1
|
Mao Z, Zhao J, Cui F, Li Z, Cao J, Zhou J, Hou M, Qian Z. STUB1 increases adiponectin expression by inducing ubiquitination and degradation of NR2F2, thereby reducing hepatic stellate cell activation and alleviating non-alcoholic fatty liver disease. Tissue Cell 2024; 88:102345. [PMID: 38471267 DOI: 10.1016/j.tice.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Adiponectin (APN) has exhibited ameliorating effects on non-alcoholic fatty liver disease (NAFLD). This study investigates the roles of APN and its regulatory molecules in hepatic stellate cell (HSC) activation and the progression of NAFLD. METHODS Mice were subjected to a high-fat diet (HFD) to establish NAFLD models. Liver tissue was examined for lipid metabolism, fibrosis, and inflammation. Mouse 3T3-L1 adipocytes were exposed to palmitic acid (PA) to mimic a high-fat environment. The conditioned medium (CM) from adipocytes was collected for the culture of isolated mouse HSCs. Gain- or loss-of-function studies of APN, nuclear receptor subfamily 2 group F member 2 (NR2F2), and STIP1 homology and U-box containing protein 1 (STUB1) were performed to analyze their roles in NAFLD and HSC activation in vivo and in vitro. RESULTS APN expression was poorly expressed in HFD-fed mice and PA-treated 3T3-L1 adipocytes, which was attributed to the transcription inhibition mediated by NR2F2. Silencing of NR2F2 restored the APN expression, ameliorating liver steatosis, fibrosis, and inflammatory cytokine infiltration in mouse livers and reducing HSC activation. Similarly, the NR2F2 silencing condition reduced HSC activation in vitro. However, these effects were counteracted by artificial APN silencing. STUB1 facilitated the ubiquitination and protein degradation of NR2F2, and its upregulation mitigated NAFLD-like symptoms in mice and HSC activation, effects reversed by the NR2F2 overexpression. CONCLUSION This study highlights the role of STUB1 in reducing HSC activation and alleviating NAFLD by attenuating NR2F2-mediated transcriptional repression of APN.
Collapse
Affiliation(s)
- Zheng Mao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jindong Zhao
- Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230038, PR China
| | - Fan Cui
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Zhen Li
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jinjin Cao
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Jingjing Zhou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Mingliang Hou
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China
| | - Zengkun Qian
- Department of Clinical Laboratory, Wuhu Hospital Affiliated to Anhui University of Science and Technology (The First People's Hospital of Wuhu), Wuhu, Anhui 241000, PR China.
| |
Collapse
|
2
|
Leciejewska N, Jędrejko K, Gómez-Renaud VM, Manríquez-Núñez J, Muszyńska B, Pokrywka A. Selective androgen receptor modulator use and related adverse events including drug-induced liver injury: Analysis of suspected cases. Eur J Clin Pharmacol 2024; 80:185-202. [PMID: 38059982 PMCID: PMC10847181 DOI: 10.1007/s00228-023-03592-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE Selective androgen receptor modulators (SARMs) have demonstrated agonist activity on the androgen receptor in various tissues, stimulating muscle mass growth and improving bone reconstruction. Despite being in clinical trials, none has been approved by the Food and Drug Administration (FDA) or European Medicines Agency for pharmacotherapy. Still, SARMs are very popular as performance-enhancing drugs. The FDA has issued warnings about the health risks associated with SARMs, but the long-term exposure and possible adverse events still need to be fully understood. This review aims to evaluate the adverse events associated with using SARMs by humans. METHODS PubMed database was searched from September 16, 2022, to October 2, 2023. In total, 20 records were included in the final review. Data from preclinical and clinical studies supported the review. RESULTS Since 2020, 20 reports of adverse events, most described as drug-induced liver injury associated with the use of SARM agonists, have been published. The main symptoms mentioned were cholestatic or hepatocellular liver injury and jaundice. Limited data are related to the dosages and purity of SARM supplements. CONCLUSION Promoting SARMs as an anabolic agent in combination with other performance-enhancing drugs poses a risk to users not only due to doping controls but also to health safety. The lack of quality control of consumed supplements makes it very difficult to assess the direct impact of SARMs on the liver and their potential hepatotoxic effects. Therefore, more detailed analyses are needed to determine the safety of using SARMs.
Collapse
Affiliation(s)
- Natalia Leciejewska
- Department of Animal Physiology, Biochemistry and Biostructure, Poznań University of Life Sciences, 60-637, Poznan, Poland
| | - Karol Jędrejko
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland.
| | - Víctor M Gómez-Renaud
- Human Performance Laboratory, School of Physical Education, Autonomous University of Nuevo Leon, San Nicolas de los Garza, Mexico
| | - Josué Manríquez-Núñez
- Department of Research and Graduate Studies in Food Sciences, School of Chemistry, Autonomous University of Queretaro, Santiago de Queretaro, Mexico
| | - Bożena Muszyńska
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688, Kraków, Poland
| | - Andrzej Pokrywka
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Ichida K. [Uric Acid Metabolism, Uric Acid Transporters and Dysuricemia]. YAKUGAKU ZASSHI 2024; 144:659-674. [PMID: 38825475 DOI: 10.1248/yakushi.23-00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Serum urate levels are determined by the balance between uric acid production and uric acid excretion capacity from the kidneys and intestinal tract. Dysuricemia, including hyperuricemia and hypouricemia, develops when the balance shifts towards an increase or a decrease in the uric acid pool. Hyperuricemia is mostly a multifactorial genetic disorder involving several disease susceptibility genes and environmental factors. Hypouricemia, on the other hand, is caused by genetic abnormalities. The main genes involved in dysuricemia are xanthine oxidoreductase, an enzyme that produces uric acid, and the urate transporters urate transporter 1/solute carrier family 22 member 12 (URAT1/SLC22A12), glucose transporter 9/solute carrier family 2 member 9 (GLUT9/SLC2A9) and ATP binding cassette subfamily G member 2 (ABCG2). Deficiency of xanthine oxidoreductase results in xanthinuria, a rare disease with marked hypouricemia. Xanthinuria can be due to a single deficiency of xanthine oxidoreductase or in combination with aldehyde oxidase deficiency as well. The latter is caused by a deficiency in molybdenum cofactor sulfurase, which is responsible for adding sulphur atoms to the molybdenum cofactor required for xanthine oxidoreductase and aldehyde oxidase to exert their action. URAT1/SLC22A12 and GLUT9/SLC2A9 are involved in urate reabsorption and their deficiency leads to renal hypouricemia, a condition that is common in Japanese due to URAT1/SLC22A12 deficiency. On the other hand, ABCG2 is involved in the secretion of urate, and many Japanese have single nucleotide polymorphisms that result in its reduced function, leading to hyperuricemia. In particular, severe dysfunction of ABCG2 leads to hyperuricemia with reduced extrarenal excretion.
Collapse
MESH Headings
- Humans
- Hyperuricemia/etiology
- Hyperuricemia/metabolism
- Hyperuricemia/genetics
- Uric Acid/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- Organic Anion Transporters/metabolism
- Organic Anion Transporters/genetics
- Glucose Transport Proteins, Facilitative/metabolism
- Glucose Transport Proteins, Facilitative/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Xanthine Dehydrogenase/metabolism
- Xanthine Dehydrogenase/genetics
- Xanthine Dehydrogenase/deficiency
- Animals
- Organic Cation Transport Proteins/genetics
- Organic Cation Transport Proteins/metabolism
- Renal Tubular Transport, Inborn Errors/genetics
- Renal Tubular Transport, Inborn Errors/etiology
- Renal Tubular Transport, Inborn Errors/metabolism
- Urinary Calculi/etiology
- Urinary Calculi/metabolism
- Urinary Calculi/genetics
- Metabolism, Inborn Errors
Collapse
Affiliation(s)
- Kimiyoshi Ichida
- Department of Pathophysiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
- Division of Kidney and Hypertension, The Jikei University School of Medicine
| |
Collapse
|
4
|
Saponaro C, Sabatini S, Gaggini M, Carli F, Rosso C, Positano V, Armandi A, Caviglia GP, Faletti R, Bugianesi E, Gastaldelli A. Adipose tissue dysfunction and visceral fat are associated with hepatic insulin resistance and severity of NASH even in lean individuals. Liver Int 2022; 42:2418-2427. [PMID: 35900229 DOI: 10.1111/liv.15377] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/01/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous disorder, but the factors that determine this heterogeneity remain poorly understood. Adipose tissue dysfunction is causally linked to NAFLD since it causes intrahepatic triglyceride (IHTG) accumulation through increased hepatic lipid flow, due to insulin resistance and pro-inflammatory adipokines release. While many studies in NAFLD have looked at total adiposity (i.e. mainly subcutaneous fat, SC-AT), it is still unclear the possible impact of visceral fat (VF). Thus, we investigated how VF versus SC-AT was related to NAFLD severity in lean, overweight and obese individuals versus lean controls. METHODS Thirty-two non-diabetic NAFLD with liver biopsy (BMI 21.4-34.7 kg/m2 ) and eight lean individuals (BMI 19.6-22.8 kg/m2 ) were characterized for fat distribution (VF, SC-AT and IHTG by magnetic resonance imaging), lipolysis and insulin resistance by tracer infusion, free fatty acids (FFAs) and triglyceride (TAG) concentration and composition (by mass spectrometry). RESULTS Intrahepatic triglyceride was positively associated with lipolysis, adipose tissue insulin resistance (Adipo-IR), TAG concentrations, and increased saturated/unsaturated FFA ratio. Compared to controls VF was higher in NAFLD (including lean individuals), increased with fibrosis stage and associated with insulin resistance in liver, muscle and adipose tissue, increased lipolysis and decreased adiponectin levels. Collectively, our results suggest that VF accumulation, given its location close to the liver, is one of the major risk factors for NAFLD. CONCLUSIONS These findings propose VF as an early indicator of NAFLD progression independently of BMI, which may allow for evidence-based prevention and intervention strategies.
