1
|
Garrido-Utrilla A, Ayachi C, Friano ME, Atlija J, Balaji S, Napolitano T, Silvano S, Druelle N, Collombat P. Conversion of Gastrointestinal Somatostatin-Expressing D Cells Into Insulin-Producing Beta-Like Cells Upon Pax4 Misexpression. Front Endocrinol (Lausanne) 2022; 13:861922. [PMID: 35573999 PMCID: PMC9103212 DOI: 10.3389/fendo.2022.861922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Type 1 diabetes results from the autoimmune-mediated loss of insulin-producing beta-cells. Accordingly, important research efforts aim at regenerating these lost beta-cells by converting pre-existing endogenous cells. Following up on previous results demonstrating the conversion of pancreatic somatostatin delta-cells into beta-like cells upon Pax4 misexpression and acknowledging that somatostatin-expressing cells are highly represented in the gastrointestinal tract, one could wonder whether this Pax4-mediated conversion could also occur in the GI tract. We made use of transgenic mice misexpressing Pax4 in somatostatin cells (SSTCrePOE) to evaluate a putative Pax4-mediated D-to-beta-like cell conversion. Additionally, we implemented an ex vivo approach based on mice-derived gut organoids to assess the functionality of these neo-generated beta-like cells. Our results outlined the presence of insulin+ cells expressing several beta-cell markers in gastrointestinal tissues of SSTCrePOE animals. Further, using lineage tracing, we established that these cells arose from D cells. Lastly, functional tests on mice-derived gut organoids established the ability of neo-generated beta-like cells to release insulin upon stimulation. From this study, we conclude that the misexpression of Pax4 in D cells appears sufficient to convert these into functional beta-like cells, thus opening new research avenues in the context of diabetes research.
Collapse
Affiliation(s)
- Anna Garrido-Utrilla
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Chaïma Ayachi
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Marika Elsa Friano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Josipa Atlija
- Department of Cryopreservation, Distribution, Typing and Animal Archiving, Centre National de la Recherche Scientifique-Unité d'Appui à la Recherche (CNRS-UAR) 44 Typage et Archivage d’Animaux Modèles (TAAM), Orléans, France
| | - Shruti Balaji
- PlantaCorp Gesellschaft mit beschränkter Haftung (GmbH), Hamburg, Germany
| | - Tiziana Napolitano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Serena Silvano
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
| | - Noémie Druelle
- Columbia University College of Physicians & Surgeons, Department of Medicine, New York, NY, United States
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| | - Patrick Collombat
- Université Côte d’Azur, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé Et de la Recherche Médicale (INSERM), Institut de Biologie Valrose (iBV), Nice, France
- *Correspondence: Noémie Druelle, ; Patrick Collombat,
| |
Collapse
|
2
|
Pavathuparambil Abdul Manaph N, Sivanathan KN, Nitschke J, Zhou XF, Coates PT, Drogemuller CJ. An overview on small molecule-induced differentiation of mesenchymal stem cells into beta cells for diabetic therapy. Stem Cell Res Ther 2019; 10:293. [PMID: 31547868 PMCID: PMC6757413 DOI: 10.1186/s13287-019-1396-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 07/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022] Open
Abstract
The field of regenerative medicine provides enormous opportunities for generating beta cells from different stem cell sources for cellular therapy. Even though insulin-secreting cells can be generated from a variety of stem cell types like pluripotent stem cells and embryonic stem cells, the ideal functional cells should be generated from patients' own cells and expanded to considerable levels by non-integrative culture techniques. In terms of the ease of isolation, plasticity, and clinical translation to generate autologous cells, mesenchymal stem cell stands superior. Furthermore, small molecules offer a great advantage in terms of generating functional beta cells from stem cells. Research suggests that most of the mesenchymal stem cell-based protocols to generate pancreatic beta cells have small molecules in their cocktail. However, most of the protocols generate cells that mimic the characteristics of human beta cells, thereby generating "beta cell-like cells" as opposed to mature beta cells. Diabetic therapy becomes feasible only when there are robust, functional, and safe cells for replacing the damaged or lost beta cells. In this review, we discuss the current protocols used to generate beta cells from mesenchymal cells, with emphasis on small molecule-mediated conversion into insulin-producing beta cell-like cells. Our data and the data presented from the references within this review would suggest that although mesenchymal stem cells are an attractive cell type for cell therapy they are not readily converted into functional mature beta cells.
