1
|
Hayashi K, Longenecker KL, Liu YL, Faust B, Prashar A, Hampl J, Stoll V, Vivona S. Complex of human Melanotransferrin and SC57.32 Fab fragment reveals novel interdomain arrangement with ferric N-lobe and open C-lobe. Sci Rep 2021; 11:566. [PMID: 33436675 PMCID: PMC7804310 DOI: 10.1038/s41598-020-79090-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023] Open
Abstract
Melanotransferrin (MTf) is an iron-binding member of the transferrin superfamily that can be membrane-anchored or secreted in serum. On cells, it can mediate transferrin-independent iron uptake and promote proliferation. In serum, it is a transcytotic iron transporter across the blood-brain barrier. MTf has been exploited as a drug delivery carrier to the brain and as an antibody-drug conjugate (ADC) target due to its oncogenic role in melanoma and its elevated expression in triple-negative breast cancer (TNBC). For treatment of TNBC, an MTf-targeting ADC completed a phase I clinical trial (NCT03316794). The structure of its murine, unconjugated Fab fragment (SC57.32) is revealed here in complex with MTf. The MTf N-lobe is in an active and iron-bound, closed conformation while the C-lobe is in an open conformation incompatible with iron binding. This combination of active and inactive domains displays a novel inter-domain arrangement in which the C2 subdomain angles away from the N-lobe. The C2 subdomain also contains the SC57.32 glyco-epitope, which comprises ten protein residues and two N-acetylglucosamines. Our report reveals novel features of MTf and provides a point of reference for MTf-targeting, structure-guided drug design.
Collapse
Affiliation(s)
- Kristyn Hayashi
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | | | - Yi-Liang Liu
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Bryan Faust
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Aditi Prashar
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Johannes Hampl
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA
| | - Vincent Stoll
- Research and Development, AbbVie Inc., North Chicago, IL, 60064, USA
| | - Sandro Vivona
- Research and Development, AbbVie Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
2
|
The membrane-bound and soluble form of melanotransferrin function independently in the diagnosis and targeted therapy of lung cancer. Cell Death Dis 2020; 11:933. [PMID: 33127882 PMCID: PMC7599248 DOI: 10.1038/s41419-020-03124-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023]
Abstract
Melanotransferrin (MFI2) is a newly identified tumor-associated protein, which consists of two forms of proteins, membrane-bound (mMFI2) and secretory (sMFI2). However, little is known about the expression pattern and their relevance in lung cancer. Here, we found that both two forms of MFI2 are highly expressed in lung cancer. The expression of MFI2 in lung cancer was detected by using the public database and qRT-PCR. Overexpression and knockdown cell lines and recombinant sMFI2 protein were used to study the function of mMFI2 and sMFI2. RNA-seq, protein chip, ChIP assay, Immunoprecipitation, ELISA, and immunofluorescence were used to study the molecular biological mechanism of mMFI2 and sMFI2. We found that mMFI2 promoted the expression of EMT’s common marker N-cadherin by downregulating the transcription factor KLI4, which in turn promoted tumor metastasis; sMFI2 could promote the metastasis of autologous tumor cells in an autocrine manner but the mechanism is different from that of mMFI2. In addition, sMFI2 was proved could inhibit the migration of vascular endothelial cells and subsequently enhance angiogenic responses in a paracrine manner. We propose that the expressions and functions of the two forms of MFI2 in lung cancer are relatively independent. Specifically, mMFI2 was a potential lung cancer therapeutic target, while sMFI2 was highly enriched in advanced lung cancer, and could be used as a tumor staging index.
