1
|
Abril AG, Carrera M, Pazos M. Marine Bioactive Compounds with Functional Role in Immunity and Food Allergy. Nutrients 2024; 16:2592. [PMID: 39203729 PMCID: PMC11357426 DOI: 10.3390/nu16162592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Food allergy, referred to as the atypical physiological overreaction of the immune system after exposure to specific food components, is considered one of the major concerns in food safety. The prevalence of this emerging worldwide problem has been increasing during the last decades, especially in industrialized countries, being estimated to affect 6-8% of young children and about 2-4% of adults. Marine organisms are an important source of bioactive substances with the potential to functionally improve the immune system, reduce food allergy sensitization and development, and even have an anti-allergic action in food allergy. The present investigation aims to be a comprehensive report of marine bioactive compounds with verified actions to improve food allergy and identified mechanisms of actions rather than be an exhaustive compilation of all investigations searching beneficial effects of marine compounds in FA. Particularly, this research highlights the capacity of bioactive components extracted from marine microbial, animal, algae, and microalgae sources, such as n-3 long-chain polyunsaturated fatty acids (LC-PUFA), polysaccharide, oligosaccharide, chondroitin, vitamin D, peptides, pigments, and polyphenols, to regulate the immune system, epigenetic regulation, inflammation, and gut dysbiosis that are essential factors in the sensitization and effector phases of food allergy. In conclusion, the marine ecosystem is an excellent source to provide foods with the capacity to improve the hypersensitivity induced against specific food allergens and also bioactive compounds with a potential pharmacological aptitude to be applied as anti-allergenic in food allergy.
Collapse
Affiliation(s)
- Ana G. Abril
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Santiago de Compostela, 15898 Santiago de Compostela, Spain;
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Mónica Carrera
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| | - Manuel Pazos
- Institute of Marine Research (IIM-CSIC), Spanish National Research Council (CSIC), 36208 Vigo, Spain;
| |
Collapse
|
2
|
The natural substances with anti-allergic properties in food allergy. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Wu N, Jin W, Zhao Y, Wang H, He S, Zhang W, Zhou J. Sulfated Fucogalactan From Laminaria Japonica Ameliorates β-Cell Failure by Attenuating Mitochondrial Dysfunction via SIRT1-PGC1-α Signaling Pathway Activation. Front Endocrinol (Lausanne) 2022; 13:881256. [PMID: 35909530 PMCID: PMC9326112 DOI: 10.3389/fendo.2022.881256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 11/22/2022] Open
Abstract
As mitochondrial metabolism is a major determinant of β-cell insulin secretion, mitochondrial dysfunction underlies β-cell failure and type 2 diabetes mellitus progression. An algal polysaccharide of Laminaria japonica, sulfated fucogalactan (SFG) displays various pharmacological effects in a variety of conditions, including metabolic disease. We investigated the protective effects of SFG against hydrogen peroxide (H2O2)-induced β-cell failure in MIN6 cells and islets. SFG significantly promoted the H2O2-inhibited proliferation in the cells and ameliorated their senescence, and potentiated β-cell function by regulating β-cell identity and the insulin exocytosis-related genes and proteins in H2O2-induced β-cells. SFG also attenuated mitochondrial dysfunction, including alterations in ATP content, mitochondrial respiratory chain genes and proteins expression, and reactive oxygen species and superoxide dismutase levels. Furthermore, SFG resulted in SIRT1-PGC1-α pathway activation and upregulated the downstream Nrf2 and Tfam. Taken together, the results show that SFG attenuates H2O2-induced β-cell failure by improving mitochondrial function via SIRT1-PGC1-α signaling pathway activation. Therefore, SFG is implicated as a potential agent for treating pancreatic β-cell failure.
Collapse
Affiliation(s)
- Nan Wu
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Yuchen Zhao
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Wang
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sunyue He
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjing Zhang
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqiang Zhou
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Ferreira MS, Resende DISP, Lobo JMS, Sousa E, Almeida IF. Marine Ingredients for Sensitive Skin: Market Overview. Mar Drugs 2021; 19:md19080464. [PMID: 34436303 PMCID: PMC8398991 DOI: 10.3390/md19080464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/19/2022] Open
Abstract
Marine ingredients are a source of new chemical entities with biological action, which is the reason why they have gained relevance in the cosmetic industry. The facial care category is the most relevant in this industry, and within it, the sensitive skin segment occupies a prominent position. This work analyzed the use of marine ingredients in 88 facial cosmetics for sensitive skin from multinational brands, as well as their composition and the scientific evidence that supports their efficacy. Marine ingredients were used in 27% of the cosmetic products for sensitive skin and included the species Laminaria ochroleuca, Ascophyllum nodosum (brown macroalgae), Asparagopsis armata (red macroalgae), and Chlorella vulgaris (microalgae). Carotenoids, polysaccharides, and lipids are the chemical classes highlighted in these preparations. Two ingredients, namely the Ascophyllum nodosum extract and Asparagopsis armata extracts, present clinical evidence supporting their use for sensitive skin. Overall, marine ingredients used in cosmetics for sensitive skin are proposed to reduce skin inflammation and improve the barrier function. Marine-derived preparations constitute promising active ingredients for sensitive skin cosmetic products. Their in-depth study, focusing on the extracted metabolites, randomized placebo-controlled studies including volunteers with sensitive skin, and the use of extraction methods that are more profitable may provide a great opportunity for the cosmetic industry.
Collapse
Affiliation(s)
- Marta Salvador Ferreira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.S.F.); (J.M.S.L.)
- UCIBIO–Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Diana I. S. P. Resende
- CIIMAR–Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (E.S.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - José M. Sousa Lobo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.S.F.); (J.M.S.L.)
- UCIBIO–Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Emília Sousa
- CIIMAR–Centro Interdisciplinar de Investigação Marinha e Ambiental, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; (D.I.S.P.R.); (E.S.)
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Isabel F. Almeida
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (M.S.F.); (J.M.S.L.)
- UCIBIO–Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: ; Tel.: +351-220-428
| |
Collapse
|
5
|
Abstract
Fucoidans are cell wall polysaccharides found in various species of brown seaweeds. They are fucose-containing sulfated polysaccharides (FCSPs) and comprise 5-20% of the algal dry weight. Fucoidans possess multiple bioactivities, including antioxidant, anticoagulant, antithrombotic, anti-inflammatory, antiviral, anti-lipidemic, anti-metastatic, anti-diabetic and anti-cancer effects. Dietary fucoidans provide small but constant amounts of FCSPs to the intestinal tract, which can reorganize the composition of commensal microbiota altered by FCSPs, and consequently control inflammation symptoms in the intestine. Although the bioactivities of fucoidans have been well described, there is limited evidence to implicate their effect on gut microbiota and bowel health. In this review, we summarize the recent studies that introduce the fundamental characteristics of various kinds of fucoidans and discuss their potential in altering commensal microorganisms and influencing intestinal diseases.
