the cellular biology of these cells is not fully understood. The present study characterizes the cyclic ADP-ribose (cADPR)-mediated Ca(2+) signals in human MSCs and finds that externally applied cADPR can increase the frequency of spontaneous intracellular Ca(2+) (Ca(2+) (i) ) oscillations. The increase was abrogated by a specific cADPR antagonist or an inositol trisphosphate receptor (IP3R) inhibitor, but not by ryanodine. In addition, the cADPR-induced increase of Ca(2+) (i) oscillation frequency was prevented by inhibitors of nucleoside transporter or by inhibitors of the transient receptor potential cation melastatin-2 (TRPM2) channel. RT-PCR revealed mRNAs for the nucleoside transporters, concentrative nucleoside transporters 1/2 and equilibrative nucleoside transporters 1/3, IP3R1/2/3 and the TRPM2 channel, but not those for ryanodine receptors and CD38 in human MSCs. Knockdown of the TRPM2 channel by specific short interference RNA abolished the effect of cADPR on the Ca(2+) (i) oscillation frequency, and prevented the stimulation of proliferation by cADPR. Moreover, cADPR remarkably increased phosphorylated extracellular-signal-regulated kinases 1/2 (ERK1/2), but not Akt or p38 mitogen-activated protein kinase (MAPK). However, cADPR had no effect on adipogenesis or osteogenesis in human MSCs. Our results indicate that cADPR is a novel regulator of Ca(2+) (i) oscillations in human MSCs. It permeates the cell membrane through the nucleoside transporters and increases Ca(2+) oscillation via activation of the TRPM2 channel, resulting in enhanced phosphorylation of ERK1/2 and, thereby, stimulation of human MSC proliferation. This study delineates an alternate signalling pathway of cADPR that is distinct from its well-established role of serving as a Ca(2+) messenger for mobilizing the internal Ca(2+) stores. Whether cADPR can be used clinically for stimulating marrow function in patients with marrow disorders remains to be further studied.
Collapse
Affiliation(s)
- Rong Tao
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | | | | | |
Collapse
|
12
|
Li GR, Deng XL. Functional ion channels in stem cells. World J Stem Cells 2011; 3:19-24. [PMID: 21607133 PMCID: PMC3097936 DOI: 10.4252/wjsc.v3.i3.19] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 01/14/2011] [Accepted: 01/21/2011] [Indexed: 02/06/2023] Open
Abstract
Bioelectrical signals generated by ion channels play crucial roles in excitation genesis and impulse conduction in excitable cells as well as in cell proliferation, migration and apoptosis in proliferative cells. Recent studies have demonstrated that multiple ion channels are heterogeneously present in different stem cells; however, patterns and phenotypes of ion channels are species- and/or origin-dependent. This editorial review focuses on the recent findings related to the expression of functional ion channels and the roles of these channels in regulation of cell proliferation in stem cells. Additional effort is required in the future to clarify the ion channel expression in different types of stem cells; special attention should be paid to the relationship between ion channels and stem cell proliferation, migration and differentiation.
Collapse
Affiliation(s)
- Gui-Rong Li
- Gui-Rong Li, Departments of Medicine and Physiology, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong, China
| | | |
Collapse
|
13
|
Lai VK, Galiñanes M. Protection of human myocardium by bone marrow cells: role of long-term administration of the mitochondrial K(ATP) channel opener nicorandil. J Surg Res 2010; 171:66-70. [PMID: 20400115 DOI: 10.1016/j.jss.2009.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/30/2009] [Accepted: 12/28/2009] [Indexed: 10/19/2022]
Abstract
BACKGROUND We have previously demonstrated that bone marrow cells (BMCs) afford myocardial protection as potent as ischemic preconditioning (IP) and also that the myocardium of patients treated with the mitoK(ATP) channel opener nicorandil cannot be protected by IP. Here, we investigated whether nicorandil influences the cardioprotection elicited by BMCs and whether any loss in protection can be rescued by naïve allogenic BMCs. MATERIALS AND METHODS BMCs and right atrial appendage were obtained from patients on long-term treatment and nontreated with nicorandil. The atrial myocardium was subjected to 90 min ischemia/120 min reoxygenation at 37°C in the presence and absence of autologous and allogenic BMCs. Some muscles were subjected to IP prior to ischemia and served as positive controls. Tissue injury was assessed by creatine kinase released during reoxygenation, and cell necrosis and apoptosis were determined by propidium iodide and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). RESULTS Creatine kinase (CK) release and cell necrosis and apoptosis induced by ischemia were not significantly reduced by IP in the myocardium from nicorandil subjects and values were also unaffected by the co-incubation with autologous or allogenic BMCs from subjects not treated with nicorandil (naïve BMCs). However, when the myocardium from subjects not treated with nicorandil was co-incubated with autologous BMCs or with allogenic BMCs from subjects treated with nicorandil, there was a similar significant reduction in CK release, cell necrosis and apoptosis. CONCLUSIONS The cardioprotective properties of BMCs from subjects treated with the mitoK(ATP) channel opener nicorandil are preserved; however, the myocardium of these patients cannot benefit from the cardioprotective effect of BMCs due to an unresponsive myocardium.