Collapse
|
3
|
Vidal M. Exosomes and GPI-anchored proteins: Judicious pairs for investigating biomarkers from body fluids. Adv Drug Deliv Rev 2020; 161-162:110-123. [PMID: 32828789 DOI: 10.1016/j.addr.2020.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
Exosomes are 50-100 nm membranous vesicles actively released by cells which can be indicative of a diseased cell status. They contain various kinds of molecule - proteins, mRNA, miRNA, lipids - that are actively being studied as potential biomarkers. Hereafter I put forward several arguments in favor of the potential use of glycosylphosphatidylinositol-anchored proteins (GPI-APs) as biomarkers especially of cancerous diseases. I will briefly update readers on the exosome field and review various features of GPI-APs, before further discussing the advantages of this class of proteins as potential exosomal biomarkers. I will finish with a few examples of exosomal GPI-APs that have already been demonstrated to be good prognostic markers, as well as innovative approaches developed to quantify these exosomal biomarkers.
Collapse
|
4
|
Internalization Characterization of Si Nanorod with Camouflaged Cell Membrane Proteins Reveals ATXN2 as a Negative Regulator. Cells 2019; 8:cells8080931. [PMID: 31430912 PMCID: PMC6721741 DOI: 10.3390/cells8080931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
The fabrication of shape-controlled nanocarriers is critical for efficient delivery of biomolecules across the cell membrane. Surface coating of the nanocarrier can improve internalization efficiency. Here, we developed a facile method of silicon nanorod fabrication leading to a controlled size and shape. We then systematically evaluated five surface modifications with membrane proteins from different cancer cell lines including MCF7, MD231, Hela, Panc-PDX, and Panc-1. We demonstrated that silicon nanorods coated with either a homolytic or heterolytic membrane protein coating have significantly improved internalization efficiency as compared with uncoated Si nanorods. To elucidate the molecular mechanism of the improved efficiency associated with a modified coating, we analyzed the coating membrane proteins derived from five cell lines with proteomics and identified 601 proteins shared by different cell sources. These proteins may function as cell-substrate adhesion molecules that contribute to the enhanced internalization. We also tested the internalization efficiency of nanorods with different coatings in each of the five cell lines to determine the influencing factors from target cells. We found that the internalization efficiency varied among different target cells, and the ranking of the average efficiency was as follows: Hela > Panc-PDX > MD231 > MCF7 > Panc-1. The bioinformatics analysis suggested that the low internalization efficiency in Panc-1 cells might be associated with the upregulation of ATXN2, which is a negative regulator of endocytosis. We further demonstrated that ATXN2 knockdown with specific siRNA significantly improved nanorod internalization efficiency in Panc-1 cells suggesting that ATXN2 can be a reference for efficiency prediction of nanoparticle delivery to tumor cells. Thus, we studied the effect of different cancer cell membrane proteins on nanorod uptake efficiencies. These results can improve nanorod internalization to cancer cells, including a fundamental understanding of the internalization efficiency of cancer cells.
Collapse
|
5
|
Tawbi HA, Boutros C, Kok D, Robert C, McArthur G. New Era in the Management of Melanoma Brain Metastases. Am Soc Clin Oncol Educ Book 2018; 38:741-750. [PMID: 30231345 DOI: 10.1200/edbk_200819] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The remarkable advances in the systemic therapy of metastatic melanoma have now extended the 1-year overall survival rate from 25% to nearing 85%. Systemic treatment in the form of BRAF-targeted therapy and immunotherapy is slowly but surely proving its efficacy in the treatment of metatstatic brain metastases (MBM). Single-agent BRAF inhibitors provide an intracranial response rate of 25% to 40%, whereas the combination of BRAFi/MEKi leads to responses in up to 58%. However, the durability of responses induced by BRAFi/MEKi seems to be even shorter than in extracranial disease. On the other hand, single-agent ipilimumab provides comparable clinical benefit in MBMs as it does in extracranial metastases. Single-agent PD-1 anitbodies induce response rates of approximately 20%, and those responses appear durable. Similarly the combination of CTLA-4+ PD-1 antibodies induces durable responses at an impressive rate of 55% and is safe to administer. Although the local treatment approaches with radiation and surgery remain important and are critically needed in the management of MBM, systemic therapy offers a new dimension that can augment the impact of those therapies and come at a potentially lower cost of neurocognitive impairment. Considerations for combining those modalities are direly needed, in addition to considering novel systemic combinations that target mechanisms specific to MBM. In this report, we will discuss the underlying biology of melanoma brain metastases, the clinical outcomes from recent clinical trials of targeted and immunotherapy, and their impact on clinical practice in the context of existing local therapeutic modalities.