Collapse
Affiliation(s)
- Nimshitha Pavathuparambil Abdul Manaph
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia. .,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia. .,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kisha N Sivanathan
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute, University of South Australia, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia.,Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Jodie Nitschke
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Xin-Fu Zhou
- School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Patrick T Coates
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Christopher John Drogemuller
- Central Northern Adelaide Renal and Transplantation Service, Royal Adelaide Hospital, Adelaide, South Australia, 5000, Australia.,School of Medicine, Faculty of Health Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
| |
Collapse
|
3
|
In vitro differentiation of single donor derived human dental mesenchymal stem cells into pancreatic β cell-like cells. Biosci Rep 2019; 39:BSR20182051. [PMID: 31015367 PMCID: PMC6527933 DOI: 10.1042/bsr20182051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/16/2019] [Accepted: 04/10/2019] [Indexed: 12/18/2022] Open
Abstract
The present study was carried out to investigate and compare the in vitro differentiation potential of mesenchymal stem cells (MSCs) isolated from human dental tissues (pulp, papilla, and follicle) of the same donor. MSCs were isolated from dental tissues (pulp, papilla, and follicle) following digestion method and were analyzed for the expression of pluripotent markers and cell surface markers. All three types of MSCs were evaluated for their potential to differentiate into mesenchymal lineages. Further, the MSCs were differentiated into pancreatic β cell-like cells using multistep protocol and characterized for the expression of pancreatic lineage specific markers. Functional properties of differentiated pancreatic β cell-like cells were assessed by dithizone staining and glucose challenge test. All three types of MSCs showed fibroblast-like morphology upon culture and expressed pluripotent, and mesenchymal cell surface markers. These MSCs were successfully differentiated into mesenchymal lineages and transdifferentiated into pancreatic β cell-like cells. Among them, dental follicle derived MSCs exhibits higher transdifferentiation potency toward pancreatic lineage as evaluated by the expression of pancreatic lineage specific markers both at mRNA and protein level, and secreted higher insulin upon glucose challenge. Additionally, follicle-derived MSCs showed higher dithizone staining upon differentiation. All three types of MSCs from a single donor possess similar cellular properties and can differentiate into pancreatic lineage. However, dental follicle derived MSCs showed higher potency toward pancreatic lineage than pulp and papilla derived MSCs, suggesting their potential application in future stem cell based therapy for the treatment of diabetes.
Collapse
|
4
|
Solis MA, Moreno Velásquez I, Correa R, Huang LLH. Stem cells as a potential therapy for diabetes mellitus: a call-to-action in Latin America. Diabetol Metab Syndr 2019; 11:20. [PMID: 30820250 PMCID: PMC6380040 DOI: 10.1186/s13098-019-0415-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/13/2019] [Indexed: 02/06/2023] Open
Abstract
Latin America is a fast-growing region that currently faces unique challenges in the treatment of all forms of diabetes mellitus. The burden of this disease will be even greater in the coming years due, in part, to the large proportion of young adults living in urban areas and engaging in unhealthy lifestyles. Unfortunately, the national health systems in Latin-American countries are unprepared and urgently need to reorganize their health care services to achieve diabetic therapeutic goals. Stem cell research is attracting increasing attention as a promising and fast-growing field in Latin America. As future healthcare systems will include the development of regenerative medicine through stem cell research, Latin America is urged to issue a call-to-action on stem cell research. Increased efforts are required in studies focused on stem cells for the treatment of diabetes. In this review, we aim to inform physicians, researchers, patients and funding sources about the advances in stem cell research for possible future applications in diabetes mellitus. Emerging studies are demonstrating the potential of stem cells for β cell differentiation and pancreatic regeneration. The major economic burden implicated in patients with diabetes complications suggests that stem cell research may relieve diabetic complications. Closer attention should be paid to stem cell research in the future as an alternative treatment for diabetes mellitus.