Collapse
Affiliation(s)
- Vien Khach Lai
- Cardiac Surgery Unit, Department of Cardiovascular Sciences, University of Leicester, United Kingdom
| | | |
Collapse
|
14
|
Han Y, Chen JD, Liu ZM, Zhou Y, Xia JH, Du XL, Jin MW. Functional ion channels in mouse cardiac c-kit(+) cells. Am J Physiol Cell Physiol 2010; 298:C1109-17. [PMID: 20130208 DOI: 10.1152/ajpcell.00207.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cardiac c-kit(+) cells are generally believed to be the major population of stem/progenitor cells in the heart and can be used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not understood in this type of cells. The present study was designed to investigate functional ion channels in undifferentiated mouse cardiac c-kit(+) cells using approaches of whole cell patch voltage clamp, RT-PCR, and cell proliferation assay. It was found that three types of ionic currents were present in mouse cardiac c-kit(+) cells, including a delayed rectifier K(+) current (IK(DR)) inhibited by 4-aminopyridine (4-AP), an inward rectifier K(+) current (I(Kir)) decreased by Ba(2+), and a volume-sensitive chloride current (I(Cl.vol)) inhibited by 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB). RT-PCR revealed that the corresponding ion channel genes, Kv1.1, Kv1.2, and Kv1.6 (for IK(DR)), Kir.1.1, Kir2.1, and Kir2.2 (likely responsible for I(Kir)), and Clcn3 (for I(Cl.vol)), were significant in mouse cardiac c-kit(+) cells. The inhibition of I(Cl.vol) with NPPB and niflumic acid, but not IK(DR) with 4-AP and tetraethylammonium, reduced cell proliferation and accumulated the cell progression at G(0)/G(1) phase in mouse cardiac c-kit(+) cells. Our results demonstrate that three types of functional ion channel currents (i.e., IK(DR), I(Kir), and I(Cl.vol)) are present in mouse cardiac c-kit(+) cells, and I(Cl.vol) participates in regulating cell proliferation.
Collapse
Affiliation(s)
- Yi Han
- Dept. of Pharmacology, Tongji Medical College, Huazhong Univ. of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Jiang P, Rushing SN, Kong CW, Fu J, Lieu DKT, Chan CW, Deng W, Li RA. Electrophysiological properties of human induced pluripotent stem cells. Am J Physiol Cell Physiol 2009; 298:C486-95. [PMID: 19955484 DOI: 10.1152/ajpcell.00251.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human embryonic stem cells (hESCs) can self-renew while maintaining their pluripotency. Direct reprogramming of adult somatic cells to induced pluripotent stem cells (iPSCs) has been reported. Although hESCs and human iPSCs have been shown to share a number of similarities, such basic properties as the electrophysiology of iPSCs have not been explored. Previously, we reported that several specialized ion channels are functionally expressed in hESCs. Using transcriptomic analyses as a guide, we observed tetraethylammonium (TEA)-sensitive (IC(50) = 3.3 +/- 2.7 mM) delayed rectifier K(+) currents (I(KDR)) in 105 of 110 single iPSCs (15.4 +/- 0.9 pF). I(KDR) in iPSCs displayed a current density of 7.6 +/- 3.8 pA/pF at +40 mV. The voltage for 50% activation (V(1/2)) was -7.9 +/- 2.0 mV, slope factor k = 9.1 +/- 1.5. However, Ca(2+)-activated K(+) current (I(KCa)), hyperpolarization-activated pacemaker current (I(f)), and voltage-gated sodium channel (Na(V)) and voltage-gated calcium channel (Ca(V)) currents could not be measured. TEA inhibited iPSC proliferation (EC(50) = 7.8 +/- 1.2 mM) and viability (EC(50) = 5.5 +/- 1.0 mM). By contrast, 4-aminopyridine (4-AP) inhibited viability (EC(50) = 4.5 +/- 0.5 mM) but had less effect on proliferation (EC(50) = 0.9 +/- 0.5 mM). Cell cycle analysis further revealed that K(+) channel blockers inhibited proliferation primarily by arresting the mitotic phase. TEA and 4-AP had no effect on iPSC differentiation as gauged by ability to form embryoid bodies and expression of germ layer markers after induction of differentiation. Neither iberiotoxin nor apamin had any function effects, consistent with the lack of I(KCa) in iPSCs. Our results reveal further differences and similarities between human iPSCs and hESCs. A better understanding of the basic biology of iPSCs may facilitate their ultimate clinical application.