Collapse
Affiliation(s)
- Hussein A Tawbi
- From The University of Texas MD Anderson Cancer Center, Houston, TX; Institut Gustave Roussy, Paris, France; Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Celine Boutros
- From The University of Texas MD Anderson Cancer Center, Houston, TX; Institut Gustave Roussy, Paris, France; Peter MacCallum Cancer Centre, Melbourne, Australia
| | - David Kok
- From The University of Texas MD Anderson Cancer Center, Houston, TX; Institut Gustave Roussy, Paris, France; Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Caroline Robert
- From The University of Texas MD Anderson Cancer Center, Houston, TX; Institut Gustave Roussy, Paris, France; Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Grant McArthur
- From The University of Texas MD Anderson Cancer Center, Houston, TX; Institut Gustave Roussy, Paris, France; Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
6
|
Roads to melanoma: Key pathways and emerging players in melanoma progression and oncogenic signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:770-84. [PMID: 26844774 DOI: 10.1016/j.bbamcr.2016.01.025] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/27/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
Melanoma has markedly increased worldwide during the past several decades in the Caucasian population and is responsible for 80% of skin cancer deaths. Considering that metastatic melanoma is almost completely resistant to most current therapies and is linked with a poor patient prognosis, it is crucial to further investigate potential molecular targets. Major cell-autonomous drivers in the pathogenesis of this disease include the classical MAPK (i.e., RAS-RAF-MEK-ERK), WNT, and PI3K signaling pathways. These pathways play a major role in defining the progression of melanoma, and some have been the subject of recent pharmacological strategies to treat this belligerent disease. This review describes the latest advances in the understanding of melanoma progression and the major molecular pathways involved. In addition, we discuss the roles of emerging molecular players that are involved in melanoma pathogenesis, including the functional role of the melanoma tumor antigen, p97/MFI2 (melanotransferrin).
Collapse
|
7
|
Kunz M, Dannemann M, Kelso J. High-throughput sequencing of the melanoma genome. Exp Dermatol 2012; 22:10-7. [PMID: 23174022 DOI: 10.1111/exd.12054] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2012] [Indexed: 12/16/2022]
Abstract
Next-generation sequencing technologies are now common for whole-genome, whole-exome and whole-transcriptome sequencing (RNA-seq) of tumors to identify point mutations, structural or copy number alterations and changes in gene expression. A substantial number of studies have already been performed for melanoma. One study analysed eight melanoma cell lines with RNA-Seq technology and identified 11 novel melanoma gene fusions. Whole-exome sequencing of seven melanoma cell lines identified overlapping gain of function mutations in MAP2K1 (MEK1) and MAP2K2 (MEK2) genes. Integrative sequencing of cutaneous melanoma metastases using different sequencing platforms revealed a new somatic point mutation in HRAS and a structural rearrangement affecting CDKN2C (a CDK4 inhibitor). These latter sequencing-based discoveries may be used to motivate the inclusion of the affected patients into clinical trials with specific signalling pathway inhibitors. Taken together, we are at the beginning of an era with new sequencing technologies providing a more comprehensive view of cancer mutational landscapes and hereby a better understanding of their pathogenesis. This will also open interesting perspectives for new treatment approaches and clinical trial designs.