Collapse
Affiliation(s)
| | | | - Ricardo Correa
- Department of Medicine, Warren Alpert School of Medicine, Brown University, Rhode Island, USA
- Department of Medicine, University of Arizona College of Medicine, Phoenix, AZ USA
| | - Lynn L. H. Huang
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Research Center of Excellence in Regenerative Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
5
|
Belame Shivakumar S, Bharti D, Baregundi Subbarao R, Park JM, Son YB, Ullah I, Choe YH, Lee HJ, Park BW, Lee SL, Rho GJ. Pancreatic endocrine-like cells differentiated from human umbilical cords Wharton's jelly mesenchymal stem cells using small molecules. J Cell Physiol 2018; 234:3933-3947. [PMID: 30343506 DOI: 10.1002/jcp.27184] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Abstract
Following success of pancreatic islet transplantation in the treatment of Type I diabetes mellitus, there is a growing interest in using cell-based treatment approaches. However, severe shortage of donor islets-pancreas impeded the growth, and made researchers to search for an alternative treatment approaches. In this context, recently, stem cell-based therapy has gained more attention. The current study demonstrated that epigenetic modification improves the in vitro differentiation of Wharton's jelly mesenchymal stem cells (WJMSCs) into pancreatic endocrine-like cells. Here we used two histone deacetylase (HDAC) inhibitors namely trichostatin A (TSA) and TMP269. TSA inhibits both class I and II HDACs whereas TMP269 inhibits only class IIa HDACs. WJMSCs were differentiated using a multistep protocol in a serum-free condition with or without TSA pretreatment. A marginal improvement in differentiation was observed after TSA pretreatment though it was not significant. However, exposing endocrine precursor-like cells derived from WJMSCs to TMP269 alone has significantly improved the differentiation toward insulin-producing cells. Further, increase in the expression of paired box 4 (PAX4), insulin, somatostatin, glucose transporter 2 (GLUT2), MAF bZIP transcription factor A (MAFA), pancreatic duodenal homeobox 1 (PDX-1), and NKX6.1 was observed both at messenger RNA and protein levels. Nevertheless, TMP269-treated cells secreted higher insulin upon glucose challenge, and demonstrated increased dithizone staining. These findings suggest that TMP269 may improve the in vitro differentiation of WJMSCs into insulin-producing cells.
Collapse
Affiliation(s)
- Sharath Belame Shivakumar
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Dinesh Bharti
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Raghavendra Baregundi Subbarao
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ju-Mi Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young-Bum Son
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Imran Ullah
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Yong-Ho Choe
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyeong-Jeong Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Bong-Wook Park
- Department of Oral and Maxillofacial Surgery, School of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sung-Lim Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea.,Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
6
|
Current Status of Stem Cell Treatment for Type I Diabetes Mellitus. Tissue Eng Regen Med 2018; 15:699-709. [PMID: 30603589 DOI: 10.1007/s13770-018-0143-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diabetes mellitus is a major health concern in current scenario which has been found to affect people of almost all ages. The disease has huge impact on global health; therefore, alternate methods apart from insulin injection are being explored to cure diabetes. Therefore, this review mainly focuses on the current status and therapeutic potential of stem cells mainly mesenchymal stem cells (MSCs) for Type 1 diabetes mellitus in preclinical animal models as well as humans. METHODS Current treatment for Type 1 diabetes mellitus mainly includes use of insulin which has its own limitations and also the underlying mechanism of diseases is still not explored. Therefore, alternate methods to cure diabetes are being explored. Stem cells are being investigated as an alternative therapy for treatment of various diseases including diabetes. Few preclinical studies have also been conducted using undifferentiated MSCs as well as in vitro MSCs differentiated into β islet cells. RESULTS These stem cell transplant studies have highlighted the benefits of MSCs, which have shown promising results. Few human trials using stem cells have also affirmed the potential of these cells in alleviating the symptoms. CONCLUSION Stem cell transplantation may prove to be a safe and effective treatment for patients with Type 1 diabetes mellitus.