Collapse
Affiliation(s)
- Jin-Young Yang
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea;
| | - Sun Young Lim
- Division of Convergence on Marine Science, Korea Maritime & Ocean University, Busan 49112, Korea
| |
Collapse
|
6
|
Vo TS. The role of algal fucoidans in potential anti-allergic therapeutics. Int J Biol Macromol 2020; 165:1093-1098. [PMID: 33031853 DOI: 10.1016/j.ijbiomac.2020.09.252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
Allergic diseases are among the commonest causes of chronic ill-health and are rapidly rising the prevalence and complexity. Although the current drugs are efficacy for treatment of allergic diseases, however the extensive clinical use of these drugs has led to the diverse and undesirable side effects. Thus, the extensive studies of alternative anti-allergic agents from natural products are essential for a long-term purpose. Marine environment covers a huge source of extremely potential secondary metabolites for drug discovery. Among them, fucoidans from brown seaweeds have been evidenced to possess various biological activities and health benefit effects. Notably, a great deal of interest has been expressed regarding anti-allergic activity of fucoidans. Consequently, this contribution presents an overview of potential anti-allergic therapeutics of fucoidans from brown seaweeds to emphasize its functions in prevention as well as treatment of allergic diseases.
Collapse
Affiliation(s)
- Thanh Sang Vo
- Faculty of Food Technology, Thu Dau Mot University, Binh Duong province, Viet Nam.
| |
Collapse
|
7
|
Pradhan B, Patra S, Nayak R, Behera C, Dash SR, Nayak S, Sahu BB, Bhutia SK, Jena M. Multifunctional role of fucoidan, sulfated polysaccharides in human health and disease: A journey under the sea in pursuit of potent therapeutic agents. Int J Biol Macromol 2020; 164:4263-4278. [PMID: 32916197 DOI: 10.1016/j.ijbiomac.2020.09.019] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022]
Abstract
Fucoidan is a complex polysaccharide (molecular weight 10,000-100,000 Da) derived from brown algae which comprises of L-fucose and sulfate groups have potential as therapeutic diligences against several human diseases. The fucoidan has expanded a widespread range of pharmacological properties as an anti-inflammatory, anticoagulant, antiangiogenic, immunomodulatory, anti-adhesive, anticancer, antidiabetic, antiviral and anti-neurodegenerative agents owing to their diverse chemical conformation and potent antioxidant activity. The antioxidant and immunomodulatory activities of the fucoidan contribute towards their disease preventive potency through dynamic modulation of key intracellular signalling pathways, regulation of ROS accumulation, and maintenance of principal cell survival and death pathways. Additionally, it also reduces cancer-associated cachexia. Despite the wide range of therapeutic potency, the fucoidan is heavily regarded as an unexplored plethora of druggable entities in the current situation. The isolation, screening, biological application, pre-clinical, and clinical assessment along with large scale cost-effective production remain a foremost task to be assessed. Moreover, the chemical synthesis of the present bioactive drug with confirmational rearrangement for enhanced availability and bioactivity also need tenacious investigation. Hence, in the present review, we give attention to the source of isolation of fucoidan, their principle strategic deployment in disease prevention, and the mechanistic investigation of how it works to combat different diseases that can be used for future therapeutic intervention.
Collapse
Affiliation(s)
- Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Rabindra Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Soumya Ranjan Dash
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Sneha Nayak
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India
| | - Binod Bihari Sahu
- Department of Life Science, National Institute of Technology Rourkela, India
| | - Sujit K Bhutia
- Department of Life Science, National Institute of Technology Rourkela, India.
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India.
| |
Collapse
|
8
|
Herath KHINM, Kim HJ, Kim A, Sook CE, Lee BY, Jee Y. The Role of Fucoidans Isolated from the Sporophylls of Undaria pinnatifida against Particulate-Matter-Induced Allergic Airway Inflammation: Evidence of the Attenuation of Oxidative Stress and Inflammatory Responses. Molecules 2020; 25:E2869. [PMID: 32580518 PMCID: PMC7356913 DOI: 10.3390/molecules25122869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023] Open
Abstract
Ambient particulate matter (PM) is a critical environment pollutant that promotes the onset and aggravation of respiratory diseases such as asthma through airway inflammation and hypersecretion of mucus. In this study, we aimed to identify the effects of fucoidans isolated from sporophylls of Undaria pinnatifida on asthma symptoms such as the inflammatory response and mucus secretion using a mouse model. Balb/c mice, intraperitoneally sensitized with ovalbumin (OVA, 10 μg) dissolved in 200 µL saline and 2 mg Al(OH)3, were exposed to PM (5 mg/m3) for 7 consecutive days. In parallel, along with PM exposure, we orally administrated fucoidans (100, 400 mg/Kg) or prednisone (5 mg/Kg), an anti-inflammatory drug. We found that oral administration of fucoidans significantly attenuated PM-induced lipid peroxidation and infiltration of inflammatory cells like F4/80+ macrophages, Gr-1+ granulocytes, and CD4+ T lymphocytes. Fucoidans also attenuated the level of PM-exacerbated IL-4, a primitive cytokine released in Th2 mediated eosinophilic asthma. This further suppressed mast cell activation, degranulation and IgE synthesis of PM exposed mice. Interestingly, fucoidans attenuated PM-exacerbated mucus hypersecretion and goblet cell hyperplasia. Therefore, our results suggest that fucoidans are effective at alleviating PM-exacerbated allergic asthma symptoms by attenuating the airway inflammatory response and mucus hypersecretion.
Collapse
Affiliation(s)
| | - Hyo Jin Kim
- Department of Food Bioengineering, Jeju National University, 102 JeJudaehakno, Jeju 63243, Korea;
| | - Areum Kim
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (A.K.)
| | | | - Boo-Yong Lee
- Department of Biomedical Science, CHA University, Seongnam 463-836, Korea;
| | - Youngheun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Korea; (K.H.I.N.M.H.); (A.K.)
- Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| |
Collapse
|
9
|
Pratap K, Taki AC, Johnston EB, Lopata AL, Kamath SD. A Comprehensive Review on Natural Bioactive Compounds and Probiotics as Potential Therapeutics in Food Allergy Treatment. Front Immunol 2020; 11:996. [PMID: 32670266 PMCID: PMC7326084 DOI: 10.3389/fimmu.2020.00996] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Food allergy is rising at an alarming rate and is a major public health concern. Globally, food allergy affects over 500 million people, often starting in early childhood and increasingly reported in adults. Commercially, only one approved oral immunotherapy-based treatment is currently available and other allergen-based immunotherapeutic are being investigated in clinical studies. As an alternative approach, a substantial amount of research has been conducted on natural compounds and probiotics, focusing on the immune modes of action, and therapeutic uses of such sources to tackle various immune-related diseases. Food allergy is primarily mediated by IgE antibodies and the suppression of allergic symptoms seems to be mostly modulated through a reduction of allergen-specific IgE antibodies, upregulation of blocking IgG, and downregulation of effector cell activation (e.g., mast cells) or expression of T-helper 2 (Th-2) cytokines. A wide variety of investigations conducted in small animal models or cell-based systems have reported on the efficacy of natural bioactive compounds and probiotics as potential anti-allergic therapeutics. However, very few lead compounds, unlike anti-cancer and anti-microbial applications, have been selected for clinical trials in the treatment of food allergies. Natural products or probiotic-based approaches appear to reduce the symptoms and/or target specific pathways independent of the implicated food allergen. This broad range therapeutic approach essentially provides a major advantage as several different types of food allergens can be targeted with one approach and potentially associated with a lower cost of development. This review provides a brief overview of the immune mechanisms underlying food allergy and allergen-specific immunotherapy, followed by a comprehensive collection of current studies conducted to investigate the therapeutic applications of natural compounds and probiotics, including discussions of their mode of action and immunological aspects of their disease-modifying capabilities.