Collapse
Affiliation(s)
- Peng Jiang
- Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children of North America, Sacramento, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Bonnet P, Awede B, Rochefort GY, Mirza A, Lermusiaux P, Domenech J, Eder V. Electrophysiological maturation of rat mesenchymal stem cells after induction of vascular smooth muscle cell differentiation in vitro. Stem Cells Dev 2009; 17:1131-40. [PMID: 19006452 DOI: 10.1089/scd.2007.0219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies have suggested that mesenchymal stem cells (MSCs) can differentiate into smooth muscle-like cells. However their functionalities remain questionable. The aim of this study was to investigate the functionality of MSCs differentiated into smooth muscle (SM) in vitro by SM-inducing medium. MSCs have been isolated from rat bone marrow and cultured in SM-inducing medium. After 21 days in culture, messenger RNA and specific SM proteins such as myosin heavy chain and myosin light chain 2 were expressed in the in vitro differentiated MSCs to a similar level of that in freshly isolated SM cells (SMCs). At the electrophysiological level, MSCs presented an outward K+ current with an IK(DR) component and IK(Ca) component. In vitro differentiation induced an enhancement of the IK(Ca) current to a level similar to that observed in aortic SMCs. Calcium homeostasis measurements revealed that both differentiated and undifferentiated MSCs responded to extracellular adenosine triphosphate (ATP) in a similar fashion to SMCs. However MSCs failed to contract in response to ATP. This data shows that despite specific SM protein expression and modification of electrophysiological properties similar to that of aortic SMCs, MSCs cultured in differentiation medium failed to display contractile properties. These results underline the necessity to find the ideal cultured conditions to induce complete SMC function.
Collapse
Affiliation(s)
- Pierre Bonnet
- LAB.P.ART. EA3852, Medicine Faculty, University François Rabelais, Tours, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Park KS, Choi MR, Jung KH, Kim S, Kim HY, Kim KS, Cha EJ, Kim Y, Chai YG. Diversity of ion channels in human bone marrow mesenchymal stem cells from amyotrophic lateral sclerosis patients. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2008; 12:337-42. [PMID: 19967076 DOI: 10.4196/kjpp.2008.12.6.337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Human bone marrow mesenchymal stem cells (hBM-MSCs) represent a potentially valuable cell type for clinical therapeutic applications. The present study was designed to evaluate the effect of long-term culturing (up to 10(th) passages) of hBM-MSCs from eight individual amyotrophic lateral sclerosis (ALS) patients, focusing on functional ion channels. All hBM-MSCs contain several MSCs markers with no significant differences, whereas the distribution of functional ion channels was shown to be different between cells. Four types of K(+) currents, including noise-like Ca(+2)-activated K(+) current (IK(Ca)), a transient outward K(+) current (I(to)), a delayed rectifier K(+) current (IK(DR)), and an inward-rectifier K(+) current (K(ir)) were heterogeneously present in these cells, and a TTX-sensitive Na(+) current (I(Na,TTX)) was also recorded. In the RT-PCR analysis, Kv1.1, heag1, Kv4.2, Kir2.1, MaxiK, and hNE-Na were detected. In particular, I(Na,TTX) showed a significant passage-dependent increase. This is the first report showing that functional ion channel profiling depend on the cellular passage of hBM-MSCs.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Division of Molecular and Life Sciences, Hanyang University, Ansan, 426-791, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Perez-Zoghbi JF, Karner C, Ito S, Shepherd M, Alrashdan Y, Sanderson MJ. Ion channel regulation of intracellular calcium and airway smooth muscle function. Pulm Pharmacol Ther 2008; 22:388-97. [PMID: 19007899 DOI: 10.1016/j.pupt.2008.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 09/03/2008] [Accepted: 09/28/2008] [Indexed: 12/11/2022]
Abstract
Airway hyper-responsiveness associated with asthma is mediated by airway smooth muscle cells (SMCs) and has a complicated etiology involving increases in cell contraction and proliferation and the secretion of inflammatory mediators. Although these pathological changes are diverse, a common feature associated with their regulation is a change in intracellular Ca(2+) concentration ([Ca(2+)](i)). Because the [Ca(2+)](i) itself is a function of the activity and expression of a variety of ion channels, in both the plasma membrane and sarcoplasmic reticulum of the SMC, the modification of this ion channel activity may predispose airway SMCs to hyper-responsiveness. Our objective is to review how ion channels determine the [Ca(2+)](i) and influence the function of airway SMCs and emphasize the potential of ion channels as sites for therapeutic approaches to asthma.