Collapse
|
7
|
Sordi V, Pellegrini S, Krampera M, Marchetti P, Pessina A, Ciardelli G, Fadini G, Pintus C, Pantè G, Piemonti L. Stem cells to restore insulin production and cure diabetes. Nutr Metab Cardiovasc Dis 2017; 27:583-600. [PMID: 28545927 DOI: 10.1016/j.numecd.2017.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/24/2017] [Accepted: 02/11/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND The advancement of knowledge in the field of regenerative medicine is increasing the therapeutic expectations of patients and clinicians on cell therapy approaches. Within these, stem cell therapies are often evoked as a possible therapeutic option for diabetes, already ongoing or possible in the near future. AIM The purpose of this document is to make a point of the situation on existing knowledge and therapies with stem cells to treat patients with diabetes by focusing on some of the aspects that most frequently raise curiosity and discussion in clinical practice and in the interaction with the patient. In fact, at present there are no clinically approved treatments based on the use of stem cells for the treatment of diabetes, but several therapeutic approaches have already been evaluated or are being evaluated in clinical trials. DATA SYNTHESIS It is possible to identify three large potential application fields: 1) the reconstruction of the β cell mass; 2) the immunomodulation in type 1 diabetes (T1D); 3) the treatment of complications. In this study we will limit the discussion to approaches that have the potential for clinical translation, deliberately omitting aspects of basic biology and preclinical data. Also, we intentionally omit the treatment of the complications that will be the subject of a future document. Finally, an overview of the Italian situation regarding the storage of cord blood cells for the therapy of diabetes will be given.
Collapse
Affiliation(s)
- V Sordi
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Pellegrini
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - M Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Italy
| | - P Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - A Pessina
- CRC-StaMeTec (Mesenchymal Stem Cells for Cell Therapy), Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - G Ciardelli
- DIMEAS - Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - G Fadini
- Medicine Department (DIMED), University of Padua, Italy
| | - C Pintus
- Italian National Transplant Center (CNT), Italy
| | - G Pantè
- Italian Medicines Agency (AIFA), Italy
| | - L Piemonti
- Diabetes Research Institute (DRI) - IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
8
|
Chitosan-assisted differentiation of porcine adipose tissue-derived stem cells into glucose-responsive insulin-secreting clusters. PLoS One 2017; 12:e0172922. [PMID: 28253305 PMCID: PMC5333835 DOI: 10.1371/journal.pone.0172922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/11/2017] [Indexed: 12/25/2022] Open
Abstract
The unique advantage of easy access and abundance make the adipose-derived stem cells (ADSCs) a promising system of multipotent cells for transplantation and regenerative medicine. Among the available sources, porcine ADSCs (pADSCs) deserve especial attention due to the close resemblance of human and porcine physiology, as well as for the upcoming availability of humanized porcine models. Here, we report on the isolation and conversion of pADSCs into glucose-responsive insulin-secreting cells. We used the stromal-vascular fraction of the dorsal subcutaneous adipose from 9-day-old male piglets to isolate pADSCs, and subjected the cells to an induction scheme for differentiation on chitosan-coated plates. This one-step procedure promoted differentiation of pADSCs into pancreatic islet-like clusters (PILC) that are characterized by the expression of a repertoire of pancreatic proteins, including pancreatic and duodenal homeobox (Pdx-1), insulin gene enhancer protein (ISL-1) and insulin. Upon glucose challenge, these PILC secreted high amounts of insulin in a dose-dependent manner. Our data also suggest that chitosan plays roles not only to enhance the differentiation potential of pADSCs, but also to increase the glucose responsiveness of PILCs. Our novel approach is, therefore, of great potential for transplantation-based amelioration of type 1 diabetes.