Collapse
Affiliation(s)
- Kunal Pratap
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Center for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
| | - Aya C Taki
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Elecia B Johnston
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Center for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Center for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
| | - Sandip D Kamath
- Molecular Allergy Research Laboratory, Discipline of Molecular and Cell Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia.,Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia.,Center for Molecular Therapeutics, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
10
|
Yang CH, Tian JJ, Ko WS, Shih CJ, Chiou YL. Oligo-fucoidan improved unbalance the Th1/Th2 and Treg/Th17 ratios in asthmatic patients: An ex vivo study. Exp Ther Med 2018; 17:3-10. [PMID: 30651758 PMCID: PMC6307516 DOI: 10.3892/etm.2018.6939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/06/2018] [Indexed: 12/13/2022] Open
Abstract
An imbalance in the helper T cells (Th)1/Th2 and regulatory T cells (Tregs)/Th17 ratios is believed to play a key role in asthmatic inflammatory responses. Fucoidan reportedly reduces the production of inflammatory factors. Nutritional intervention is an important tool in decreasing the severity of asthmatic disease. This study aimed to investigate the beneficial roles of oligo-fucoidan in balancing the T cell subtype ratios and reducing airway inflammation ex vivo. Peripheral blood mononuclear cells (PBMCs) were collected from 30 asthmatic subjects and 15 healthy subjects. Harvested PBMCs were stimulated and treated with or without oligo-fucoidan (100 or 500 µg/ml) for 48 h. Cell surface and intracellular cytokine markers were examined by flow cytometry. The pro-inflammatory factors in plasma and culture supernatants were measured using ELISA kits. We found that oligo-fucoidan increases the proportion of Th1 and Treg cells, but did not affect the proportion of Th2 and Th17 cells. Oligo-fucoidan also increased the levels of interferon-γ and interleukin-10. Thus, we concluded that oligo-fucoidan might improve the imbalance in Th1/Th2 and Treg/Th17 ratios to reduce airway inflammation, which could be a potential adjuvant therapy for allergic asthma.
Collapse
Affiliation(s)
- Chao-Huei Yang
- Department of Internal Medicine, Kuang-Tien General Hospital, Taichung 43302, Taiwan R.O.C
| | - Jing-Jing Tian
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 43302, Taiwan R.O.C
| | - Wang-Sheng Ko
- Department of Internal Medicine, Kuang-Tien General Hospital, Taichung 43302, Taiwan R.O.C.,Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 43302, Taiwan R.O.C
| | - Chia-Ju Shih
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 43302, Taiwan R.O.C
| | - Ya-Ling Chiou
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 43302, Taiwan R.O.C
| |
Collapse
|
11
|
Hachimura S, Totsuka M, Hosono A. Immunomodulation by food: impact on gut immunity and immune cell function. Biosci Biotechnol Biochem 2018; 82:584-599. [PMID: 29448897 DOI: 10.1080/09168451.2018.1433017] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have revealed that various food components affect the immune response. These components act on various immune cells, and their effects are mediated through the intestinal immune system and, in some cases, the intestinal microbiota. In this review, we describe the immunomodulating effects of various food components, including probiotics, prebiotics, polysaccharides, vitamins, minerals, fatty acids, peptides, amino acids and polyphenols. Some of these components enhance immune responses, leading to host defense against infection, whereas others inhibit immune responses, thus suppressing allergy and inflammation.
Collapse
Affiliation(s)
- Satoshi Hachimura
- a Research Center for Food Safety, Graduate School of Agricultural and Life Sciences , The University of Tokyo , Japan
| | - Mamoru Totsuka
- b Department of Food Science and Technology, Faculty of Applied Life Science , Nippon Veterinary and Life Science University , Japan
| | - Akira Hosono
- c Department of Food Bioscience and Biotechnology, College of Bioresource Sciences , Nihon University , Japan
| |
Collapse
|
12
|
Li P, Wang H, Shao Q, Kong B, Qu X. Fucoidan modulates cytokine production and migration of THP-1-derived macrophages via colony-stimulating factor-1. Mol Med Rep 2017; 15:2325-2332. [DOI: 10.3892/mmr.2017.6228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/02/2016] [Indexed: 11/06/2022] Open
|
13
|
Zaporozhets T, Besednova N. Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system: review. PHARMACEUTICAL BIOLOGY 2016; 54:3126-3135. [PMID: 27252012 DOI: 10.1080/13880209.2016.1185444] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/22/2015] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
CONTEXT Fucoidans are water-soluble, highly sulfated, branched homo- and hetero-polysaccharides derived from the fibrillar cell walls and intercellular spaces of brown seaweeds of the class Phaeophyceae. Fucoidans possess mimetic properties of the natural ligands of protein receptors and regulate functions of biological systems via key signaling molecules. OBJECTIVES The aim of this review was to collect and combine all available scientific literature about the potential use of the fucoidans for diseases of cardiovascular system. MATERIALS AND METHODS The review has been compiled using references from major databases such as Web of Science, PubMed, Scopus, Elsevier, Springer and Google Scholar (up to September 2015). After obtaining all reports from database (a total number is about 580), the papers were carefully analyzed in order to find data related to the topic of this review (129 references). RESULTS An exhaustive survey of literature revealed that fucoidans possess a broad spectrum of biological activity, including anti-coagulant, hypolipidemic, anti-thrombotic, anti-inflammatory, immunomodulatory, anti-tumor, anti-adhesive and anti-hypertensive properties. Numerous investigations of fucoidans in diseases of the cardiovascular system mainly focus on pleiotropic anti-inflammatory effects. Fucoidans also possess pro-angiogenic and pro-vasculogenic properties. CONCLUSION A great number of investigations in the past years have demonstrated that fucoidans has great potential for in-depth investigation of their effects on cardiovascular system. Through this review, the authors hope to attract the attention of researchers to use fucoidan as mimetic of natural ligand receptor protein with the view of developing new formulations with an improved therapeutic value.
Collapse
Affiliation(s)
- Tatyana Zaporozhets
- a Somov Institute of Epidemiology and Microbiology , Vladivostok , Russian Federation
| | - Natalia Besednova
- a Somov Institute of Epidemiology and Microbiology , Vladivostok , Russian Federation
| |
Collapse
|
14
|
Tanino Y, Hashimoto T, Ojima T, Mizuno M. F-fucoidan from Saccharina japonica is a novel inducer of galectin-9 and exhibits anti-allergic activity. J Clin Biochem Nutr 2016; 59:25-30. [PMID: 27499575 PMCID: PMC4933687 DOI: 10.3164/jcbn.15-144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/08/2016] [Indexed: 01/03/2023] Open
Abstract
Fucoidan is a sulfated polysaccharide from brown sea algae. In the present study, it was demonstrated that oral administration of F-fucoidan from Saccharina japonica possessed anti-allergic effects using the passive cutaneous anaphylaxis reaction, but not by intraperitoneal administration. The inhibitory mechanism was dependent on galectin-9, which belongs to a soluble lectin family that recognizes β-galactoside and prevents IgE binding to mast cells. The anti-allergy properties of F-fucoidan were cancelled by an intravenous dose of anti-galectin-9 antibody or lactose, which bind competitively with galectin-9 before the passive cutaneous anaphylaxis reaction. F-fucoidan increased the expression level of galectin-9 mRNA in intestinal epithelial cells and serum galectin-9 levels. Oral treatment with F-fucoidan suppressed allergic symptoms through the induction of galectin-9. This is the first report that F-fucoidan can induce the secretion of galectin-9.