Collapse
Affiliation(s)
- Chiara Saponaro
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy.,University of Lille, CHU Lille, Inserm U1190, EGID, Lille, France
| | - Silvia Sabatini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Melania Gaggini
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Fabrizia Carli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Chiara Rosso
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | | | - Angelo Armandi
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Gian Paolo Caviglia
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Riccardo Faletti
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Elisabetta Bugianesi
- Division of Gastroenterology and Hepatology and Laboratory of Diabetology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Amalia Gastaldelli
- Cardiometabolic Risk Unit, Institute of Clinical Physiology, CNR, Pisa, Italy
| |
Collapse
|
5
|
Wang G, Li M, Yu S, Guan M, Ma S, Zhong Z, Guo Y, Leng X, Huang H. Tandem mass tag-based proteomics analysis of type 2 diabetes mellitus with non-alcoholic fatty liver disease in mice treated with acupuncture. Biosci Rep 2022; 42:BSR20212248. [PMID: 34981123 PMCID: PMC8762347 DOI: 10.1042/bsr20212248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/01/2021] [Accepted: 12/23/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To explore the proteomics profiles of hepatocytes of mice treated with acupuncture for type 2 diabetes mellitus (T2DM) with non-alcoholic fatty liver disease (NAFLD). METHODS We used a Tandem mass tag (TMT)-based quantitative proteomics approach to identify proteins with potential molecular mechanisms associated with acupuncture interventions for T2DM with NAFLD. RESULTS Acupuncture effectively improved body weight, blood glucose, and insulin levels in T2DM with NAFLD mouse models and reversed steatosis within hepatocytes. Quantitative TMT-based proteomics analysis identified a total of 4710 quantifiable proteins and 1226 differentially expressed proteins (DEPs) in the model control group (MCG) compared with the normal control group (NCG). The Acupuncture Treatment Group (ATG) presented in 122 DEPs was compared with the MCG group. We performed a bioinformatics analysis, which revealed that DEPs enriched in the KEGG pathway after acupuncture treatment were mainly involved in the PPAR signaling pathway, fatty acid biosynthesis, fatty acid metabolism, fatty acid elongation, fat digestion and absorption. We used parallel reaction monitoring (PRM) technology to explore the association of aldehyde oxidase 1 (Aox1), acyl-coenzyme A thioesterase 2 (Acot2), perilipin-2 (Plin2), acetyl-CoA carboxylase 1 (Acc), NADP-dependent malic enzyme (Me1), fatty acid synthase (Fasn), ATP-citrate synthase (Acly), fatty acid-binding protein, intestinal (Fabp2) with lipid synthesis, fatty acid oxidation, and hepatocyte steatosis. CONCLUSIONS Our results show that acupuncture can regulate the protein expression of T2DM in the NAFLD mice model, and can effectively improve hepatocyte steatosis, and has potential benefits for the clinical treatment of this disease.
Collapse
Affiliation(s)
- Guan Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mengyuan Li
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Shuo Yu
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Mengqi Guan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shiqi Ma
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhen Zhong
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yihui Guo
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangyang Leng
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Haipeng Huang
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun, 130117, China
| |
Collapse
|
6
|
Cao Z, Ma B, Cui C, Zhao J, Liu S, Qiu Y, Zheng Y, Gao M, Luan X. Protective effects of AdipoRon on the liver of Huoyan goose fed a high-fat diet. Poult Sci 2022; 101:101708. [PMID: 35150940 PMCID: PMC8844248 DOI: 10.1016/j.psj.2022.101708] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 02/07/2023] Open
Abstract
Adiponectin can participate in the regulation of glucose and lipid metabolism, energy regulation, immune response, resistance to inflammation, oxidative stress, and apoptosis. Studies in rodents demonstrated that the small molecule compound adiponectin receptor agonist AdipoRon could activate the adiponectin receptor and played the same biological role as adiponectin. To explore the influence and regulation of AdipoRon on lipid metabolism disorder in Huoyan goose liver, in this study, goslings were fed a high-fat diet and then administered different dosages of AdipoRon. Subsequently, goose body weight, liver index, liver histopathological changes, blood glucose, blood and liver lipid, biochemical indexes related to liver function and oxidative stress, and the expression levels of genes related to lipid metabolism, inflammation, apoptosis, and autophagy, adiponectin and its receptors, key molecules of adiponectin involved signal pathway, and transcription factors in the liver, were detected using H&E and Oil red O staining, ELISA, and qRT-PCR methods. The results indicated that AdipoRon could alter the expression of lipid metabolism-related genes, inflammatory factors, apoptosis and autophagy genes, and adiponectin and its receptor genes in liver tissues through signaling pathways such as AMPK and p38 MAPK, as well as the involvement of transcription factors such as PPARα, PPARγ, SIRT1, and FOXO1, reduce the lipid content in blood and liver tissues of geese fed high-fat diets, improve liver antioxidant capacity, regulate apoptosis and autophagy of hepatocytes, and reduce liver inflammatory injury. Our study suggests that AdipoRon has a protective effect on fatty liver injury in goslings fed a high-fat diet.
Collapse
Affiliation(s)
- Zhongzan Cao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Ben Ma
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Chengyu Cui
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Jiahui Zhao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Sidi Liu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Yunqiao Qiu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Yan Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Ming Gao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China
| | - Xinhong Luan
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, P.R. China.
| |
Collapse
|
7
|
Non-cytochrome P450 enzymes involved in the oxidative metabolism of xenobiotics: Focus on the regulation of gene expression and enzyme activity. Pharmacol Ther 2021; 233:108020. [PMID: 34637840 DOI: 10.1016/j.pharmthera.2021.108020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative metabolism is one of the major biotransformation reactions that regulates the exposure of xenobiotics and their metabolites in the circulatory system and local tissues and organs, and influences their efficacy and toxicity. Although cytochrome (CY)P450s play critical roles in the oxidative reaction, extensive CYP450-independent oxidative metabolism also occurs in some xenobiotics, such as aldehyde oxidase, xanthine oxidoreductase, flavin-containing monooxygenase, monoamine oxidase, alcohol dehydrogenase, or aldehyde dehydrogenase-dependent oxidative metabolism. Drugs form a large portion of xenobiotics and are the primary target of this review. The common reaction mechanisms and roles of non-CYP450 enzymes in metabolism, factors affecting the expression and activity of non-CYP450 enzymes in terms of inhibition, induction, regulation, and species differences in pharmaceutical research and development have been summarized. These non-CYP450 enzymes are detoxifying enzymes, although sometimes they mediate severe toxicity. Synthetic or natural chemicals serve as inhibitors for these non-CYP450 enzymes. However, pharmacokinetic-based drug interactions through these inhibitors have rarely been reported in vivo. Although multiple mechanisms participate in the basal expression and regulation of non-CYP450 enzymes, only a limited number of inducers upregulate their expression. Therefore, these enzymes are considered non-inducible or less inducible. Overall, this review focuses on the potential xenobiotic factors that contribute to variations in gene expression levels and the activities of non-CYP450 enzymes.
Collapse
|
8
|
Liu J, Fan Y, Yu H, Xu T, Zhang C, Zhou L, Li G, Zhang Y. Allopurinol Protects Against Cholestatic Liver Injury in Mice Not Through Depletion of Uric Acid. Toxicol Sci 2021; 181:295-305. [PMID: 33749747 DOI: 10.1093/toxsci/kfab034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cholestasis is one of the most severe manifestations of liver injury and has limited therapeutic options. Allopurinol (AP), an inhibitor of uric acid (UA) synthesis, was reported to prevent liver damage in several liver diseases. However, whether AP protects against intrahepatic cholestatic liver injury and what is the role of UA in the pathogenesis of cholestasis remain unknown. In this study, we reported that AP attenuated liver injury in a mouse model of intrahepatic cholestasis induced by alpha-naphthylisothiocyanate (ANIT). AP showed no significant effect on glutathione depletion, inflammation, or bile acid metabolism in livers of ANIT-treated mice. Instead, AP significantly improved fatty acid β-oxidation in livers of ANIT-treated mice, which was associated with activation of PPARα. The protective effect of AP on cholestatic liver injury was not attributable to the depletion of UA, because both exogenous and endogenous UA prevented liver injury in ANIT-treated mice via inhibition of NF-kB-mediated inflammation. In conclusion, the present study provides a new perspective for the therapeutic use of AP and the role of UA in cholestatic liver injury.