Collapse
|
9
|
Sunitha MM, Srikanth L, Santhosh Kumar P, Chandrasekhar C, Sarma PVGK. In vitro differentiation potential of human haematopoietic CD34(+) cells towards pancreatic β-cells. Cell Biol Int 2016; 40:1084-93. [PMID: 27514733 DOI: 10.1002/cbin.10654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 07/17/2016] [Indexed: 11/06/2022]
Abstract
Haematopoietic stem cells (HSCs) possess multipotent ability to differentiate into various types of cells on providing appropriate niche. In the present study, the differentiating potential of human HSCs into β-cells of islets of langerhans was explored. Human HSCs were apheretically isolated from a donor and cultured. Phenotypic characterization of CD34 glycoprotein in the growing monolayer HSCs was confirmed by immunocytochemistry and flow cytometry techniques. HSCs were induced by selection with beta cell differentiating medium (BDM), which consists of epidermal growth factor (EGF), fibroblast growth factor (FGF), transferrin, Triiodo-l-Tyronine, nicotinamide and activin A. Distinct morphological changes of differentiated cells were observed on staining with dithizone (DTZ) and expression of PDX1, insulin and synaptophysin was confirmed by immunocytochemistry. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed distinct expression of specific β-cell markers, pancreatic and duodenal homeobox-1 (PDX1), glucose transporter-2 (GLUT-2), synaptophysin (SYP) and insulin (INS) in these differentiated cells compared to HSCs. Further, these cells exhibited elevated expression of INS gene at 10 mM glucose upon inducing with different glucose concentrations. The prominent feature of the obtained β-cells was the presence of glucose sensors, which was determined by glucokinase activity and high glucokinase activity compared with CD34(+) stem cells. These findings illustrate the differentiation of CD34(+) HSCs into β-cells of islets of langerhans.
Collapse
Affiliation(s)
- Manne Mudhu Sunitha
- Stem Cell laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517 507, Andhra Pradesh, India
| | - Lokanathan Srikanth
- Stem Cell laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517 507, Andhra Pradesh, India
| | - Pasupuleti Santhosh Kumar
- Stem Cell laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, 517 507, Andhra Pradesh, India
| | - Chodimella Chandrasekhar
- Department of Haematology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhra Pradesh, India
| | | |
Collapse
|
10
|
Mechanism study for hypoxia induced differentiation of insulin-producing cells from umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 2015; 466:444-9. [DOI: 10.1016/j.bbrc.2015.09.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 12/21/2022]
|
11
|
Sahraneshin Samani F, Ebrahimi M, Zandieh T, Khoshchehreh R, Baghaban Eslaminejad M, Aghdami N, Baharvand H. In Vitro Differentiation of Human Umbilical Cord Blood CD133(+)Cells into Insulin Producing Cells in Co-Culture with Rat Pancreatic Mesenchymal Stem Cells. CELL JOURNAL 2015. [PMID: 26199900 PMCID: PMC4503835 DOI: 10.22074/cellj.2016.3717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective Pancreatic stroma plays an important role in the induction of pancreatic cells
by the use of close range signaling. In this respect, we presume that pancreatic mesenchymal cells (PMCs) as a fundamental factor of the stromal niche may have an effective
role in differentiation of umbilical cord blood cluster of differentiation 133+ (UCB-CD133+)
cells into newly-formed β-cells in vitro.
Materials and Methods This study is an experimental research. The UCB-CD133+cells
were purified by magnetic activated cell sorting (MACS) and differentiated into insulin
producing cells (IPCs) in co-culture, both directly and indirectly with rat PMCs. Immunocytochemistry and enzyme linked immune sorbent assay (ELISA) were used to determine
expression and production of insulin and C-peptide at the protein level.
Results Our results demonstrated that UCB-CD133+differentiated into IPCs. Cells in
islet-like clusters with (out) co-cultured with rat pancreatic stromal cells produced insulin
and C-peptide and released them into the culture medium at the end of the induction protocol. However they did not respond well to glucose challenges.
Conclusion Rat PMCs possibly affect differentiation of UCB-CD133+cells into IPCs by
increasing the number of immature β-cells.