Collapse
Affiliation(s)
- Yuka Tanino
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Hashimoto
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | - Takao Ojima
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate 041-8611, Japan
| | - Masashi Mizuno
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
15
|
Collins KG, Fitzgerald GF, Stanton C, Ross RP. Looking Beyond the Terrestrial: The Potential of Seaweed Derived Bioactives to Treat Non-Communicable Diseases. Mar Drugs 2016; 14:E60. [PMID: 26999166 PMCID: PMC4820313 DOI: 10.3390/md14030060] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/19/2016] [Accepted: 03/10/2016] [Indexed: 12/22/2022] Open
Abstract
Seaweeds are a large and diverse group of marine organisms that are commonly found in the maritime regions of the world. They are an excellent source of biologically active secondary metabolites and have been shown to exhibit a wide range of therapeutic properties, including anti-cancer, anti-oxidant, anti-inflammatory and anti-diabetic activities. Several Asian cultures have a strong tradition of using different varieties of seaweed extensively in cooking as well as in herbal medicines preparations. As such, seaweeds have been used to treat a wide variety of health conditions such as cancer, digestive problems, and renal disorders. Today, increasing numbers of people are adopting a "westernised lifestyle" characterised by low levels of physical exercise and excessive calorific and saturated fat intake. This has led to an increase in numbers of chronic Non-communicable diseases (NCDs) such as cancer, cardiovascular disease, and diabetes mellitus, being reported. Recently, NCDs have replaced communicable infectious diseases as the number one cause of human mortality. Current medical treatments for NCDs rely mainly on drugs that have been obtained from the terrestrial regions of the world, with the oceans and seas remaining largely an untapped reservoir for exploration. This review focuses on the potential of using seaweed derived bioactives including polysaccharides, antioxidants and fatty acids, amongst others, to treat chronic NCDs such as cancer, cardiovascular disease and diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Catherine Stanton
- Teagasc Moorepark, Fermoy, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| | - R Paul Ross
- Teagasc Moorepark, Fermoy, Cork, Ireland.
- APC Microbiome Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
16
|
Kim SY, Joo HG. Evaluation of adjuvant effects of fucoidan for improving vaccine efficacy. J Vet Sci 2014; 16:145-50. [PMID: 25549218 PMCID: PMC4483496 DOI: 10.4142/jvs.2015.16.2.145] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 11/20/2022] Open
Abstract
Fucoidan is a sulfated polysaccharide derived from brown seaweed, including Fucus vesiculosus. This compound is known to have immunostimulatory effects on various types of immune cells including macrophages and dendritic cells. A recent study described the application of fucoidan as a vaccine adjuvant. Vaccination is regarded as the most efficient prophylactic method for preventing harmful or epidemic diseases. To increase vaccine efficacy, effective adjuvants are needed. In the present study, we determined whether fucoidan can function as an adjuvant using vaccine antigens. Flow cytometric analysis revealed that fucoidan increases the expression of the activation markers major histocompatibility complex class II, cluster of differentiation (CD)25, and CD69 in spleen cells. In combination with Bordetella bronchiseptica antigen, fucoidan increased the viability and tumor necrosis factor-α production of spleen cells. Furthermore, fucoidan increased the in vivo production of antigen-specific antibodies in mice inoculated with Mycoplasma hyopneumoniae antigen. Overall, this study has provided valuable information about the use of fucoidan as a vaccine adjuvant.
Collapse
Affiliation(s)
- Su-Yeon Kim
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Korea
| | | |
Collapse
|
17
|
Vo TS, Ngo DH, Kang KH, Jung WK, Kim SK. The beneficial properties of marine polysaccharides in alleviation of allergic responses. Mol Nutr Food Res 2014; 59:129-38. [PMID: 25379652 DOI: 10.1002/mnfr.201400412] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/03/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022]
Abstract
Marine polysaccharides have been found as the principle component in cell wall structures of seaweeds or exoskeletons of crustaceans. Due to numerous pharmaceutical properties of marine polysaccharides such as antioxidant, anti-inflammatory, antiallergic, antitumor, antiobesity, antidiabetes, anticoagulant, antiviral, immunomodulatory, cardioprotective, and antihepatopathy activities, they have been applied in many fields of biomaterials, food, cosmetic, and pharmacology. Recently, several marine polysaccharides such alginate, porphyran, fucoidan, and chitin and its derivatives have been evidenced as downregulators of allergic responses due to enhancement of innate immune system, alteration of Th1/Th2 balance forward to Th1 cells, inhibition of IgE production, and suppression of mast cell degranulation. This contribution, therefore, focuses on antiallergic properties of marine polysaccharides and emphasizes their potential application as bioactive food ingredients as well as nutraceuticals for prevention of allergic disorders.
Collapse
Affiliation(s)
- Thanh-Sang Vo
- Marine Bioprocess Research Center, Pukyong National University, Busan, Republic of Korea
| | | | | | | | | |
Collapse
|
18
|
Jang JY, Moon SY, Joo HG. Differential effects of fucoidans with low and high molecular weight on the viability and function of spleen cells. Food Chem Toxicol 2014; 68:234-8. [PMID: 24681238 DOI: 10.1016/j.fct.2014.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 10/25/2022]
Abstract
Fucoidan is an edible sulfated polysaccharide purified from brown algae that has multiple biological activities. However, the effects of fucoidans of different molecular weights on immune cells have not been determined. Thus, we treated spleen cells with low- and high-molecular-weight fucoidans (LMF and HMF, respectively). Viability assays demonstrated that HMF enhanced the viability and prevented the death of spleen cells. Furthermore, functional analysis revealed that HMF significantly increased the production of interferon-γ and nitric oxide. In contrast, LMF had low activity and was relatively toxic to spleen cells. Taken together, these results indicate that HMF makes the greatest contribution to the immunostimulatory activity of fucoidan mixtures. Additionally, fucoidans with different molecular weights may have different effects on the viability and function of immune cells. This study increases our understanding of fucoidans, and may broaden their use in the basic research and clinical fields.
Collapse
Affiliation(s)
- Ji-Young Jang
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Sun-Young Moon
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea
| | - Hong-Gu Joo
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju National University, Jeju 690-756, Republic of Korea.
| |
Collapse
|
19
|
Yokoyama S, Hiramoto K, Fujikawa T, Kondo H, Konishi N, Sudo S, Iwashima M, Ooi K. Topical application of Corchorus olitorius leaf extract ameliorates atopic dermatitis in NC/Nga mice. ACTA ACUST UNITED AC 2014. [DOI: 10.7243/2053-5309-2-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
20
|
Vo TS, Kim SK. Marine-derived polysaccharides for regulation of allergic responses. ADVANCES IN FOOD AND NUTRITION RESEARCH 2014; 73:1-13. [PMID: 25300539 DOI: 10.1016/b978-0-12-800268-1.00001-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polysaccharides are macromolecules made up of many monosaccharides joined together by glycosidic bonds. Polysaccharides from marine sources are widely distributed as the principle component in cell wall structures of seaweeds or exoskeletons of crustaceans. So far, marine polysaccharides have been used in many fields of biomaterials, food, cosmetic, and pharmacology. Especially, numerous pharmaceutical properties of marine polysaccharides have been revealed such as antioxidant, anti-inflammatory, antiallergic, antitumor, antiobesity, antidiabetes, anticoagulant, antiviral, immunomodulatory, cardioprotective, antihepatopathy, antiuropathy, and antirenalpathy activities. Recently, several marine polysaccharides such alginate, porphyran, fucoidan, and chitin and its derivatives have been found as modulators of allergic responses due to enhancing innate immune system, altering Th1/Th2 balance, inhibiting IgE production, and suppressing mast cell degranulation. This contribution, therefore, focuses specially on the immunomodulatory effect of marine polysaccharides and emphasizes their potential application as candidates of pharmaceuticals as well as nutraceuticals to prevent allergic disorders.