Collapse
Affiliation(s)
- Jose F Perez-Zoghbi
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Tao R, Lau CP, Tse HF, Li GR. Regulation of cell proliferation by intermediate-conductance Ca2+-activated potassium and volume-sensitive chloride channels in mouse mesenchymal stem cells. Am J Physiol Cell Physiol 2008; 295:C1409-16. [PMID: 18815226 DOI: 10.1152/ajpcell.00268.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) are a promising cell source for regenerative medicine; however, their cellular physiology is not fully understood. The present study aimed at exploring the potential roles of the two dominant functional ion channels, intermediate-conductance Ca(2+)-activated potassium (IK(Ca)) and volume-sensitive chloride (I(Cl.vol)) channels, in regulating proliferation of mouse MSCs. We found that inhibition of IK(Ca) with clotrimazole and I(Cl.vol) with 5-nitro-1-(3-phenylpropylamino) benzoic acid (NPPB) reduced cell proliferation in a concentration-dependent manner. Knockdown of KCa3.1 or Clcn3 with specific short interference (si)RNAs significantly reduced IK(Ca) or I(Cl.vol) density and channel protein and produced a remarkable suppression of cell proliferation (by 24.4 +/- 9.6% and 29.5 +/- 7.2%, respectively, P < 0.05 vs. controls). Flow cytometry analysis showed that mouse MSCs retained at G(0)/G(1) phase (control: 51.65 +/- 3.43%) by inhibiting IK(Ca) or I(Cl.vol) using clotrimazole (2 microM: 64.45 +/- 2.20%, P < 0.05) or NPPB (200 microM: 82.89 +/- 2.49%, P < 0.05) or the specific siRNAs, meanwhile distribution of cells in S phase was decreased. Western blot analysis revealed a reduced expression of the cell cycle regulatory proteins cyclin D1 and cyclin E. Collectively, our results have demonstrated that IK(Ca) and I(Cl.vol) channels regulate cell cycle progression and proliferation of mouse MSCs by modulating cyclin D1 and cyclin E expression.
Collapse
Affiliation(s)
- Rong Tao
- Dept. of Medicine, L8-01, Laboratory Block, FMB, The Univ. of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong SAR China
| | | | | | | |
Collapse
|
20
|
Zwart I, Hill AJ, Girdlestone J, Manca MF, Navarrete R, Navarrete C, Jen LS. Analysis of neural potential of human umbilical cord blood-derived multipotent mesenchymal stem cells in response to a range of neurogenic stimuli. J Neurosci Res 2008; 86:1902-15. [PMID: 18338797 DOI: 10.1002/jnr.21649] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We investigated the neurogenic potential of full-term human umbilical cord blood (hUCB)-derived multipotent mesenchymal stem cells (MSCs) in response to neural induction media or coculture with rat neural cells. Phenotypic and functional changes were assessed by immunocytochemistry, RT-PCR, and whole-cell patch-clamp recordings. Naive MSCs expressed both mesodermal and ectodermal markers prior to neural induction. Exposure to retinoic acid, basic fibroblast growth factor, or cyclic adenosine monophosphate (cAMP) did not stimulate neural morphology, whereas exposure to dibutyryl cAMP and 3-isobutyl-1-methylxanthine stimulated a neuron-like morphology but also appeared to be cytotoxic. All protocols stimulated increases in expression of the neural precursor marker nestin, but expression of mature neuronal or glial markers MAP2 and GFAP was not observed. Nestin expression increases were serum level dependent. Electrophysiological properties of MSCs were studied with whole-cell patch-clamp recordings. The MSCs possessed no ionic currents typical of neurons before or after neural induction protocols. Coculture of hUCB-derived MSCs and rat neural cells induced some MSCs to adopt an astrocyte-like morphology and express GFAP protein and mRNA. Our data suggest hUCB-derived MSCs do not transdifferentiate into mature functioning neurons in response to the above neurogenic protocols; however, coculture with rat neural cells led to a minority adopting an astrocyte-like phenotype.