Collapse
Affiliation(s)
- Fazel Sahraneshin Samani
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Tahereh Zandieh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Reyhaneh Khoshchehreh
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran ; Department of Developmental Biology, University of Science and Culture, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Nasser Aghdami
- Department of Regenerative Biomedicine at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
12
|
Yang SF, Xue WJ, Duan YF, Xie LY, Lu WH, Zheng J, Yin AP. Nicotinamide Facilitates Mesenchymal Stem Cell Differentiation Into Insulin-Producing Cells and Homing to Pancreas in Diabetic Mice. Transplant Proc 2015; 47:2041-9. [DOI: 10.1016/j.transproceed.2015.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/13/2015] [Accepted: 05/15/2015] [Indexed: 01/09/2023]
|
13
|
Sun B, Liu R, Xiao ZD. Induction of insulin-producing cells from umbilical cord blood-derived stromal cells by activation of the c-Met/HGF axis. Dev Growth Differ 2015; 57:353-361. [DOI: 10.1111/dgd.12214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Bo Sun
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
- Institute of Microbiology; Seoul National University; 151-742 Seoul South Korea
| | - Rui Liu
- Laboratory of Biophysics; School of Biological Sciences; Seoul National University; 151-742 Seoul South Korea
| | - Zhong-Dang Xiao
- State Key Laboratory of Bioelectronics; School of Biological Science and Medical Engineering; Southeast University; Nanjing 210096 China
| |
Collapse
|
14
|
In vitro evaluation of different protocols for the induction of mesenchymal stem cells to insulin-producing cells. In Vitro Cell Dev Biol Anim 2015; 51:866-78. [DOI: 10.1007/s11626-015-9890-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/09/2015] [Indexed: 01/08/2023]
|
15
|
Jun HS, Park EY. Adult stem cells as a renewable source of insulin-producing cells. Int J Stem Cells 2014; 2:115-21. [PMID: 24855530 DOI: 10.15283/ijsc.2009.2.2.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2009] [Indexed: 12/26/2022] Open
Abstract
Diabetes mellitus is a metabolic disorder resulting from an inadequate mass of insulin-producing pancreatic beta cells. The replacement or restoration of damaged beta cells would be considered the optimal therapeutic options. Islet transplantation seems to be a promising approach for replacement therapy; however, the main obstacle is the shortage of organ donors. As mature beta cells have been shown to be difficult to expand in vitro, regeneration of beta cells from embryonic or adult stem cells or pancreatic progenitor cells is an attractive method to restore the islet cell mass. So far, multiple studies using various strategies have shown direct differentiation of stem and progenitor cells toward insulin-producing cells. The important issue to be solved is how to differentiate these cells into mature functional insulin-producing cells. Further research is required to understand how endogenous beta cells differentiate and to develop methods to regenerate enough functional beta cells for clinically applicable therapies for diabetes.
Collapse
Affiliation(s)
- Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| | - Eun-Young Park
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University of Medicine and Science, Incheon, Korea
| |
Collapse
|
16
|
Abstract
The lack of transplantable pancreatic islets is a serious problem that affects the treatment of patients with type 1 diabetes mellitus. Beta cells can be induced from various sources of stem or progenitor cells, including induced pluripotent stem cells in the near future; however, the reconstitution of islets from β cells in culture dishes is challenging. The generation of highly functional islets may require three-dimensional spherical cultures that resemble intact islets. This review discusses recent advances in the reconstitution of islets. Several factors affect the reconstitution of pseudoislets with higher functions, such as architectural similarity, cell-to-cell contact, and the production method. The actual transplantation of naked or encapsulated pseudoislets and islet-like cell clusters from various stem cell sources is also discussed. Advancing our understanding of the methods used to reconstitute pseudoislets should expand the range of potential strategies available for developing de novo islets for therapeutic applications.
Collapse
Affiliation(s)
- Nobuhiko Kojima
- Graduate School of Nanobioscience; Yokohama City University; Yokohama, Japan
| |
Collapse
|
17
|
Gioviale MC, Bellavia M, Damiano G, Lo Monte AI. Beyond islet transplantation in diabetes cell therapy: from embryonic stem cells to transdifferentiation of adult cells. Transplant Proc 2014; 45:2019-24. [PMID: 23769099 DOI: 10.1016/j.transproceed.2013.01.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 01/24/2013] [Indexed: 12/22/2022]
Abstract
Exogenous insulin is, at the moment, the therapy of choice of diabetes, but does not allow tight regulation of glucose leading to long-term complications. Recently, pancreatic islet transplantation to reconstitute insulin-producing β cells, has emerged as an alternative promising therapeutic approach. Unfortunately, the number of donor islets is too low compared with the high number of patients needing a transplantation leading to a search for renewable sources of high-quality β-cells. This review, summarizes more recent promising approaches to the generation of new β-cells from embryonic stem cells for transdifferentiation of adult cells, particularly a critical examination of the seminal work by Lumelsky et al.