Collapse
Affiliation(s)
- Thanh-Sang Vo
- Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea
| | - Se-Kwon Kim
- Marine Bioprocess Research Center, Pukyong National University, Busan, South Korea; Department of Chemistry, Pukyong National University, Busan, South Korea.
| |
Collapse
|
21
|
Ngo DH, Kim SK. Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 2013; 62:70-5. [PMID: 23994790 DOI: 10.1016/j.ijbiomac.2013.08.036] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 02/07/2023]
Abstract
Recently, much attention has been paid by consumers toward natural bioactive compounds as functional ingredients in nutraceuticals. Marine algae are considered as valuable sources of structurally diverse bioactive compounds. Marine algae are rich in sulfated polysaccharides (SPs) such as carrageenans in red algae, fucoidans in brown algae and ulvans in green algae. These SPs exhibit many health beneficial nutraceutical effects such as antioxidant, anti-allergic, anti-human immunodeficiency virus, anticancer and anticoagulant activities. Therefore, marine algae derived SPs have great potential to be further developed as medicinal food products or nutraceuticals in the food industry. This contribution presents an overview of nutraceutical effects and potential health benefits of SPs derived from marine algae.
Collapse
Affiliation(s)
- Dai-Hung Ngo
- Marine Bioprocess Research Center, Pukyong National University, Busan 608-737, Republic of Korea
| | | |
Collapse
|
22
|
Jiang Z, Ueno M, Nishiguchi T, Abu R, Isaka S, Okimura T, Yamaguchi K, Oda T. Importance of sulfate groups for the macrophage-stimulating activities of ascophyllan isolated from the brown alga Ascophyllum nodosum. Carbohydr Res 2013; 380:124-9. [PMID: 24025707 DOI: 10.1016/j.carres.2013.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/27/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
To investigate the role of sulfate groups on the macrophage-stimulating activities of ascophyllan, we prepared desulfated ascophyllan, and its effects on RAW264.7 cells were compared with native ascophyllan. The chemical structural analysis revealed that nearly 21% of sulfate groups of ascophyllan were removed by desulfation reaction, while no significant changes in the molecular mass and monosaccharide composition occurred after desulfation. NO- and cytokine- (TNF-α and G-CSF) inducing activities of the desulfated ascophyllan on RAW264.7 cells were significantly decreased as compared to native ascophyllan. Furthermore, the activity of desulfated ascophyllan to induce reactive oxygen species (ROS) generation from RAW264.7 cells decreased to almost negligible level. Our results suggest that the level of sulfate groups of ascophyllan is an important structural element responsible for the macrophage-stimulating activities. Probably, even the limited removal of sulfate residues sensitive to desulfation reaction may result in significant decrease in the bioactivities of ascophyllan.
Collapse
Affiliation(s)
- Zedong Jiang
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki 852-8521, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Ren R, Azuma Y, Ojima T, Hashimoto T, Mizuno M, Nishitani Y, Yoshida M, Azuma T, Kanazawa K. Modulation of platelet aggregation-related eicosanoid production by dietary F-fucoidan from brown alga Laminaria japonica in human subjects. Br J Nutr 2013; 110:880-90. [PMID: 23374164 DOI: 10.1017/s000711451200606x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Laminaria japonica is traditionally eaten in Japan as a beneficial food for thrombosis. The alga contains two specific ingredients, a xanthophyll fucoxanthin (FX) and a polysaccharide, F-fucoidan (FD). The aim of the present study was to investigate whether FX or FD exhibited anti-thrombotic effects. For this purpose, three types of capsules, containing 1 mg FX, 400 mg fucoidan, and both, were prepared from the alga and administered to volunteers for 5 weeks. The dose of FD or FD+FX significantly shortened lysis time (LT) of the thrombus measured by a global thrombosis test in the blood, but FX did not. Examining the mechanism, dietary FD increased H2O2 and the secretion of prostacyclin (PGI2), a potent inhibitor of platelet aggregation, in the blood, although FD was under the detection limit in the blood, determining with its monoclonal antibody. Furthermore, in mouse experiments, dietary FD was totally excreted into the faeces and was not incorporated into the blood. We then employed a co-culture system of a Caco-2 cell monolayer with fresh human blood. The addition of FD to Caco-2 cells stimulated the expression of NADPH oxidase 1 (NOX1) and dual oxidase 2 (DUOX2) mRNA and secreted H2O2 onto the blood side accompanied by a significant increase in serum PGI2 production. These effects were invalidated by the combined addition of FD with its monoclonal antibody. The results suggested that dietary FD stimulated the expression of H2O2-producing enzymes in intestinal epithelial cells and released H2O2 into the blood, which played a signalling role to increase PGI2 production and then shortened LT for thrombi.
Collapse
Affiliation(s)
- Rendong Ren
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Potaczek DP, Kabesch M. Current concepts of IgE regulation and impact of genetic determinants. Clin Exp Allergy 2013; 42:852-71. [PMID: 22909159 DOI: 10.1111/j.1365-2222.2011.03953.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunoglobulin E (IgE) mediated immune responses seem to be directed against parasites and neoplasms, but are best known for their involvement in allergies. The IgE network is tightly controlled at different levels as outlined in this review. Genetic determinants were suspected to influence IgE regulation and IgE levels considerably for many years. Linkage and candidate gene studies suggested a number of loci and genes to correlate with total serum IgE levels, and recently genome-wide association studies (GWAS) provided the power to identify genetic determinants for total serum IgE levels: 1q23 (FCER1A), 5q31 (RAD50, IL13, IL4), 12q13 (STAT6), 6p21.3 (HLA-DRB1) and 16p12 (IL4R, IL21R). In this review, we analyse the potential role of these GWAS hits in the IgE network and suggest mechanisms of how genes and genetic variants in these loci may influence IgE regulation.
Collapse
Affiliation(s)
- D P Potaczek
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
25
|
|
26
|
Perfilyeva YV, Kustova EA, Urazalieva NT, Baisheva SA, Aubakirova AT, Tleulieva RT, Belyaev NN, Zakiryanova GK. Effects of L-selectin stimulation of the expression of chemokine receptor CXCR4 on NK cells of healthy donors and tumor patients. Bull Exp Biol Med 2012; 153:86-8. [PMID: 22808501 DOI: 10.1007/s10517-012-1650-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We studied the effects of fucoidan (L-selectin ligand) on the expression and SDF-1-induced internalization of CXCR4 receptor on human NK cells of healthy donors and tumor patients. Fucoidan stimulated the expression of surface CXCR4 due to mobilization of the intracellular pool. The effect of fucoidan on CXCR4 expression in cancer patients was low. It was hypothesized that L-selectin-dependent migration of circulating NK cells along the SDF-1 chemokine gradient is reduced in cancer patients.