Collapse
Affiliation(s)
- Jing Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Tong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Lijun Zhou
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Gentao Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.,School of Pharmacy, Weifang Medical University, Shandong 261053, China
| | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
9
|
Loupy KM, Cler KE, Marquart BM, Yifru TW, D'Angelo HM, Arnold MR, Elsayed AI, Gebert MJ, Fierer N, Fonken LK, Frank MG, Zambrano CA, Maier SF, Lowry CA. Comparing the effects of two different strains of mycobacteria, Mycobacterium vaccae NCTC 11659 and M. vaccae ATCC 15483, on stress-resilient behaviors and lipid-immune signaling in rats. Brain Behav Immun 2021; 91:212-229. [PMID: 33011306 PMCID: PMC7749860 DOI: 10.1016/j.bbi.2020.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 12/11/2022] Open
Abstract
Stress-related disorders, such as posttraumatic stress disorder (PTSD), are highly prevalent and often difficult to treat. In rodents, stress-related, anxiety-like defensive behavioral responses may be characterized by social avoidance, exacerbated inflammation, and altered metabolic states. We have previously shown that, in rodents, subcutaneous injections of a heat-killed preparation of the soil-derived bacterium Mycobacterium vaccae NCTC 11659 promotes stress resilience effects that are associated with immunoregulatory signaling in the periphery and the brain. In the current study, we sought to determine whether treatment with a heat-killed preparation of the closely related M. vaccae type strain, M. vaccae ATCC 15483, would also promote stress-resilience in adult male rats, likely due to biologically similar characteristics of the two strains. Here we show that immunization with either M. vaccae NCTC 11659 or M. vaccae ATCC 15483 prevents stress-induced increases in hippocampal interleukin 6 mRNA expression, consistent with previous studies showing that M. vaccae NCTC 11659 prevents stress-induced increases in peripheral IL-6 secretion, and prevents exaggeration of anxiety-like defensive behavioral responses assessed 24 h after exposure to inescapable tail shock stress (IS) in adult male rats. Analysis of mRNA expression, protein abundance, and flow cytometry data demonstrate overlapping but also unique effects of treatment with the two M. vaccae strains on immunological and metabolic signaling in the host. These data support the hypothesis that treatment with different M. vaccae strains may immunize the host against stress-induced dysregulation of physiology and behavior.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kristin E Cler
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Brandon M Marquart
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Tumim W Yifru
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Mathew R Arnold
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Matthew J Gebert
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX 78712, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA; Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO 80045, USA; Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO 80045, USA; inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ 07093, USA.
| |
Collapse
|
10
|
Abstract
Adiponectin is the most important adipokine secreted by the adipose tissue. It carries out an important role in setting up the metabolism and improving the function of various organs. Adiponectin in the kidneys prevents degradation of the renal arteries, reduces protein excretion, and improves filtration. This role is accomplished by regulating anabolic pathways and reducing oxidative stress in the renal tissue. This hormone in the liver prevents the accumulation of fat and free radicals that cause damage to liver cells and tissue. This adipokine, by preventing inflammatory processes, oxidative stress, obesity and insulin resistance, improves vascular function and prevents the development of atherosclerosis. It seems that adiponectin can also be a therapeutic target for many metabolic diseases. This study aims to clarify the adipose tissue discharge. Here, the diverse physiological actions of adiponectin were reviewed to provide an overview of its therapeutic potential in different metabolic disorders.
Collapse
Affiliation(s)
- S Esmaili
- Student Research Committee, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - M Hemmati
- Cardiovascular Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - M Karamian
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
11
|
Inhibition of vertebrate aldehyde oxidase as a therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis. Eur J Med Chem 2019; 187:111948. [PMID: 31877540 DOI: 10.1016/j.ejmech.2019.111948] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 10/25/2022]
Abstract
The aldehyde oxidases (AOXs) are a small sub-family of cytosolic molybdo-flavoenzymes, which are structurally conserved proteins and broadly distributed from plants to animals. AOXs play multiple roles in both physiological and pathological processes and AOX inhibition is of increasing significance in the development of novel drugs and therapeutic strategies. This review provides an overview of the evolution and the action mechanism of AOX and the role of each domain. The review provides an update of the polymorphisms in the human AOX. This review also summarises the physiology of AOX in different organs and its role in drug metabolism. The inhibition of AOX is a promising therapeutic treatment for cancer, obesity, aging and amyotrophic lateral sclerosis.
Collapse
|
12
|
Affiliation(s)
- Christine Beedham
- Honorary Senior Lecturer, Faculty of Life Sciences, School of Pharmacy and Medical Sciences, University of Bradford, Bradford, UK
| |
Collapse
|
13
|
Hasanpur K, Nassiri M, Hosseini Salekdeh G. The comparative analysis of phenotypic and whole transcriptome gene expression data of ascites susceptible versus ascites resistant chickens. Mol Biol Rep 2018; 46:793-804. [PMID: 30519813 DOI: 10.1007/s11033-018-4534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 11/28/2018] [Indexed: 11/30/2022]
Abstract
Ascites syndrome (AS) is a metabolic disorder that mainly occurs at later ages of meat-type chickens. Despite many research, there is no consensus about the origin of this syndrome. Our main purpose were to investigate the syndrome using both phenotypic and RNA-Seq data to elucidate the most causative factors predisposing the birds to AS. Phenotypic data analysis showed that AS indicator traits (AITs) were moderate to high heritable. Inexistence of consistent direct genetic correlation between AITs and growth related traits, indicated that neither faster growth rate nor heavier body weight is the most causative factor affecting the susceptibility of broilers to AS. However, respiratory capacity was revealed to be the most probable factor predisposing the birds to AS, as both lung weight and lung percentage were negatively correlated with AITs. Transcriptomic data analysis revealed 125 differentially expressed genes (DEGs) between the ascitic and healthy groups. Up-regulated genes in ascitic group enriched mainly in gas transport biological process, while down-regulated genes involved in defense response to bacteria, biological adhesion, cell adhesion, killing of cells of another organism and cell division. Genetic association of the DEGs with human cardiovascular diseases suggested excessive heart problems of the ascitic chicks. Heart is, probably, the first tissue suffering from the incompetence of small respiratory system of the AS-susceptible chickens. In other word, tissue hypoxia, that causes free radicals to concentrate in heart cells, may be the commencement of events that finally result to heart failure, suffocation and death of chicks due to the AS.
Collapse
Affiliation(s)
- Karim Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, P. O. Box: 5166616471, Tabriz, Iran.
| | | | - Ghasem Hosseini Salekdeh
- Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
14
|
Leal-Gutiérrez JD, Rezende FM, Elzo MA, Johnson D, Peñagaricano F, Mateescu RG. Structural Equation Modeling and Whole-Genome Scans Uncover Chromosome Regions and Enriched Pathways for Carcass and Meat Quality in Beef. Front Genet 2018; 9:532. [PMID: 30555508 PMCID: PMC6282042 DOI: 10.3389/fgene.2018.00532] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
Structural equation models involving latent variables are useful tools for formulating hypothesized models defined by theoretical variables and causal links between these variables. The objectives of this study were: (1) to identify latent variables underlying carcass and meat quality traits and (2) to perform whole-genome scans for these latent variables in order to identify genomic regions and individual genes with both direct and indirect effects. A total of 726 steers from an Angus-Brahman multibreed population with records for 22 phenotypes were used. A total of 480 animals were genotyped with the GGP Bovine F-250. The single-step genomic best linear unbiased prediction method was used to estimate the amount of genetic variance explained for each latent variable by chromosome regions of 20 adjacent SNP-windows across the genome. Three types of genetic effects were considered: (1) direct effects on a single latent phenotype; (2) direct effects on two latent phenotypes simultaneously; and (3) indirect effects. The final structural model included carcass quality as an independent latent variable and meat quality as a dependent latent variable. Carcass quality was defined by quality grade, fat over the ribeye and marbling, while the meat quality was described by juiciness, tenderness and connective tissue, all of them measured through a taste panel. From 571 associated genomic regions (643 genes), each one explaining at least 0.05% of the additive variance, 159 regions (179 genes) were associated with carcass quality, 106 regions (114 genes) were associated with both carcass and meat quality, 242 regions (266 genes) were associated with meat quality, and 64 regions (84 genes) were associated with carcass quality, having an indirect effect on meat quality. Three biological mechanisms emerged from these findings: postmortem proteolysis of structural proteins and cellular compartmentalization, cellular proliferation and differentiation of adipocytes, and fat deposition.
Collapse
Affiliation(s)
| | - Fernanda M. Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Mauricio A. Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Dwain Johnson
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
- University of Florida Genetics Institute, University of Florida, Gainesville, FL, United States
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Izadnia HR, Tahmoorespur M, Bakhtiarizadeh MR, Nassiri M, Esmaeilkhanien S. Gene expression profile analysis of residual feed intake for Isfahan native chickens using RNA-SEQ data. ITALIAN JOURNAL OF ANIMAL SCIENCE 2018. [DOI: 10.1080/1828051x.2018.1507625] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hamid Reza Izadnia
- Animal Science Improvement Research Department, Agricultural and Natural Resources Research and Education Center, Safiabad AREEO, Dezful, Iran
| | - Mojtaba Tahmoorespur
- Faculty of Agriculture, Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Mohammadreza Nassiri
- Faculty of Agriculture, Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | | |
Collapse
|
16
|
Gamberi T, Magherini F, Modesti A, Fiaschi T. Adiponectin Signaling Pathways in Liver Diseases. Biomedicines 2018; 6:biomedicines6020052. [PMID: 29735928 PMCID: PMC6027295 DOI: 10.3390/biomedicines6020052] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/26/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023] Open
Abstract
In the liver, adiponectin regulates both glucose and lipid metabolism and exerts an insulin-sensitizing effect. The binding of adiponectin with its specific receptors induces the activation of a proper signaling cascade that becomes altered in liver pathologies. This review describes the different signaling pathways in healthy and diseased hepatocytes, also highlighting the beneficial role of adiponectin in autophagy activation and hepatic regeneration.