Collapse
Affiliation(s)
- Isabel Zwart
- Department of Cellular and Molecular neuroscience, Imperial College, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Tao R, Lau CP, Tse HF, Li GR. Functional ion channels in mouse bone marrow mesenchymal stem cells. Am J Physiol Cell Physiol 2007; 293:C1561-7. [PMID: 17699636 DOI: 10.1152/ajpcell.00240.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) are used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not fully understood. The present study was to investigate the functional ionic channels in undifferentiated mouse bone marrow MSCs using whole cell patch-voltage clamp technique, RT-PCR, and Western immunoblotting analysis. We found that three types of ionic currents were present in mouse MSCs, including a Ca2+-activated K+ current ( IKCa), an inwardly rectifying K+ current ( IKir), and a chloride current ( ICl). IKir was inhibited by Ba2+, and IKCa was activated by the Ca2+ ionophore A-23187 and inhibited by the intermediate-conductance IKCa channel blocker clotrimazole. ICl was activated by hyposmotic (0.8 T) conditions and inhibited by the chloride channel blockers DIDS and NPPB. The corresponding ion channel genes and proteins, KCa3.1 for IKCa, Kir2.1 for IKir, and Clcn3 for ICl, were confirmed by RT-PCR and Western immunoblotting analysis in mouse MSCs. These results demonstrate that three types of functional ion channel currents (i.e., IKir, IKCa, and ICl) are present in mouse bone marrow MSCs.
Collapse
Affiliation(s)
- Rong Tao
- Department of Medicine and Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | | | | |
Collapse
|
22
|
Deng XL, Lau CP, Lai K, Cheung KF, Lau GK, Li GR. Cell cycle-dependent expression of potassium channels and cell proliferation in rat mesenchymal stem cells from bone marrow. Cell Prolif 2007; 40:656-70. [PMID: 17877608 PMCID: PMC6496559 DOI: 10.1111/j.1365-2184.2007.00458.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Recently, our team has demonstrated that voltage-gated delayed rectifier K(+) current (IK(DR)) and Ca(2+)-activated K(+) current (I(KCa)) are present in rat bone marrow-derived mesenchymal stem cells; however, little is known of their physiological roles. The present study was designed to investigate whether functional expression of IK(DR) and I(KCa) would change with cell cycle progression, and whether they could regulate proliferation in undifferentiated rat mesenchymal stem cells (MSCs). MATERIALS AND METHODS Membrane potentials and ionic currents were recorded using whole-cell patch clamp technique, cell cycling was analysed by flow cytometry, cell proliferation was assayed with DNA incorporation method and the related genes were down-regulated by RNA interference (RNAi) and examined using RT-PCR. RESULTS It was found that membrane potential hyperpolarized, and cell size increased during the cell cycle. In addition, IK(DR) decreased, while I(KCa) increased during progress from G(1) to S phase. RT-PCR revealed that the mRNA levels of Kv1.2 and Kv2.1 (likely responsible for IK(DR)) reduced, whereas the mRNA level of KCa3.1 (responsible for intermediate-conductance I(KCa)) increased with the cell cycle progression. Down-regulation of Kv1.2, Kv2.1 or KCa3.1 with the specific RNAi, targeted to corresponding gene inhibited proliferation of rat MSCs. CONCLUSION These results demonstrate that membrane potential, IK(DR) and I(KCa) channels change with cell cycle progression and corresponding alteration of gene expression. IK(DR) and intermediate-conductance I(KCa) play an important role in maintaining membrane potential and they participate in modulation of proliferation in rat MSCs.