Collapse
Affiliation(s)
- Yu V Perfilyeva
- M. A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Committee for Science, Ministry of Education and Science of Republic of Kazakhstan, Almaty, Kazakhstan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Antiallergic benefit of marine algae in medicinal foods. ADVANCES IN FOOD AND NUTRITION RESEARCH 2012; 64:267-75. [PMID: 22054954 DOI: 10.1016/b978-0-12-387669-0.00021-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The prevalence of allergic diseases such as asthma, atopic dermatitis, and allergic rhinitis has increased during the past two decades and contributed a great deal to morbidity and an appreciable mortality in the world. Until now, few novel efficacious drugs have been discovered to treat, control, or even cure these disorders with a low adverse-effect profile. Meanwhile, glucocorticoids are still the mainstay for the treatment of allergic disease. Therefore, it is essential to isolate novel antiallergic therapeutics from natural resources. Recently, marine algae have received much attention as they are a valuable source of chemically diverse bioactive compounds with numerous health benefit effects. This contribution focuses on antiallergic agents derived from marine algae and presents an overview of their potential application in medicinal foods for the treatment of allergic disorders.
Collapse
|
28
|
Cha SH, Ahn MW, Lee JS, Kim YS, Kim DU, Byun TG, Park KP. The Effect of Fcoidan Molecula Weight on Cosmetic Function. KOREAN CHEMICAL ENGINEERING RESEARCH 2012. [DOI: 10.9713/kcer.2012.50.4.604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Cytoprotective effects of fucoidan, an algae-derived polysaccharide on 5-fluorouracil-treated dendritic cells. Food Chem Toxicol 2012; 50:1480-4. [DOI: 10.1016/j.fct.2012.01.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 01/21/2012] [Accepted: 01/24/2012] [Indexed: 12/27/2022]
|
30
|
Chun JY, Han CS, Lee JS, Kim YS, Park KP. Extraction of Carbohydrates and Minerals from Laminaria Using Organic Acid. KOREAN CHEMICAL ENGINEERING RESEARCH 2012. [DOI: 10.9713/kcer.2012.50.2.238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
|
32
|
Jiang Z, Okimura T, Yamaguchi K, Oda T. The potent activity of sulfated polysaccharide, ascophyllan, isolated from Ascophyllum nodosum to induce nitric oxide and cytokine production from mouse macrophage RAW264.7 cells: Comparison between ascophyllan and fucoidan. Nitric Oxide 2011; 25:407-15. [PMID: 22024029 DOI: 10.1016/j.niox.2011.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 11/25/2022]
Abstract
Ascophyllan isolated from the brown alga Ascophyllum nodosum is a fucose-containing sulfated polysaccharide, which has similar but distinct characteristic monosaccharide composition and entire chemical structure to fucoidan. In this study, we examined the effects of ascophyllan, fucoidan isolated from A. nodosum (A-fucoidan), and fucoidan from Sigma (S-fucoidan) as a representative fucoidan derived from other source (Fucus vesiculosus) on mouse macrophage cell line RAW264.7 cells. No significant cytotoxic effects of ascophyllan and A-fucoidan on RAW264.7 cells were observed up to 1000μg/ml, while S-fucoidan showed cytotoxic effect in a concentration-dependent manner. Ascophyllan induced extremely higher level of nitric oxide (NO) production from RAW264.7 cells than those induced by fucoidans over the concentration range tested (0-200μg/ml). Reverse transcription polymerase chain reaction (RT-PCR) and western blot analysis revealed that expression level of inducible NO synthase (iNOS) in ascophyllan-treated RAW264.7 cells was much higher than the levels detected in the cells treated with fucoidans. Furthermore, the activities of ascophyllan to induce the secretion of tumor necrosis factor-α (TNF-α) and granulocyte colony-stimulating factor (G-CSF) from RAW264.7 cells were also greater than those induced by fucoidans especially at lower concentration range (3.1-50μg/ml). The activities of ascophyllan to induce NO and cytokine production in mouse peritoneal macrophages were also stronger than those of fucoidans. Electrophoretic mobility shift assay (EMSA) using infrared dye labeled nuclear factor-kappa B (NF-κB) and AP-1 consensus sequences suggested that ascophyllan can strongly activate these transcription factors. Marked increase in the nuclear translocation of p65, and the phosphorylation and degradation of IκB-α were also observed in ascophyllan-treated RAW264.7 cells. Analysis using mitogen-activated protein (MAP) kinase inhibitors and western blot analysis suggested that c-Jun N-terminal kinase (JNK) and p38 MAP kinase are mainly involved in ascophyllan-induced NO production.
Collapse
Affiliation(s)
- Zedong Jiang
- Graduate School of Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | |
Collapse
|
33
|
Jiang Z, Hama Y, Yamaguchi K, Oda T. Inhibitory effect of sulphated polysaccharide porphyran on nitric oxide production in lipopolysaccharide-stimulated RAW264.7 macrophages. J Biochem 2011; 151:65-74. [DOI: 10.1093/jb/mvr115] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
34
|
Chalubinski M, Grzegorczyk J, Kowalski ML. Glucocorticoid-induced immunoglobulin E synthesis by peripheral blood mononuclear cells from allergic and nonallergic subjects. Ann Allergy Asthma Immunol 2011; 107:251-7. [PMID: 21875545 DOI: 10.1016/j.anai.2011.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/24/2011] [Accepted: 05/31/2011] [Indexed: 11/28/2022]
Abstract
BACKGROUND Glucocorticoids (GCS) have been shown to induce IgE synthesis in human peripheral blood mononuclear cells (PBMCs) and purified B cells in vitro. However, the differences in immunoglobulin E (IgE) response to GCS between allergic and non-allergic individuals and the mechanism this interaction have not been elucidated. OBJECTIVE We aimed to compare the effect of GCS (budesonide) on interleukin (IL)-4-driven IgE production in vitro in allergic and non allergic subjects and assess the engagement of intracellular mechanisms. METHODS The study included 22 patients with allergic asthma and/or allergic rhinitis and 24 healthy volunteers. PBMCs were cultured for 11 days with IL-4 and budesonide and IgE concentrations in supernatants were assessed by immunoassays. T and B cell markers were assessed by flow cytometry. RESULTS Budesonide enhanced IgE synthesis to higher extent in healthy donors than in allergic patients (mean increase of 16.5 vs 6.3 kU/L, P< .05 respectively) acting through glucocorticoid receptor. Budesonide significantly increased lymhoplasmocytoid cells percentage in both media-controlled (2.5-fold increase) and IL-4-stimulated PBMCs (2-fold increase). Added to IL-4 budesonide decreased the percentage of both T cells and CD40L(+) T cells, but strongly increased the percentage of B cells. Protein tyrosine kinase (PTK) inhibitor decreased, but NF-κB and protein kinase A (PKA) inhibitors expressed modulatory effects on budesonide-induced IgE synthesis. CONCLUSIONS Budesonide-induced IgE generation in PBMCs differs in magnitude and seems to involve different mechanisms in atopic and non-atopic subjects.