Collapse
Affiliation(s)
- Tania Gamberi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| | - Francesca Magherini
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| | - Alessandra Modesti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| | - Tania Fiaschi
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche "Mario Serio", Università degli Studi di Firenze, Viale Morgagni 50, 50134 Firenze, Italy.
| |
Collapse
|
17
|
Amelogenin induces M2 macrophage polarisation via PGE2/cAMP signalling pathway. Arch Oral Biol 2017; 83:241-251. [DOI: 10.1016/j.archoralbio.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/30/2017] [Accepted: 08/08/2017] [Indexed: 11/22/2022]
|
18
|
Deregulation of obesity-relevant genes is associated with progression in BMI and the amount of adipose tissue in pigs. Mol Genet Genomics 2017; 293:129-136. [DOI: 10.1007/s00438-017-1369-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/07/2017] [Indexed: 10/18/2022]
|
19
|
Guthrie G, Kulkarni M, Vlaardingerbroek H, Stoll B, Ng K, Martin C, Belmont J, Hadsell D, Heird W, Newgard CB, Olutoye O, van Goudoever J, Lauridsen C, He X, Schuchman EH, Burrin D. Multi-omic profiles of hepatic metabolism in TPN-fed preterm pigs administered new generation lipid emulsions. J Lipid Res 2016; 57:1696-711. [PMID: 27474222 DOI: 10.1194/jlr.m069526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Indexed: 12/26/2022] Open
Abstract
We aimed to characterize the lipidomic, metabolomic, and transcriptomic profiles in preterm piglets administered enteral (ENT) formula or three parenteral lipid emulsions [parenteral nutrition (PN)], Intralipid (IL), Omegaven (OV), or SMOFlipid (SL), for 14 days. Piglets in all parenteral lipid groups showed differential organ growth versus ENT piglets; whole body growth rate was lowest in IL piglets, yet there were no differences in either energy expenditure or (13)C-palmitate oxidation. Plasma homeostatic model assessment of insulin resistance demonstrated insulin resistance in IL, but not OV or SL, compared with ENT. The fatty acid and acyl-CoA content of the liver, muscle, brain, and plasma fatty acids reflected the composition of the dietary lipids administered. Free carnitine and acylcarnitine (ACT) levels were markedly reduced in the PN groups compared with ENT piglets. Genes associated with oxidative stress and inflammation were increased, whereas those associated with alternative pathways of fatty acid oxidation were decreased in all PN groups. Our results show that new generation lipid emulsions directly enrich tissue fatty acids, especially in the brain, and lead to improved growth and insulin sensitivity compared with a soybean lipid emulsion. In all total PN groups, carnitine levels are limiting to the formation of ACTs and gene expression reflects the stress of excess lipid on liver function.
Collapse
Affiliation(s)
- Gregory Guthrie
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Madhulika Kulkarni
- Section of Neonatology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Hester Vlaardingerbroek
- Department of Pediatrics, Emma Children's Hospital-Academisch Medisch Centrum, Amsterdam, The Netherlands
| | - Barbara Stoll
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Kenneth Ng
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Camilia Martin
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - John Belmont
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Darryl Hadsell
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - William Heird
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology and Medicine, Duke University, Durham, NC
| | - Oluyinka Olutoye
- Texas Children's Hospital, Division of Pediatric Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX
| | - Johannes van Goudoever
- Department of Pediatrics, Emma Children's Hospital-Academisch Medisch Centrum, Amsterdam, The Netherlands Department of Pediatrics, Vrije Universiteit University Medical Center, Amsterdam, The Netherlands
| | | | - Xingxuan He
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Douglas Burrin
- United States Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| |
Collapse
|
20
|
Methylation of a panel of genes in peripheral blood leukocytes is associated with colorectal cancer. Sci Rep 2016; 6:29922. [PMID: 27453436 PMCID: PMC4958953 DOI: 10.1038/srep29922] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/23/2016] [Indexed: 12/25/2022] Open
Abstract
The relationship between the DNA methylation status of the CpG islands of multiple genes in blood leukocytes in CRC susceptibility and prognosis, as well as possible interactions with dietary factors on CRC risk are unclear. We carried out a case-control study including 421 CRC patients and 506 controls to examine the associations between six genes (AOX-1, RARB2, RERG, ADAMTS9, IRF4, and FOXE-1), multiple CpG site methylation (MCSM) and susceptibility to CRC. High-level MCSM (MCSM-H) was defined as methylation of greater than or equal to 2 of 5 candidate genes (except for RARB2); low-level MCSM (MCSM-L) was when 1 candidate gene was methylated; non-MCSM was when none of the candidate genes were methylated. Blood cell-derived DNA methylation status was detected using methylation-sensitive high-resolution melting analysis. The hypermethylation status of each individual gene was statistically significantly associated with CRC. MCSM status was also associated with CRC (OR = 1.54, 95% CI: 1.15–2.05, P = 0.004). We observed interactions between a high level of dietary intake of cereals, pungent food, and stewed fish with brown sauce, age (older than 60 yrs), smoking and hypermethylation on risk of CRC. MCSM in peripheral blood DNA may be an important biomarker for susceptibility to CRC.
Collapse
|
21
|
Liu D, Li S, Li Z. Adiponectin: A biomarker for chronic hepatitis C? Cytokine 2015; 89:27-33. [PMID: 26683021 DOI: 10.1016/j.cyto.2015.10.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/30/2015] [Accepted: 10/30/2015] [Indexed: 12/14/2022]
Abstract
Adiponectin, a hormone primarily synthesized and secreted by adipose tissue, plays a pivotal role in lipid metabolism. Chronic hepatitis C (CHC) infection is characterized by disordered lipid metabolism, which may potentially evolve into steatosis over a period of time. A growing body of evidence appears to link decreased adiponectin plasma levels with severe CHC-related steatosis, which suggests a potential role of this adipokine as a diagnostic and therapeutic target for clinical application. In this review, we have attempted to summarize the current status of adiponectin research in the context of CHC, concentrating predominantly on its roles in CHC, and its potential relevance as a biomarker for CHC.
Collapse
Affiliation(s)
- Ding Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shengyu Li
- Department of General Surgery, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
22
|
Wang Z, Neal BH, Lamb JC, Klaunig JE. Mechanistic Investigation of Toxaphene Induced Mouse Liver Tumors. Toxicol Sci 2015; 147:549-61. [DOI: 10.1093/toxsci/kfv151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Abstract
XK469 (NSC 697887) is a selective topoisomerase II β inhibitor eliminated mainly by aldehyde oxidase I (AOX1). We performed a candidate gene study to investigate whether AOX1 genetic variation contributes to interindividual variability in XK469 clearance. Forty-one AOX1 single nucleotide polymorphisms (SNPs) and seven liver expression quantitative trait loci were genotyped in White patients with advanced refractory solid tumors (n=59) and leukemia (n=33). We found a significant decrease in clearance (τ=-0.32, P=0.003) in solid tumor patients with rs10931910, although it failed to replicate in the leukemia cohort (τ=0.18, P=0.20). Four other AOX1 SNPs were associated with clearance (P=0.01-0.02) in only one of the two cohorts. Our study provides a starting point for future investigations on the functionality of AOX1 SNPs. However, variability in XK469 clearance cannot be attributed to polymorphisms in AOX1.
Collapse
|
24
|
Kostapanos MS, Kei A, Elisaf MS. Current role of fenofibrate in the prevention and management of non-alcoholic fatty liver disease. World J Hepatol 2013; 5:470-478. [PMID: 24073298 PMCID: PMC3782684 DOI: 10.4254/wjh.v5.i9.470] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Revised: 07/24/2013] [Accepted: 08/20/2013] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common health problem with a high mortality burden due to its liver- and vascular-specific complications. It is associated with obesity, high-fat diet as well as with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS). Impaired hepatic fatty acid (FA) turnover together with insulin resistance are key players in NAFLD pathogenesis. Peroxisome proliferator-activated receptors (PPARs) are involved in lipid and glucose metabolic pathways. The novel concept is that the activation of the PPARα subunit may protect from liver steatosis. Fenofibrate, by activating PPARα, effectively improves the atherogenic lipid profile associated with T2DM and MetS. Experimental evidence suggested various protective effects of the drug against liver steatosis. Namely, fenofibrate-related PPARα activation may enhance the expression of genes promoting hepatic FA β-oxidation. Furthermore, fenofibrate reduces hepatic insulin resistance. It also inhibits the expression of inflammatory mediators involved in non-alcoholic steatohepatitis pathogenesis. These include tumor necrosis factor-α, intercellular cell adhesion molecule-1, vascular cell adhesion molecule-1 and monocyte chemoattractant protein-1. Consequently, fenofibrate can limit hepatic macrophage infiltration. Other liver-protective effects include decreased oxidative stress and improved liver microvasculature function. Experimental studies showed that fenofibrate can limit liver steatosis associated with high-fat diet, T2DM and obesity-related insulin resistance. Few studies showed that these benefits are also relevant even in the clinical setting. However, these have certain limitations. Namely, these were uncontrolled, their sample size was small, fenofibrate was used as a part of multifactorial approach, while histological data were absent. In this context, there is a need for large prospective studies, including proper control groups and full assessment of liver histology.