Collapse
Affiliation(s)
- Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig, Leipzig, Germany.
| | | | | |
Collapse
|
8
|
Turajlic S, Furney SJ, Lambros MB, Mitsopoulos C, Kozarewa I, Geyer FC, MacKay A, Hakas J, Zvelebil M, Lord CJ, Ashworth A, Thomas M, Stamp G, Larkin J, Reis-Filho JS, Marais R. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res 2012; 22:196-207. [PMID: 22183965 PMCID: PMC3266028 DOI: 10.1101/gr.125591.111] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Accepted: 11/29/2011] [Indexed: 12/25/2022]
Abstract
Next generation sequencing has enabled systematic discovery of mutational spectra in cancer samples. Here, we used whole genome sequencing to characterize somatic mutations and structural variation in a primary acral melanoma and its lymph node metastasis. Our data show that the somatic mutational rates in this acral melanoma sample pair were more comparable to the rates reported in cancer genomes not associated with mutagenic exposure than in the genome of a melanoma cell line or the transcriptome of melanoma short-term cultures. Despite the perception that acral skin is sun-protected, the dominant mutational signature in these samples is compatible with damage due to ultraviolet light exposure. A nonsense mutation in ERCC5 discovered in both the primary and metastatic tumors could also have contributed to the mutational signature through accumulation of unrepaired dipyrimidine lesions. However, evidence of transcription-coupled repair was suggested by the lower mutational rate in the transcribed regions and expressed genes. The primary and the metastasis are highly similar at the level of global gene copy number alterations, loss of heterozygosity and single nucleotide variation (SNV). Furthermore, the majority of the SNVs in the primary tumor were propagated in the metastasis and one nonsynonymous coding SNV and one splice site mutation appeared to arise de novo in the metastatic lesion.
Collapse
Affiliation(s)
- Samra Turajlic
- Signal Transduction Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Simon J. Furney
- Signal Transduction Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Maryou B. Lambros
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Costas Mitsopoulos
- Cancer Informatics, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Iwanka Kozarewa
- Division of Breast Cancer Research, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Felipe C. Geyer
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Alan MacKay
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Jarle Hakas
- Cancer Informatics, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Marketa Zvelebil
- Cancer Informatics, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Christopher J. Lord
- Division of Breast Cancer Research, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Alan Ashworth
- Division of Breast Cancer Research, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Meirion Thomas
- Department of Surgery, Royal Marsden Hospital, London SW3 6JJ, United Kingdom
| | - Gordon Stamp
- Department of Histopathology, Royal Marsden Hospital, London SW3 6JJ, United Kingdom
| | - James Larkin
- Melanoma Unit, Royal Marsden Hospital, London SW3 6JJ, United Kingdom
| | - Jorge S. Reis-Filho
- Molecular Pathology Team, The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Richard Marais
- Signal Transduction Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, United Kingdom
| |
Collapse
|
9
|
Suryo Rahmanto Y, Bal S, Loh KH, Yu Y, Richardson DR. Melanotransferrin: search for a function. Biochim Biophys Acta Gen Subj 2011; 1820:237-43. [PMID: 21933697 DOI: 10.1016/j.bbagen.2011.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 08/29/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