Collapse
Affiliation(s)
- Maciej Chalubinski
- Department of Immunology, Rheumatology and Allergy, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | | |
Collapse
|
35
|
Ko EJ, Joo HG. Fucoidan enhances the survival and sustains the number of splenic dendritic cells in mouse endotoxemia. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2011; 15:89-94. [PMID: 21660148 DOI: 10.4196/kjpp.2011.15.2.89] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/14/2011] [Accepted: 04/18/2011] [Indexed: 11/15/2022]
Abstract
Fucoidan is a sulfated polysaccharide derived from brown algae that has been reported to perform multiple biological activities, including immunostimulation. In this study, we investigated whether fucoidan has beneficial effects on endotoxemia induced by LPS, a septic model in mice. The focus of this study was on survival rates and spleen function of the mice upon treatment. We found that fucoidan had prophylactic effects on the survival rate of mice with endotoxemia. Flow cytometric analysis using antibodies for subset-specific markers revealed that fucoidan profoundly reversed the depleted population of dendritic cells in mice with endotoxemia. According to Western blot analysis, the spleen cells of LPS/fucoidan-treated mice showed a higher expression of anti-apoptotic molecules compared to those of LPS-treated mice. Also, fucoidan-treated spleen cells were more responsive to mitogens. Taken together, these results demonstrate that fucoidan pre-treatment has beneficial effects on the survival rate and function of the spleen in mice with endotoxemia. This study may broaden the use of fucoidan in clinical fields, especially endotoxemia.
Collapse
Affiliation(s)
- Eun-Ju Ko
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Jeju 690-756, Korea
| | | |
Collapse
|
36
|
Chlubnová I, Sylla B, Nugier-Chauvin C, Daniellou R, Legentil L, Kralová B, Ferrières V. Natural glycans and glycoconjugates as immunomodulating agents. Nat Prod Rep 2011; 28:937-52. [DOI: 10.1039/c1np00005e] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
37
|
Shirosaki M, Koyama T. Laminaria japonica as a food for the prevention of obesity and diabetes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2011; 64:199-212. [PMID: 22054948 DOI: 10.1016/b978-0-12-387669-0.00015-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Various seaweeds have traditionally been used as flavoring materials, food additives, and foodstuffs in many countries, especially those in Asia. The seaweed Laminaria japonica (LJ) is popular as "kombu" in Japanese cuisine. Laminaria sp. is one of the most important marine medicinal foodstuffs, as its biological functions have been widely investigated in both in vitro and in vivo experiments. This chapter introduces recent reports on the ability of Laminaria to prevent obesity and diabetes, and some approaches for effectively using the bioactivities found in Laminaria. The inhibitory effects of Laminaria sp. on triglyceride absorption were investigated in triglyceride-loaded mice and in mice with high-fat-diet-induced obesity. Shaved Laminaria, known as "tororokombu," showed more effective activities in these experiments. The active component was considered to be alginic acid in the water-soluble fraction. On the other hand, the antihyperglycemic effects of a hot water extract of immature Laminaria were investigated in carbohydrate-loaded mice and in in vitro experiments using Caco-2 cells. The potential usefulness of Laminaria sp. as marine medicinal foods may be increased through the use of different processing methods and/or growth stages. These reports suggest that LJ may be useful for preventing lifestyle-related diseases.
Collapse
Affiliation(s)
- Miyuki Shirosaki
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | | |
Collapse
|
38
|
Fucoidan suppresses IgE production in peripheral blood mononuclear cells from patients with atopic dermatitis. Arch Dermatol Res 2010; 303:425-31. [PMID: 21191796 DOI: 10.1007/s00403-010-1115-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 10/18/2022]
Abstract
We previously reported that fucoidan, a dietary fiber purified from seaweed, inhibited IgE production in B cells from mice spleen in vitro and ovalbumin-sensitized mice in vivo. In this study, we examined the effect of fucoidan on IgE production in human peripheral blood mononuclear cells (PBMC) in vitro. PBMC, obtained from healthy donors or patients with atopic dermatitis (AD) with high levels of serum IgE, were cultured with IL-4 and anti-CD40 antibody in the presence or absence of fucoidan. Fucoidan significantly reduced IgE production in PBMC without affecting cell proliferation and IFN-γ production. Fucoidan also inhibited immunoglobulin germline transcripts of B cells in PBMC, and decreased the number of IgE-secreting cells. The inhibitory effects of fucoidan were similarly observed for both PBMC from patients with AD and those with healthy donors. Our findings indicate that fucoidan suppresses IgE induction by inhibiting immunoglobulin class-switching to IgE in human B cells, even after the onset of AD.
Collapse
|
39
|
Do H, Kang NS, Pyo S, Billiar TR, Sohn EH. Differential regulation by fucoidan of IFN-γ-induced NO production in glial cells and macrophages. J Cell Biochem 2010; 111:1337-45. [DOI: 10.1002/jcb.22860] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Park SB, Chun KR, Kim JK, Suk K, Jung YM, Lee WH. The differential effect of high and low molecular weight fucoidans on the severity of collagen-induced arthritis in mice. Phytother Res 2010; 24:1384-91. [PMID: 20812282 DOI: 10.1002/ptr.3140] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fucoidans have been extensively studied for their various biological activities but the exact role of fucoidans on the inflammatory processes associated with arthritic disease has not been studied. The effect of the treatment of high, medium and low molecular weight fucoidans (HMWF, MMWF and LMWF, respectively) on the progression of collagen-induced arthritis (CIA) was tested. A daily oral administration of HMWF enhanced the severity of arthritis, inflammatory responses in the joint cartilage and the levels of collagen-specific antibodies, while LMWF reduced the severity of arthritis and the levels of Th1-dependent collagen-specific IgG(2a). Further in vitro analyses, using macrophage cell lines, revealed that the HMWF induced the expression of various inflammatory mediators, and enhanced the cellular migration of macrophages. These stimulatory effects of fucoidan decreased in fucoidans with lower molecular weights and LMWF did not exhibit any pro-inflammatory effects. Interestingly, the oral administration of HMWF enhanced the production of IFN-gamma, one of the Th1 cytokines, in collagen-stimulated spleen cells that had been isolated from CIA mice, while LMWF had the opposite effect. These results indicate that HMWF enhances arthritis through enhancing the inflammatory activation of macrophages while LMWF reduces arthritis through the suppression of Th1-mediated Immune reactions.
Collapse
Affiliation(s)
- Seung-Beom Park
- Department of Genetic Engineering, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | | | | | | | | | | |
Collapse
|
41
|
Sun J, Feng A, Zhang Y, Sun S, Hu W, Yang M, Wei F, Qu X. Fucoidan increases TNF-alpha-induced MMP-9 secretion in monocytic cell line U937. Inflamm Res 2009; 59:271-6. [PMID: 19774448 DOI: 10.1007/s00011-009-0095-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/03/2009] [Accepted: 09/08/2009] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To investigate the effect of fucoidan on the expression of matrix metalloproteinase-9 (MMP-9) from monocytes. METHODS Human monocytic cell line U937 was purchased from ATCC. During the experiment, FBS-free 1640 was used and U937 was cultivated with 20 ng/ml TNF-alpha and/or different concentrations of fucoidan for 24 h. RT-PCR experiments were used to determine the MMP-9 mRNA expression. ELISA and gelatin zymography detected MMP-9 amounts and activity in the supernatant. The intracellular level of MMP-9 was assayed by Western blot, and the level of CD44 on the surface was assayed by FACS. RESULTS In this study, we showed that pro-inflammatory cytokine TNF-alpha up-regulated U937 MMP-9 mRNA and protein levels (P < 0.05). Fucoidan can increase the TNF-alpha-induced MMP-9 secretion from U937 (P < 0.05), but no significant difference was observed in MMP-9 mRNA. The intracellular level of MMP-9 treated with TNF-alpha and fucoidan was lower (P < 0.05) than that treated with TNF-alpha alone. In addition, we demonstrated that fucoidan downregulated the surface level of CD44, the main molecule to which MMP-9 attaches. CONCLUSIONS We demonstrated that fucoidan post-translationally regulated MMP-9 secretion from U937. Reduced intracellular level and decreased membrane attachment may contribute to the increase in MMP-9 secretion.