Collapse
|
25
|
Barr JT, Jones JP, Joswig-Jones CA, Rock DA. Absolute quantification of aldehyde oxidase protein in human liver using liquid chromatography-tandem mass spectrometry. Mol Pharm 2013; 10:3842-9. [PMID: 24006961 DOI: 10.1021/mp4003046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The function of the enzyme human aldehyde oxidase (AOX1) is uncertain; however, recent studies have implicated significant biochemical involvement in humans. AOX1 has also rapidly become an important drug-metabolizing enzyme. Until now, quantitation of AOX1 in complex matrices such as tissue has not been achieved. Herein, we developed and employed a trypsin digest and subsequent liquid chromatography-tandem mass spectrometry analysis to determine absolute amounts of AOX1 in human liver. E. coli expressed human purified AOX1 was used to validate the linearity, sensitivity, and selectivity of the method. Overall, the method is highly efficient and sensitive for determination of AOX1 in cytosolic liver fractions. Using this method, we observed substantial batch-to-batch variation in AOX1 content (21-40 pmol AOX1/mg total protein) between various pooled human liver cytosol preparations. We also observed interbatch variation in Vmax (3.3-4.9 nmol min(-1) mg(-1)) and a modest correlation between enzyme concentration and activity. In addition, we measured a large difference in kcat/Km, between purified (kcat/Km of 1.4) and human liver cytosol (kcat/Km of 15-20) indicating cytosol to be 11-14 times more efficient in the turnover of DACA than the E. coli expressed purified enzyme. Finally, we discussed the future impact of this method for the development of drug metabolism models and understanding the biochemical role of this enzyme.
Collapse
Affiliation(s)
- John T Barr
- Department of Chemistry, Washington State University , P.O. Box 644630, Pullman, Washington 99164-4630, United States
| | | | | | | |
Collapse
|
26
|
Floc'h N, Kolodziejski J, Akkari L, Simonin Y, Ansieau S, Puisieux A, Hibner U, Lassus P. Modulation of oxidative stress by twist oncoproteins. PLoS One 2013; 8:e72490. [PMID: 23967308 PMCID: PMC3742535 DOI: 10.1371/journal.pone.0072490] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 07/17/2013] [Indexed: 01/02/2023] Open
Abstract
Expression of developmental genes Twist1 and Twist2 is reactivated in many human tumors. Among their oncogenic activities, induction of epithelial to mesenchymal transition is believed to increase cell motility and invasiveness and may be related to acquisition of cancer stem cell phenotype. In addition, Twist proteins promote malignant conversion by overriding two oncogene-induced failsafe programs: senescence and apoptosis. Reactive oxygen species (ROS) are also important mediators of apoptosis, senescence and motility and are tightly linked to disease, notably to cancer. We report here that Twist factors and ROS are functionally linked. In wild type cells both Twist1 and Twist2 exhibit antioxidant properties. We show that Twist-driven modulation of oncogene-induced apoptosis is linked to its effects on oxidative stress. Finally, we identify several targets that mediate Twist antioxidant activity. These findings unveil a new function of Twist factors that could be important in explaining their pleiotropic role during carcinogenesis.
Collapse
Affiliation(s)
- Nicolas Floc'h
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Jakub Kolodziejski
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Leila Akkari
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Yannick Simonin
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Stéphane Ansieau
- Institut National de la Santé et de la Recherche Médicale (Inserm) Unité Mixte de Recherche (UMR) S1052, Centre de Recherche en Cancérologie, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5286, Centre de Recherche en Cancérologie, Lyon, France
- Université Unité Mixte de Recherche (UMR) 1052, Centre de Recherche en Cancérologie, Lyon, France
- Université de Lyon, Lyon, France
| | - Alain Puisieux
- Institut National de la Santé et de la Recherche Médicale (Inserm) Unité Mixte de Recherche (UMR) S1052, Centre de Recherche en Cancérologie, Lyon, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5286, Centre de Recherche en Cancérologie, Lyon, France
- Université Unité Mixte de Recherche (UMR) 1052, Centre de Recherche en Cancérologie, Lyon, France
- Université de Lyon, Lyon, France
- Centre Léon Bérard, Lyon, France
| | - Urszula Hibner
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
| | - Patrice Lassus
- Institut de Génétique Moléculaire de Montpellier, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 5535, Montpellier, France
- Université Montpellier I and Université Montpellier II, Montpellier, France
- * E-mail:
| |
Collapse
|
27
|
Fu C, Di L, Han X, Soderstrom C, Snyder M, Troutman MD, Obach RS, Zhang H. Aldehyde Oxidase 1 (AOX1) in Human Liver Cytosols: Quantitative Characterization of AOX1 Expression Level and Activity Relationship. Drug Metab Dispos 2013; 41:1797-804. [DOI: 10.1124/dmd.113.053082] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Garattini E, Terao M. Aldehyde oxidase and its importance in novel drug discovery: present and future challenges. Expert Opin Drug Discov 2013; 8:641-54. [DOI: 10.1517/17460441.2013.788497] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Crispim CA, Padilha HG, Zimberg IZ, Waterhouse J, Dattilo M, Tufik S, de Mello MT. Adipokine Levels Are Altered by Shiftwork: A Preliminary Study. Chronobiol Int 2012; 29:587-94. [DOI: 10.3109/07420528.2012.675847] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Wanninger J, Bauer S, Eisinger K, Weiss TS, Walter R, Hellerbrand C, Schäffler A, Higuchi A, Walsh K, Buechler C. Adiponectin upregulates hepatocyte CMKLR1 which is reduced in human fatty liver. Mol Cell Endocrinol 2012; 349:248-54. [PMID: 22118966 PMCID: PMC3670424 DOI: 10.1016/j.mce.2011.10.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 10/14/2011] [Accepted: 10/28/2011] [Indexed: 12/25/2022]
Abstract
Chemokine-like receptor 1 (CMKLR1) ligands chemerin and resolvin E1 are suggested to have a role in non-alcoholic fatty liver disease (NAFLD). Here, expression of CMKLR1 in liver cells and NAFLD was studied. CMKLR1 was detected in primary human hepatocytes (PHH), Kupffer cells, bile-duct cells and hepatic stellate cells. In human and rodent fatty liver and in fibrotic liver of mice fed a methionine-choline deficient diet CMKLR1 was reduced. Hepatocytes are the major cells in the liver and effects of adipokines, cytokines and lipids on CMKLR1 in PHH were analyzed. Increased cellular triglyceride or cholesterol content, lipopolysaccharide, IL-6, TNF and leptin did not influence CMKLR1 levels in PHH whereas profibrotic TGFβ tended to reduce CMKLR1. Adiponectin strongly upregulated CMKLR1 mRNA and protein in PHH and hepatic CMKLR1 when injected into wild type mice. Further, CMKLR1 was suppressed in the liver of adiponectin deficient mice. These data indicate that low CMKLR1 in NAFLD may partly result from reduced adiponectin activity.
Collapse
Affiliation(s)
- Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg D-93042, Germany
| | - Sabrina Bauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg D-93042, Germany
| | - Kristina Eisinger
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg D-93042, Germany
| | - Thomas S. Weiss
- Department of Pediatrics and Center for Liver Cell Research, Regensburg University Hospital, Regensburg D-93042, Germany
| | - Roland Walter
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg D-93042, Germany
| | - Claus Hellerbrand
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg D-93042, Germany
| | - Andreas Schäffler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg D-93042, Germany
| | - Akiko Higuchi
- Molecular, Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Kenneth Walsh
- Molecular, Cardiology and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg D-93042, Germany
- Corresponding author. Tel.: +49 941 944 7147; fax: +49 941 944 7019. (C. Buechler)
| |
Collapse
|
31
|
Garattini E, Terao M. The role of aldehyde oxidase in drug metabolism. Expert Opin Drug Metab Toxicol 2012; 8:487-503. [DOI: 10.1517/17425255.2012.663352] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Abstract
Adipokines (adipose tissue cytokines) are polypeptide factors secreted by adipose tissue in a highly regulated manner. The 'classical' adipokines (leptin, adiponectin, and resistin) are expressed only by adipocytes, but other adipokines have been shown to be released by resident and infiltrating macrophages, as well as by components of the vascular stroma. Indeed, adipose tissue inflammation is known to be associated with a modification in the pattern of adipokine secretion. Several studies indicate that adipokines can interfere with hepatic injury associated with fatty infiltration, differentially modulating steatosis, inflammation, and fibrosis. Moreover, plasma levels of adipokines have been investigated in patients with nonalcoholic fatty liver disease in order to establish correlations with the underlying state of insulin resistance and with the type and severity of hepatic damage. In this Forum article, we provide a review of recent data that suggest a significant role for oxidative stress, reactive oxygen species, and redox signaling in mediating actions of adipokines that are relevant in the pathogenesis of nonalcoholic fatty liver disease, including hepatic insulin resistance, inflammation, and fibrosis.
Collapse
Affiliation(s)
- Maurizio Parola
- Dipartimento di Medicina e Oncologia Sperimentale and Centro Interuniversitario di Fisiopatologia Epatica Università degli Studi di Torino, Turin, Italy
| | | |
Collapse
|
33
|
Buechler C, Wanninger J, Neumeier M. Adiponectin, a key adipokine in obesity related liver diseases. World J Gastroenterol 2011; 17:2801-11. [PMID: 21734787 PMCID: PMC3120939 DOI: 10.3748/wjg.v17.i23.2801] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/17/2010] [Accepted: 11/24/2010] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprising hepatic steatosis, non-alcoholic steatohepatitis (NASH), and progressive liver fibrosis is considered the most common liver disease in western countries. Fatty liver is more prevalent in overweight than normal-weight people and liver fat positively correlates with hepatic insulin resistance. Hepatic steatosis is regarded as a benign stage of NAFLD but may progress to NASH in a subgroup of patients. Besides liver biopsy no diagnostic tools to identify patients with NASH are available, and no effective treatment has been established. Visceral obesity is a main risk factor for NAFLD and inappropriate storage of triglycerides in adipocytes and higher concentrations of free fatty acids may add to increased hepatic lipid storage, insulin resistance, and progressive liver damage. Most of the adipose tissue-derived proteins are elevated in obesity and may contribute to systemic inflammation and liver damage. Adiponectin is highly abundant in human serum but its levels are reduced in obesity and are even lower in patients with hepatic steatosis or NASH. Adiponectin antagonizes excess lipid storage in the liver and protects from inflammation and fibrosis. This review aims to give a short survey on NAFLD and the hepatoprotective effects of adiponectin.