BACKGROUND Melanotransferrin was discovered in the 1980s as one of the first melanoma tumour antigens. The molecule is a transferrin homologue that is found predominantly bound to the cell membrane by a glycosyl-phosphatidylinositol anchor. MTf was described as an oncofoetal antigen expressed in only small quantities in normal tissues, but in much larger amounts in neoplastic cells. Several diseases are associated with expression of melanotransferrin, including melanoma and Alzheimer's disease, although the significance of the protein to the pathogenesis of these conditions remains unclear. SCOPE OF REVIEW In this review, we discuss the roles of melanotransferrin in physiological and pathological processes and its potential use as an immunotherapy. MAJOR CONCLUSIONS Although the exact biological functions of melanotransferrin remain elusive, a growing number of roles have been attributed to the protein, including iron transport/metabolism, angiogenesis, proliferation, cellular migration and tumourigenesis. GENERAL SIGNIFICANCE The high expression of melanotransferrin in several disease states, particularly malignant melanoma, remains intriguing and may have clinical significance. Further studies on the biology of this protein may provide new insights as well as potential therapeutic avenues for cancer treatment. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Yohan Suryo Rahmanto
- Department of Pathology and Bosch Institute, Blackburn Building (D06), University of Sydney, Sydney, New South Wales, 2006 Australia
| | | | | | | | | |
Collapse
|
10
|
Maruschke M, Koczan D, Reuter D, Ziems B, Nizze H, Hakenberg OW, Thiesen HJ. Putative biomarker genes for grading clear cell renal cell carcinoma. Urol Int 2011; 87:205-17. [PMID: 21757870 DOI: 10.1159/000328196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 04/05/2011] [Indexed: 01/03/2023]
Abstract
OBJECTIVE The initial objective of this renal cancer study was to identify gene sets in clear cell renal cell carcinoma (ccRCC) to support grading of ccRCC histopathology. MATERIALS AND METHODS Preselected ccRCC tumor tissues of grade 1 (G1, n = 14) and grade 3 (G3, n = 15) as well es 14 normal kidney tissues thereof were subjected to microarray expression analysis using Human Genome U133 Plus 2.0 Array. Event ratio scoring, hierarchical clustering and principal component analysis were used to determine gene sets that distinguish expression profiles from normal kidney tissue, G1 and G3 tumor tissues. RESULTS An initial set of 73 genes provided seven gene subclusters (SC01 to SC07) that distinguish RNA expression profiles from G1, G3 tumor and normal kidney tissues. A ranked list of 24 genes was determined that separated G1 from G3 tumors in high concordance with histopathological grading confirmed by immunohistochemical analysis of ceruloplasmin protein expression. CONCLUSION A final set of 24 genes has been determined awaiting further validation on the RNA as well as on the protein level by studying an additional cohort of ccRCC patients. A reliable separation of G1 and G3 tumor grades will be instrumental to foster and direct the administration of upcoming targeted therapeutics of ccRCC tumors in a more predictive and reliable manner.
Collapse
Affiliation(s)
- M Maruschke
- Department of Urology, University of Rostock, Rostock, Germany. matthias.maruschke @ med.uni-rostock.de
| | | | | | | | | | | | | |
Collapse
|
11
|
Ong WY, Jenner AM, Pan N, Ong CN, Halliwell B. Elevated oxidative stress, iron accumulation around microvessels and increased 4-hydroxynonenal immunostaining in zone 1 of the liver acinus in hypercholesterolemic rabbits. Free Radic Res 2009; 43:241-9. [DOI: 10.1080/10715760802691455] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Generation and characterization of transgenic mice hyper-expressing melanoma tumour antigen p97 (Melanotransferrin): No overt alteration in phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1210-7. [DOI: 10.1016/j.bbamcr.2009.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 02/06/2009] [Accepted: 02/06/2009] [Indexed: 11/18/2022]
|
13
|
Brohem C, Sawada T, Massaro R, Almeida R, Rivelli D, Ropke C, da Silva V, de Lima T, Curi R, Barros S, Maria-Engler S. Apoptosis induction by 4-nerolidylcatechol in melanoma cell lines. Toxicol In Vitro 2009; 23:111-9. [PMID: 19059332 DOI: 10.1016/j.tiv.2008.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 11/12/2008] [Accepted: 11/13/2008] [Indexed: 01/07/2023]
|
14
|
Rolland Y, Demeule M, Fenart L, Béliveau R. Inhibition of melanoma brain metastasis by targeting melanotransferrin at the cell surface. Pigment Cell Melanoma Res 2009; 22:86-98. [DOI: 10.1111/j.1755-148x.2008.00525.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Richardson DR, Kalinowski DS, Lau S, Jansson PJ, Lovejoy DB. Cancer cell iron metabolism and the development of potent iron chelators as anti-tumour agents. Biochim Biophys Acta Gen Subj 2008; 1790:702-17. [PMID: 18485918 DOI: 10.1016/j.bbagen.2008.04.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 04/21/2008] [Indexed: 02/08/2023]