Collapse
Affiliation(s)
- Jintang Sun
- Institute of Basic Medical Sciences, Qilu Hospital, Shandong University, Jinan, Shandong, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yanase Y, Hiragun T, Uchida K, Ishii K, Oomizu S, Suzuki H, Mihara S, Iwamoto K, Matsuo H, Onishi N, Kameyoshi Y, Hide M. Peritoneal injection of fucoidan suppresses the increase of plasma IgE induced by OVA-sensitization. Biochem Biophys Res Commun 2009; 387:435-9. [PMID: 19607810 DOI: 10.1016/j.bbrc.2009.07.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/08/2009] [Indexed: 10/20/2022]
Abstract
We previously reported that fucoidan, a dietary fiber purified from seaweed, inhibited IgE production by B cells in vitro. In this study, we examined the effect of fucoidan on IgE production in vivo. The OVA-induced increase of plasma IgE was significantly suppressed when fucoidan was intraperitoneally, but not orally, administered prior to the first immunization with OVA. The production of IL-4 and IFN-gamma in response to OVA in spleen cells isolated from OVA-sensitized mice treated with fucoidan in vivo was lower than that from mice treated without fucoidan. Moreover, the flow cytometric analysis and ELISpot assay revealed that the administration of fucoidan suppressed a number of IgE-expressing and IgE-secreting B cells, respectively. These results indicate that fucoidan inhibits the increase of plasma IgE through the suppression of IgE-producing B cell population, and the effect of fucoidan in vivo is crucially dependent on the route and timing of its administration.
Collapse
Affiliation(s)
- Yuhki Yanase
- Department of Dermatology, Division of Molecular Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mizuno M, Nishitani Y, Tanoue T, Matoba Y, Ojima T, Hashimoto T, Kanazawa K. Quantification and localization of fucoidan in Laminaria japonica using a novel antibody. Biosci Biotechnol Biochem 2009; 73:335-8. [PMID: 19202293 DOI: 10.1271/bbb.80542] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The establishment of a simple technique to determine the concentration of fucoidan was developed by using a monoclonal antibody against fucoidan. This antibody reacted with fucoidans purified from Laminaria japonica Areschoug (Makombu in Japanese) and Kjellmaniella gyrate Miyabe (Gagome), but not with polysaccharides from Undaria pinnatifida Suringar (Wakame). Neither laminarin nor algenic acid, which are constituents in Laminaria japonica, were recognized by the prepared antibody. Application of the enzymed-linked immunosorbent assay (ELISA) inhibition assay increased the specificity of fucoidan in measuring the fucoidan contents. On the basis of these results, it was ascertained that the ELISA inhibition assay of using the anti-fucoidan monoclonal antibody was rapid, accurate, and sensitive in measuring the content of fucoidan. In addition, the localization of fucoidan in Laminaria japonica was investigated. This is the first report of fucoidan being restricted to the outer cortical layer.
Collapse
Affiliation(s)
- Masashi Mizuno
- Graduate School of Agricultural Science, Kobe University, Japan.
| | | | | | | | | | | | | |
Collapse
|
44
|
Targeting the NF-kappaB pathway in asthma and chronic obstructive pulmonary disease. Pharmacol Ther 2008; 121:1-13. [PMID: 18950657 PMCID: PMC7172981 DOI: 10.1016/j.pharmthera.2008.09.003] [Citation(s) in RCA: 300] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/09/2008] [Indexed: 11/23/2022]
Abstract
Asthma and chronic obstructive pulmonary disease are inflammatory lung disorders responsible for significant morbidity and mortality worldwide. While the importance of allergic responses in asthma is well known, respiratory viral and bacterial infections and pollutants especially cigarette smoke are important factors in the pathogenesis of both diseases. Corticosteroid treatment remains the first preference of treatment in either disease, however these therapies are not always completely effective, and are associated with side effects and steroid resistance. Due to such limitations, development of new treatments represents a major goal for both the pharmaceutical industry and academic researchers. There are now excellent reasons to promote NF-kappaB signalling intermediates and Rel family proteins as potential therapeutic targets for both asthma and chronic obstructive pulmonary disease. This notion is supported by the fact that much of the underlying inflammation of both diseases independent of stimuli, is mediated at least in part, by NF-kappaB mediated signalling events in several cell types. Also, a range of inhibitors of NF-kappaB signalling intermediates are now available, including DNA oligonucleotides and DNA-peptide molecules that act as NF-kappaB decoy sequences, small molecule inhibitors such as IKK-beta inhibitors, and proteasome inhibitors affecting NF-kappaB signalling, that have either shown promise in animal models or have begun clinical trials in other disorders. This review will focus on the role of NF-kappaB in both diseases, will discuss its suitability as a target, and will highlight recent key studies that support the potential of NF-kappaB as a therapeutic target in these two important inflammatory lung diseases.
Collapse
|
45
|
Kim MH, Joo HG. Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunol Lett 2008; 115:138-43. [DOI: 10.1016/j.imlet.2007.10.016] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/29/2007] [Accepted: 10/29/2007] [Indexed: 10/22/2022]
|
46
|
Thieu VT, Nguyen ET, McCarthy BP, Bruns HA, Kapur R, Chang CH, Kaplan MH. IL-4-stimulated NF-kappaB activity is required for Stat6 DNA binding. J Leukoc Biol 2007; 82:370-9. [PMID: 17513694 DOI: 10.1189/jlb.1106707] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IL-4 is a critical cytokine in the regulation of immune responses. In B lymphocytes, IL-4 signaling promotes the Stat6-dependent cell surface expression of several proteins including MHC Class II and CD86. However, the requirement for other transcription factors in IL-4-induced B cell gene expression has not been studied extensively. Here, we show that IL-4 induces NF-kappaB p100 processing to NF-kappaB p52 in B cells but not in T cells or macrophages. IL-4 induced NF-kappaB p52 production requires PI-3K activity and correlates with IkappaB kinase phosphorylation and TNF receptor-associated factor 3 degradation. Blocking NF-kappaB activity eliminates IL-4-stimulated gene expression in B cells by reducing IL-4-induced DNA binding but not phosphorylation or nuclear localization of Stat6. These results describe a novel role for NF-kappaB in IL-4-induced signaling and gene expression.
Collapse
Affiliation(s)
- Vivian T Thieu
- Department of Microbiology and Immunology, Indiana University School of Medicine, and Walther Cancer Institute, Indianapolis, Indiana, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
|