Collapse
|
34
|
Pan SY, Dong H, Guo BF, Zhang Y, Yu ZL, Fong WF, Han YF, Ko KM. Effective kinetics of schisandrin B on serum/hepatic triglyceride and total cholesterol levels in mice with and without the influence of fenofibrate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2011; 383:585-91. [PMID: 21523558 DOI: 10.1007/s00210-011-0634-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 03/29/2011] [Indexed: 11/28/2022]
Abstract
Schisandrin B, an active ingredient isolated from the fruit of Schisandra chinensis, increased serum and hepatic triglyceride levels in mice. In the present study, the effective kinetics of schisandrin B on serum/hepatic triglyceride and total cholesterol levels in mice without and with the influence of fenofibrate were investigated. Parameters on hepatic index (the ratio of liver weight to body weight × 100) were also analyzed. Mice were intragastrically treated with schisandrin B at a single dose of 0.2, 0.4, 0.8, or 1.6 g/kg, without or with fenofibrate pretreatment (0.1 g/kg/day for 4 days, p.o.). Twenty-four hours after schisandrin B treatment, serum/hepatic triglyceride and total cholesterol levels were measured. Schisandrin B treatment dose-dependently increased serum and hepatic triglyceride levels as well as hepatic index in mice. In contrast, hepatic total cholesterol levels were decreased in a dose-dependent manner in schisandrin B-treated mice. Data obtained from effective kinetics analysis indicated that the action of schisandrin B on serum triglyceride had a higher specificity than those on hepatic total cholesterol and hepatic index. While fenofibrate pretreatment inhibited the schisandrin B-induced elevation in serum triglyceride levels, it completely abrogated the elevation of hepatic triglyceride levels in schisandrin B-treated mice. The combined treatment with schisandrin B and fenofibrate decreased hepatic total cholesterol level and increased the hepatic index in an additive or semi-additive manner, respectively. In conclusion, the results of effective kinetics analysis indicated that the schisandrin B-induced hypertriglyceridemia was competitively inhibited by fenofibrate. Schisandrin B may offer the prospect of setting up a mouse model of hypertriglyceridemia and fatty liver for screening triglyceride-lowering drug candidates.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Wanninger J, Neumeier M, Bauer S, Weiss TS, Eisinger K, Walter R, Dorn C, Hellerbrand C, Schäffler A, Buechler C. Adiponectin induces the transforming growth factor decoy receptor BAMBI in human hepatocytes. FEBS Lett 2011; 585:1338-44. [PMID: 21496456 DOI: 10.1016/j.febslet.2011.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 04/01/2011] [Accepted: 04/01/2011] [Indexed: 02/07/2023]
Abstract
Transforming growth factor (TGF) β is the central cytokine in fibrotic liver diseases. We analyzed whether hepatoprotective adiponectin directly interferes with TGFβ1 signaling in primary human hepatocytes (PHH). Adiponectin induces the TGFβ decoy receptor BMP-and activin-membrane-bound inhibitor (BAMBI) in PHH. Overexpression of BAMBI in hepatoma cells impairs TGFβ-mediated phosphorylation of SMAD2 and induction of connective tissue growth factor. BAMBI is lower in human fatty liver with a higher susceptibility to liver fibrosis and negatively correlates with BMI of the donors. Hepatic BAMBI is reduced in rodent models of liver inflammation and fibrosis. In summary, the current data show that hepatoprotective effects of adiponectin include induction of BAMBI which is reduced in human fatty liver and rodent models of metabolic liver injury.
Collapse
Affiliation(s)
- Josef Wanninger
- Department of Internal Medicine I, University Hospital of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Garattini E, Terao M. Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev 2011; 43:374-86. [DOI: 10.3109/03602532.2011.560606] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Polyzos SA, Toulis KA, Goulis DG, Zavos C, Kountouras J. Serum total adiponectin in nonalcoholic fatty liver disease: a systematic review and meta-analysis. Metabolism 2011; 60:313-26. [PMID: 21040935 DOI: 10.1016/j.metabol.2010.09.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 08/30/2010] [Accepted: 09/14/2010] [Indexed: 02/07/2023]
Abstract
Hypoadiponectinemia might represent a risk factor for nonalcoholic fatty liver disease (NAFLD). We performed a systematic review and meta-analysis to evaluate the serum total adiponectin levels in patients with simple nonalcoholic fatty liver (NAFL), those with nonalcoholic steatohepatitis (NASH), and controls. Data were extracted from PubMed, EMBASE, and Cochrane Central Register of Controlled Trials electronic databases (up to December 2009). The main outcome was the weighted mean differences (WMDs) in adiponectin between comparison groups. Twenty-eight studies were included in the systematic review. A meta-analysis of 27 studies that reported data on 2243 subjects (698 controls and 1545 patients with NAFLD) was performed. Controls had higher serum adiponectin compared with NAFL patients (12 studies, random-effects WMD [95% confidence interval {CI}] = 3.00 [1.57-4.43], I² = 80.4%) or NASH patients (19 studies, random-effects WMD [95% CI] = 4.75 [3.71-5.78], I² = 84.1%). The NASH patients demonstrated lower adiponectin compared with NAFL patients (19 studies, random-effects WMD [95% CI] = 1.81 [1.09-2.53], I² = 71.7%). By performing a meta-regression analysis, body mass index, age, sex, and type 2 diabetes mellitus failed to account for heterogeneity. However, the performance of liver biopsy on controls had significant effect on the outcome and accounted for 76.7%, 85.5%, and 22.8% of the between-study variance for comparisons between controls vs NAFLD, NAFL, and NASH patients, respectively. Based on liver histology, serum adiponectin levels are similar in NAFL patients and controls, but hypoadiponectinemia may play an important pathophysiological role in the progression from NAFL to NASH.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Second Medical Clinic, Medical School, Aristotle University of Thessaloniki, Ippokration Hospital, 54642 Thessaloniki, Greece.
| | | | | | | | | |
Collapse
|
38
|
Bauer S, Wanninger J, Schmidhofer S, Weigert J, Neumeier M, Dorn C, Hellerbrand C, Zimara N, Schäffler A, Aslanidis C, Buechler C. Sterol regulatory element-binding protein 2 (SREBP2) activation after excess triglyceride storage induces chemerin in hypertrophic adipocytes. Endocrinology 2011; 152:26-35. [PMID: 21084441 DOI: 10.1210/en.2010-1157] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chemerin is an adipokine whose systemic concentration and adipose tissue expression is increased in obesity. Chemerin is highly abundant in adipocytes, yet the molecular mechanisms mediating its further induction in obesity have not been clarified. Adipocyte hypertrophy contributes to dysregulated adipokine synthesis, and we hypothesized that excess loading with free fatty acids (FFA) stimulates chemerin synthesis. Chemerin was expressed in mature adipocytes, and differentiation of 3T3-L1 cells in the presence of FFA further increased its level. TNF and IL-6 were induced by FFA, but concentrations were too low to up-regulate chemerin. Sterol regulatory element-binding protein 2 (SREBP2) was activated in these cells, indicative for cholesterol shortage. Suppression of cholesterol synthesis by lovastatin led to activation of SREBP2 and increased chemerin, and supplementation with mevalonate reversed this effect. Knockdown of SREBP2 reduced basal and FFA-induced chemerin. EMSA confirmed binding of 3T3-L1 adipocyte nuclear proteins to a SREBP site in the chemerin promotor. SREBP2 was activated and chemerin was induced in adipose tissue of mice fed a high-fat diet, and higher systemic levels seem to be derived from adipocytes. Lipopolysaccharide-mediated elevation of chemerin was similarly effective as induction by FFA, indicating that both mechanisms are equally important. Chemokine-like receptor 1 was not altered by the incubations mentioned above, and higher expression in fat of mice fed a high-fat diet may reflect increased number of adipose tissue-resident macrophages in obesity. In conclusion, the current data show that adipocyte hypertrophy and chronic inflammation are equally important in inducing chemerin synthesis.