Collapse
Affiliation(s)
- X L Deng
- Department of Medicine, and Research Centre of Heart, Brain, Hormone and Healthy Ageing, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | | | | | | | | | | |
Collapse
|
23
|
Park KS, Jung KH, Kim SH, Kim KS, Choi MR, Kim Y, Chai YG. Functional Expression of Ion Channels in Mesenchymal Stem Cells Derived from Umbilical Cord Vein. Stem Cells 2007; 25:2044-52. [PMID: 17525238 DOI: 10.1634/stemcells.2006-0735] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cells have the ability to renew and differentiate into various lineages of mesenchymal tissues. We used undifferentiated human mesenchymal-like stem cells from human umbilical cord vein (hUC-MSCs), a cell line which contains several mesenchymal cell markers. We characterized functional ion channels in cultured hUC-MSCs with whole-cell patch clamp and reverse transcription-polymerase chain reaction (RT-PCR). Three types of outward current were found in these cells: the Ca(2+)-activated K(+) channel (IK(Ca)), a transient outward K(+) current (I(to)), and a delayed rectifier K(+) current (IK(DR)). IK(Ca) and IK(DR) were totally suppressed by tetraethylammonium, and IK(Ca) was sensitive to a specific blocker, iberiotoxin. I(to) was inhibited by 4-aminopyridine. Another type of inward rectifier K(+) current (K(ir)) was also detected in approximately 5% of hUC-MSCs. Elevation of external potassium ion concentration increased the K(ir) current amplitude and positively shifted its reversal potential. In addition, inward Na(+) current (I(Na)) was found in these cells ( approximately 30%); the current was blocked by tetrodotoxin and verapamil. In the RT-PCR analysis, Kv1.1, Kv4.2, Kv1.4, Kir2.1, heag1, MaxiK, hNE-Na, and TWIK-1 were detected. These results suggested that multiple functional ion channel currents, IK(Ca), IK(DR), I(to), I(Na), and K(ir), are expressed in hUC-MSCs. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Kyoung Sun Park
- Division of Molecular and Life Science, Hanyang University, Ansan, Korea
| | | | | | | | | | | | | |
Collapse
|
24
|
Gao Z, Sun HY, Lau CP, Chin-Wan Fung P, Li GR. Evidence for cystic fibrosis transmembrane conductance regulator chloride current in swine ventricular myocytes. J Mol Cell Cardiol 2006; 42:98-105. [PMID: 17112538 DOI: 10.1016/j.yjmcc.2006.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 09/25/2006] [Accepted: 10/02/2006] [Indexed: 11/28/2022]
Abstract
The present study investigated whether cAMP-dependent cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel current (i.e., I(Cl.CFTR) or I(Cl.cAMP)) would be expressed in pig cardiac myocytes using whole-cell patch technique and reverse transcription polymerase chain reaction (RT-PCR). It was found that the beta-adrenoceptor agonist isoproterenol activated a time-independent current in myocytes from the ventricle, but not the atrium of pig heart. Histamine and forskolin (an adenylate cyclase activator) induced a similar current in pig ventricular cells. The current induced by isoproterenol was blocked by the PKA inhibitor H-7, reduced by the replacement of external Cl(-) ion, and inhibited by the application of 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), but not 4'-diisothiocynatostilbene-2,2'-disulfonic acid (DIDS), typical of I(Cl.CFTR). I(Cl.CFTR) showed a small difference in regional myocytes across the left ventricular wall from epicardium to endocardium. Isoproterenol-induced current was 3.1+/-0.2 (n=33), 2.8+/-0.2 (n=25) and 2.3+/-0.2 pA/pF (n=31) respectively in subepicardial, midmyocardial, and subendocardial myocytes (P<0.05, subepicardium vs. subendocardium). RT-PCR and Western blotting analysis revealed that significant differences in CFTR channel mRNA and protein levels were present in atrial and ventricular cells, but not in regional ventricular cells across the ventricular wall from subepicardium to subendocardium. These results indicate that the functional CFTR channel (i.e., I(Cl.CFTR)) is present in ventricular myocytes, but not in atrial cells of pig heart.
Collapse
Affiliation(s)
- Zhan Gao
- Department of Medicine and Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
| | | | | | | | | |
Collapse
|