Abstract
Cancer contributes to 50% of deaths worldwide and new anti-tumour therapeutics with novel mechanisms of actions are essential to develop. Metabolic inhibitors represent an important class of anti-tumour agents and for many years, agents targeting the nutrient folate were developed for the treatment of cancer. This is because of the critical need of this factor for DNA synthesis. Similarly to folate, Fe is an essential cellular nutrient that is critical for DNA synthesis. However, in contrast to folate, there has been limited effort applied to specifically design and develop Fe chelators for the treatment of cancer. Recently, investigations have led to the generation of novel di-2-pyridylketone thiosemicarbazone (DpT) and 2-benzoylpyridine thiosemicarbazone (BpT) group of ligands that demonstrate marked and selective anti-tumour activity in vitro and also in vivo against a wide spectrum of tumours. Indeed, administration of these compounds to mice did not induce whole body Fe-depletion or disturbances in haematological or biochemical indices due to the very low doses required. The mechanism of action of these ligands includes alterations in expression of molecules involved in cell cycle control and metastasis suppression, as well as the generation of redox-active Fe complexes. This review examines the alterations in Fe metabolism in tumour cells and the systematic development of novel aroylhydrazone and thiosemicarbazone Fe chelators for cancer treatment.
Collapse
Affiliation(s)
- D R Richardson
- Department of Pathology and Bosch Institute, Iron Metabolism and Chelation Program, Blackburn Building, University of Sydney, Sydney, New South Wales, 2006, Australia.
| | | | | | | | | |
Collapse
|
16
|
Richardson DR, Lok HC. The nitric oxide–iron interplay in mammalian cells: Transport and storage of dinitrosyl iron complexes. Biochim Biophys Acta Gen Subj 2008; 1780:638-51. [DOI: 10.1016/j.bbagen.2007.12.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/03/2007] [Accepted: 12/18/2007] [Indexed: 02/05/2023]
|
17
|
Rolland Y, Demeule M, Michaud-Levesque J, Béliveau R. Inhibition of tumor growth by a truncated and soluble form of melanotransferrin. Exp Cell Res 2007; 313:2910-9. [PMID: 17493610 DOI: 10.1016/j.yexcr.2007.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2007] [Revised: 04/04/2007] [Accepted: 04/09/2007] [Indexed: 11/20/2022]
Abstract
Melanotransferrin is a glycoprotein expressed at the cell membrane and secreted in the extracellular environment. Recombinant truncated form of membrane-bound melanotransferrin (sMTf) was reported to exert in vitro anti-angiogenic properties. Here we show that sMTf treatment leads to a 50% inhibition of neovascularization in Matrigel implants when stimulated by growth factors. Using a glioblastoma xenograft model, we demonstrate that sMTf delivery at 2.5 and 10 mg/kg/day by micro-osmotic pump inhibits tumor growth by 73% and 91%, respectively. In a lung carcinoma xenograft model, sMTf treatment at 2.5 and 10 mg/kg/day impeded tumor growth by 87% and 97%. Furthermore, subcutaneous glioblastoma and lung carcinoma tumors from mice treated with 10 mg/kg/day of sMTf present insignificant growth toward the study. In association with a reduction in endoglin mRNA expression, the hemoglobin content decreased by half in sMTf-treated glioblastoma tumors. In vitro experiments revealed that NCI-H460 cells treated with sMTf display an inhibition in their invasive capabilities with a concomitant reduction in the expression of the low-density lipoprotein receptor protein and urokinase plasminogen activator receptor. Altogether, our results demonstrate that sMTf exerts anti-cancer and anti-angiogenic activities, suggesting that its administration may provide novel therapeutic strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Yannève Rolland
- Laboratoire de Médecine Moléculaire, Service d'Hémato-Oncologie, Hôpital Ste-Justine - Université du Québec à Montréal, Succursale Centre-ville, Montréal, Québec, Canada
| | | | | | | |
Collapse
|