Collapse
Affiliation(s)
- Sabrina Bauer
- Department of Internal Medicine I, Regensburg University Hospital, D-93042 Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Snail-mediated regulation of reactive oxygen species in ARCaP human prostate cancer cells. Biochem Biophys Res Commun 2010; 404:34-9. [PMID: 21093414 DOI: 10.1016/j.bbrc.2010.11.044] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 11/21/2022]
Abstract
Reactive oxygen species increases in various diseases including cancer and has been associated with induction of epithelial-mesenchymal transition (EMT), as evidenced by decrease in cell adhesion-associated molecules like E-cadherin, and increase in mesenchymal markers like vimentin. We investigated the molecular mechanisms by which Snail transcription factor, an inducer of EMT, promotes tumor aggressiveness utilizing ARCaP prostate cancer cell line. An EMT model created by Snail overexpression in ARCaP cells was associated with decreased E-cadherin and increased vimentin. Moreover, Snail-expressing cells displayed increased concentration of reactive oxygen species (ROS), specifically, superoxide and hydrogen peroxide, in vitro and in vivo. Real Time PCR profiling demonstrated increased expression of oxidative stress-responsive genes, such as aldehyde oxidase I, in response to Snail. The ROS scavenger, N-acetyl cysteine partially reversed Snail-mediated EMT after 7 days characterized by increased E-cadherin levels and decreased ERK activity, while treatment with the MEK inhibitor, UO126, resulted in a more marked effect by 3 days, characterized by cells returning back to the epithelial morphology and increased E-cadherin. In conclusion, this study shows for the first time that Snail transcription factor can regulate oxidative stress enzymes and increase ROS-mediated EMT regulated in part by ERK activation. Therefore, Snail may be an attractive molecule for therapeutic targeting to prevent tumor progression in human prostate cancer.
Collapse
|
40
|
Wanninger J, Neumeier M, Hellerbrand C, Schacherer D, Bauer S, Weiss TS, Huber H, Schäffler A, Aslanidis C, Schölmerich J, Buechler C. Lipid accumulation impairs adiponectin-mediated induction of activin A by increasing TGFbeta in primary human hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1811:626-33. [PMID: 21070865 DOI: 10.1016/j.bbalip.2010.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 10/20/2010] [Accepted: 11/02/2010] [Indexed: 12/18/2022]
Abstract
Fatty liver is commonly detected in obesity and has been identified as a risk factor for the progression of hepatic fibrosis in a wide range of liver diseases. Transforming growth factor beta (TGFβ) and activin A, both members of the TGFβ superfamiliy, are central regulators in liver fibrosis and regeneration, and the effect of hepatocyte lipid accumulation on the release of these proteins was studied. Primary human hepatocytes (PHH) were incubated with palmitic acid or oleic acid to increase lipid storage. Whereas activin A and its natural inhibitor follistatin were not affected, TGFβ was 2-fold increased. The hepatoprotective adipokine adiponectin dose-dependently induced activin A while lowering follistatin but did not alter TGFβ. Activin A was markedly reduced in hepatocyte cell lines compared to PHH and was not induced upon adiponectin incubation demonstrating significant differences of primary and transformed cells. In free fatty acid (FFA)-incubated PHH adiponectin-mediated induction of activin A was impaired. Inhibition of TGFβ receptors ALK4/5 and blockage of SMAD3 phosphorylation rescued activin A synthesis in FFA and in TGFβ incubated cells suggesting that FFA inhibit adiponectin activity by inducing TGFβ. To evaluate whether serum levels of activin A and its antagonist are altered in patients with hepatic steatosis, both proteins were measured in the serum of patients with sonographically diagnosed fatty liver and age- and BMI-matched controls. Systemic adiponectin was significantly reduced in patients with fatty liver but activin A and follistatin were not altered. In summary the current data demonstrate that lipid accumulation in hepatocytes induces TGFβ which impairs adiponectin bioactivity, and thereby may contribute to liver injury.
Collapse
Affiliation(s)
- Josef Wanninger
- Department of Internal Medicine I, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Berger E, Rome S, Vega N, Ciancia C, Vidal H. Transcriptome profiling in response to adiponectin in human cancer-derived cells. Physiol Genomics 2010; 42A:61-70. [DOI: 10.1152/physiolgenomics.00013.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The adipocyte-derived hormone adiponectin exerts protective actions in several disorders, including some cancers. However, while growing data suggest that adiponectin could be an effective anticancer agent, its mechanism of action in cancer cells is still poorly known. Here, using microarrays, we identified a set of 1,301 genes commonly modulated in three cancer-derived cell lines in response to short-term stimulation with full-length recombinant human adiponectin. Most of these genes are involved in translation regulation, immune or stress responses, and cell proliferation. Furthermore, among genes linked to disease that were retrieved by functional enrichment tests using text mining based on PubMed analysis, we found that 66% are involved in malignant neoplasms, further supporting the link between adiponectin and cancer mechanisms. Bioinformatic analysis demonstrated the diversity of signaling pathways and transcription factors potentially mediating adiponectin effects on gene expression, illustrating the complexity of adiponectin mechanisms of action in cancer cells.
Collapse
Affiliation(s)
- Emmanuelle Berger
- Université de Lyon, INSERM U870, INRA U1235, Hospices Civils de Lyon, and INSA-Lyon, Lyon, France
| | - Sophie Rome
- Université de Lyon, INSERM U870, INRA U1235, Hospices Civils de Lyon, and INSA-Lyon, Lyon, France
| | - Nathalie Vega
- Université de Lyon, INSERM U870, INRA U1235, Hospices Civils de Lyon, and INSA-Lyon, Lyon, France
| | - Claire Ciancia
- Université de Lyon, INSERM U870, INRA U1235, Hospices Civils de Lyon, and INSA-Lyon, Lyon, France
| | - Hubert Vidal
- Université de Lyon, INSERM U870, INRA U1235, Hospices Civils de Lyon, and INSA-Lyon, Lyon, France
| |
Collapse
|
42
|
Polyzos SA, Kountouras J, Zavos C, Tsiaousi E. The role of adiponectin in the pathogenesis and treatment of non-alcoholic fatty liver disease. Diabetes Obes Metab 2010; 12:365-83. [PMID: 20415685 DOI: 10.1111/j.1463-1326.2009.01176.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is recognized as the most common type of chronic liver disease in Western countries and the leading cause of cryptogenic cirrhosis. Insulin resistance (IR) is a key factor in the pathogenesis of NAFLD, the latter being considered as the hepatic component of IR or metabolic syndrome (MetS). Although the pathogenesis of NAFLD is not fully elucidated, a complex interaction between adipokines and cytokines produced by adipocytes and/or inflammatory cells infiltrating adipose tissue appears to play a crucial role in MetS and NAFLD. Adiponectin is the most abundant and adipose-specific adipokine. In the liver, adiponectin acts through the activation of 5-AMP-activated protein kinase and peroxisome proliferator-activated receptor-alpha pathways and inhibition of toll-like receptor-4 mediated signalling. There is an evidence that adiponectin decreases hepatic and systematic IR and attenuates liver inflammation and fibrosis. Adiponectin generally predicts steatosis grade and severity of NAFLD, but it remains to be addressed to what extent this is a direct effect or related to the presence of more severe IR. Although there is no proven pharmacotherapy for the treatment of NAFLD, recent therapeutic strategies have focused on the indirect upregulation of adiponectin through the administration of various therapeutic agents and/or lifestyle modifications. Weight loss, through diet, lifestyle changes and/or medications including orlistat, sibutramine, rimonabant or bariatric surgery, increase adiponectin and may improve liver histology. Insulin sensitizers, including pioglitazone and rosiglitazone, and lipid-lowering agents, including statins and fibrates, also upregulate adiponectin and ameliorate liver histology. The wider use of new treatment approaches appears to signal the dawn of a new era in the management of NAFLD. In this adiponectin-focused review, the pathogenetic role and the potential therapeutic benefits of adiponectin in NAFLD are systematically analysed.
Collapse
Affiliation(s)
- Stergios A Polyzos
- Second Medical Clinic, Medical School, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| | | | | | | |
Collapse
|
43
|
Stogbauer F, Weigert J, Neumeier M, Wanninger J, Sporrer D, Weber M, Schaffler A, Enrich C, Wood P, Grewal T, Aslanidis C, Buechler C. Annexin A6 is highly abundant in monocytes of obese and type 2 diabetic individuals and is downregulated by adiponectin in vitro. Exp Mol Med 2009; 41:501-7. [PMID: 19322030 DOI: 10.3858/emm.2009.41.7.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Adiponectin stimulates cholesterol efflux in macrophages and low adiponectin may in part contribute to disturbed reverse cholesterol transport in type 2 diabetes. Monocytes express high levels of annexin A6 that could inhibit cholesterol efflux and it was investigated whether the atheroprotective effects of adiponectin are accompanied by changes in annexin A6 levels. Adiponectin reduces annexin A6 protein whereas mRNA levels are not affected. Adiponectin-mediated activation of peroxisome proliferator-activated receptor alpha (PPARalpha) and AMP-activated protein kinase (AMPK) does not account for reduced annexin A6 expression. Further, fatty acids and lipopolysaccharide that are elevated in obesity do not influence annexin A6 protein levels. Annexin A6 in monocytes from overweight probands or type 2 diabetic patients is significantly elevated compared to monocytes of normal-weight controls. Monocytic annexin A6 positively correlates with body mass index and negatively with systemic adiponectin of the blood donors. Therefore, the current study demonstrates that adiponectin reduces annexin A6 in monocytes and thereby may enhance cholesterol efflux. In agreement with these in vitro finding an increase of monocytic annexin A6 in type 2 diabetes monocytes was observed.
Collapse
Affiliation(s)
- Fabian Stogbauer
- Department of Internal Medicine I, Regensburg University Hospital, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wanninger J, Neumeier M, Weigert J, Bauer S, Weiss TS, Schäffler A, Krempl C, Bleyl C, Aslanidis C, Schölmerich J, Buechler C. Adiponectin-stimulated CXCL8 release in primary human hepatocytes is regulated by ERK1/ERK2, p38 MAPK, NF-kappaB, and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol 2009; 297:G611-8. [PMID: 19608729 DOI: 10.1152/ajpgi.90644.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adiponectin is believed to exert hepatoprotective effects and induces CXCL8, a chemokine that functions as a survival factor, in vascular cells. In the current study, it is demonstrated that adiponectin also induces CXCL8 expression in primary human hepatocytes but not in hepatocellular carcinoma cell lines. Knock down of the adiponectin receptor (AdipoR) 1 or AdipoR2 by small-interfering RNA indicates that AdipoR1 is involved in adiponectin-stimulated CXCL8 release. Adiponectin activates nuclear factor (NF)-kappaB in primary hepatocytes and pharmacological inhibition of NF-kappaB, the p38 mitogen-activated protein kinase, and extracellular signal-regulated kinase (ERK) 1/ERK2 reduces adiponectin-mediated CXCL8 secretion. Furthermore, adiponectin also activates STAT3 involved in interleukin (IL)-6 and leptin-mediated CXCL8 induction in primary hepatocytes. Inhibition of JAK2 by AG-490 does not abolish adiponectin-stimulated CXCL8, indicating that this kinase is not involved. Pretreatment of primary cells with "STAT3 Inhibitor VI," however, elevates hepatocytic CXCL8 secretion, demonstrating that STAT3 is a negative regulator of CXCL8 in these cells. In accordance with this assumption, IL-6, a well-characterized activator of STAT3, reduces hepatocytic CXCL8. Therefore, adiponectin-stimulated induction of CXCL8 seems to be tightly controlled in primary human hepatocytes, whereas neither NF-kappaB, STAT3, nor CXCL8 are influenced in hepatocytic cell lines. CXCL8 is a survival factor, and its upregulation by adiponectin may contribute to the hepatoprotective effects of this adipokine.
Collapse
Affiliation(s)
- Josef Wanninger
- Department of Internal Medicine I, University Hospital of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Qian XW, Fan ZP, Wang XH, Sheng L, Xi ZF, Qiu DK. Expression of adiponectin and its receptor 2 during the development of nonalcoholic steatohepatitis. Shijie Huaren Xiaohua Zazhi 2009; 17:1925-1930. [DOI: 10.11569/wcjd.v17.i19.1925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of adiponectin and adiponectin receptor 2 (AdipoR2) in the liver during the development of nonalcoholic steatohepatitis (NASH) resulting from a methionine-choline deficient (MCD) diet.
METHODS: Rats were fed either MCD or CS diets and sacrificed at weeks 3, 5, 8 and 12, respectively, to take liver samples. Liver slices were stained to assess the effects of these diets. After total RNA was extracted from frozen liver tissue, RT-PCR was performed to determine the mRNA expression of adiponectin and AdipoR2 genes. The expression levels of adiponectin and AdipoR2 genes relative to β-actin were then determined.
RESULTS: In rats fed the CS diet, the expression of adiponectin and AdipoR2 genes showed no significant changes with the prolongation of feeding duration (all P > 0.05). In rats fed the MCD diet, the expression of adiponectin and AdipoR2 genes gradually declined at weeks 3, 5 and 8, with a very significant difference (1.004 ± 0.08 vs 1.25 ± 0.09, 0.83 ± 0.06 vs 1.26 ± 0.07, 0.68 ± 0.10 vs 1.24 ± 0.08; 1.00 ± 0.06 vs 1.24 ± 0.07, 0.84 ± 0.0.7 vs 1.22 ± 0.09, 0.75 ± 0.09 vs 1.19 ± 0.05, all P < 0.05). At week 12, liver fibrosis was observed, and the expression of both AdipoR2 and adiponectin genes significantly declined (P = 0.073).
CONCLUSION: The expression of adiponectin and AdipoR2 genes in the liver declines during the development of NASH, suggesting that they may be involved in the pathogenesis of NASH. Further study on adiponectin and AdipoR2 genes will deepen our understanding of the pathogenesis of NASH and may provide new treatments for this disease.
Collapse
|
46
|
Kamada Y, Takehara T, Hayashi N. Adipocytokines and liver disease. J Gastroenterol 2009; 43:811-22. [PMID: 19012034 DOI: 10.1007/s00535-008-2213-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Accepted: 05/01/2008] [Indexed: 02/04/2023]
Abstract
Adipose tissue is a massive source of bioactive substances known as adipocytokines, including tumor necrosis factor (TNF)-alpha, resistin, leptin, and adiponectin. Recent advances in medical research view obesity as a chronic low-grade inflammatory state. Hypertrophied adipocytes in obesity release chemokines that induce macrophage accumulation in adipose tissue. Accumulated macrophages in obese adipose tissue produce proinflammatory cytokines and nitric oxide, and these inflammatory changes induce adipocytokine dysregulation. The latter is characterized by a decrease in insulinsensitizing and anti-inflammatory adipocytokines, and an increase in proinflammatory adipocytokines. Adipocytokine dysregulation induces obesity-related metabolic disorders, the so-called metabolic syndrome. Metabolic syndrome is a cluster of metabolic abnormalities, including diabetes mellitus, hypertension, hyperlipidemia, and nonalcoholic steatohepatitis (NASH). Recent studies have revealed that obesity is an independent risk factor for chronic liver diseases, such as NASH, alcoholic liver disease, chronic hepatitis C, and hepatocellular carcinoma. A common mechanism underlying these hepatic clinical states is thought to be adipocytokine dysregulation. In this review, we discuss the association of adipocytokines, especially leptin, adiponectin, TNF-alpha, and resistin, with liver diseases.
Collapse
Affiliation(s)
- Yoshihiro Kamada
- Department of Gastroenterology and Hepatology, Osaka University, Graduate School of Medicine, 2-2 K1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | |
Collapse
|
47
|
Itoh K, Adachi M, Sato J, Shouji K, Fukiya K, Fujii K, Tanaka Y. Effects of Selenium Deficiency on Aldehyde Oxidase 1 in Rats. Biol Pharm Bull 2009; 32:190-4. [DOI: 10.1248/bpb.32.190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kunio Itoh
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Mayuko Adachi
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Jun Sato
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Kanako Shouji
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Kensuke Fukiya
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Keiko Fujii
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| | - Yorihisa Tanaka
- Department of Drug Metabolism and Pharmacokinetics, Tohoku Pharmaceutical University
| |
Collapse
|
48
|
Tirosh O, Ilan E, Anavi S, Ramadori G, Madar Z. Nutritional lipid-induced oxidative stress leads to mitochondrial dysfunction followed by necrotic death in FaO hepatocytes. Nutrition 2008; 25:200-8. [PMID: 18947977 DOI: 10.1016/j.nut.2008.07.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/03/2008] [Accepted: 07/18/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Mitochondrial dysfunction and hepatocyte cell death have been reported in fatty liver and non-alcoholic steatohepatitis. Our aim in this study was to evaluate whether direct exposure of hepatocytes to extracellular fat could facilitate such deleterious effects. METHODS FaO hepatic cells treated with fat was used as an in vitro model for steatosis. FaO hepatocytes were exposed to 0.1% triacylglycerols using commercially available lipid emulsion (LE) for various periods and studied for production of reactive oxygen species (ROS), mitochondrial function, and cell death parameters. To study the type of cell death, high-mobility group box chromosomal protein 1cellular levels, DNA fragmentation, and caspase activity were evaluated. RESULTS Cells incubated with LE for 6 h exhibited a marked increase in the production of intracellular ROS. Using treatments with peroxisome proliferator-activated receptor activators, mitochondrial electron-transfer chain inhibitor, and different sources of LE that did or did not contain medium-chain triacylglycerols, the mitochondria were found to be the source of ROS. LE treatment resulted in phosphorylation of adenosine monophosphate-activated protein kinase, accompanied by a decrease in adenosine triphosphate levels. Changes in intracellular ROS and energy levels were followed by cell death. FaO hepatocytes showed a significant reduction in high-mobility group box chromosomal protein-1 and little DNA fragmentation. Incubation with LE for 24 h did not change caspase-3 activity, indicating that hepatocyte death was necrotic. The antioxidant N-acetylcysteine was able to attenuate the changes in intracellular energy levels and ROS levels and to prevent cell death after exposure to LE. CONCLUSION These results suggest that exposure of FaO cells to LE leads to an increase in mitochondrial ROS production and a decrease in cellular energy levels followed by necrotic cell death.
Collapse
Affiliation(s)
- Oren Tirosh
- The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Institute of Biochemistry, Food Science and Nutrition, Rehovot, Israel
| | | | | | | | | |
Collapse
|
49
|
Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett 2008; 582:2965-72. [DOI: 10.1016/j.febslet.2008.07.034] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2008] [Revised: 07/07/2008] [Accepted: 07/20/2008] [Indexed: 12/14/2022]
|
50
|
Abstract
Sec (selenocysteine) is biosynthesized on its tRNA and incorporated into selenium-containing proteins (selenoproteins) as the 21st amino acid residue. Selenoprotein synthesis is dependent on Sec tRNA and the expression of this class of proteins can be modulated by altering Sec tRNA expression. The gene encoding Sec tRNA (Trsp) is a single-copy gene and its targeted removal in liver demonstrated that selenoproteins are essential for proper function wherein their absence leads to necrosis and hepatocellular degeneration. In the present study, we found that the complete loss of selenoproteins in liver was compensated for by an enhanced expression of several phase II response genes and their corresponding gene products. The replacement of selenoprotein synthesis in mice carrying mutant Trsp transgenes, wherein housekeeping, but not stress-related selenoproteins are expressed, led to normal expression of phase II response genes. Thus the present study provides evidence for a functional link between housekeeping selenoproteins and phase II enzymes.
Collapse
|