Collapse
Affiliation(s)
- M C Gioviale
- Transplant Unit, AOUP P. Giaccone, School of Medicine, Università degli Studi di Palermo, Palermo, Italy
| | | | | | | |
Collapse
|
18
|
Iskovich S, Goldenberg-Cohen N, Sadikov T, Yaniv I, Stein J, Askenasy N. Two distinct mechanisms mediate the involvement of bone marrow cells in islet remodeling: neogenesis of insulin-producing cells and support of islet recovery. Cell Transplant 2013; 24:879-90. [PMID: 24380400 DOI: 10.3727/096368913x676899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We have recently reported that small-sized bone marrow cells (BMCs) isolated by counterflow centrifugal elutriation and depleted of lineage markers (Fr25lin(-)) have the capacity to differentiate and contribute to regeneration of injured islets. In this study, we assess some of the characteristics of these cells compared to elutriated hematopoietic progenitors (R/O) and whole BMCs in a murine model of streptozotocin-induced chemical diabetes. The GFP(bright)CD45(+) progeny of whole BMCs and R/O progenitors progressively infiltrate the pancreas with evolution of donor chimerism; are found at islet perimeter, vascular, and ductal walls; and have a modest impact on islet recovery from injury. In contrast, Fr25lin(-) cells incorporate in the islets, convert to GFP(dim)CD45(-)PDX-1(+) phenotypes, produce proinsulin, and secrete insulin with significant contribution to stabilization of glucose homeostasis. The elutriated Fr25lin(-) cells express low levels of CD45 and are negative for SCA-1 and c-kit, as removal of cells expressing these markers did not impair conversion to produce insulin. BMCs mediate two synergistic mechanisms that contribute to islet recovery from injury: support of islet remodeling by hematopoietic cells and neogenesis of insulin-producing cells from stem cells.
Collapse
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | | | | | | | | | | |
Collapse
|
19
|
Rutigliano L, Corradetti B, Valentini L, Bizzaro D, Meucci A, Cremonesi F, Lange-Consiglio A. Molecular characterization and in vitro differentiation of feline progenitor-like amniotic epithelial cells. Stem Cell Res Ther 2013; 4:133. [PMID: 24405576 PMCID: PMC3854755 DOI: 10.1186/scrt344] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 10/25/2013] [Indexed: 12/21/2022] Open
Abstract
Introduction While amniotic mesenchymal cells have been isolated and characterized in different species, amniotic epithelial cells (AECs) have been found only in humans and horses and are recently considered valid candidates in regenerative medicine. The aim of this work is to obtain and characterize, for the first time in the feline species, presumptive stem cells from the epithelial portion of the amnion (AECs) to be used for clinical applications. Methods In our study, we molecularly characterized and induced in vitro differentiation of feline AECs, obtained after enzymatic digestion of amnion. Results AECs displayed a polygonal morphology and the mean doubling time value was 1.94 ± 0.04 days demonstrating the high proliferating capacity of these cells. By RT-PCR, AECs expressed pluripotent (Oct4, Nanog) and some mesenchymal markers (CD166, CD44) suggesting that an epithelial-mesenchymal transition may occur in these cells that lack the hematopoietic marker CD34. Cells also showed the expression of embryonic marker SSEA-4, but not SSEA-3, as demonstrated by immunocytochemistry and flow cytometry. Moreover, the possibility to use feline AECs in cell therapies resides in their low immunogenicity, due to the absence of MHC-II antigen expression. After induction, AECs differentiated into the mesodermic and ectodermic lineages, demonstrating high plasticity. Conclusions In conclusion, feline AECs appear to be a readily obtainable, highly proliferative, multipotent and non-immunogenic cell line from a source that may represent a good model system for stem cell biology and be useful in allogenic cell-based therapies in order to treat tissue lesions, especially with loss of substance.
Collapse
|
20
|
Hong IS, Lee HY, Choi SW, Kim HS, Yu KR, Seo Y, Jung JW, Kang KS. The effects of hedgehog on RNA binding protein Msi1 during the osteogenic differentiation of human cord blood-derived mesenchymal stem cells. Bone 2013; 56:416-25. [PMID: 23880227 DOI: 10.1016/j.bone.2013.07.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 07/09/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
Abstract
Human umbilical cord blood (UCB)-derived mesenchymal stem cells (MSCs) are useful tools for regenerative medicine due to their capacity for self-renewal and multi-lineage differentiation. The appropriate clinical application of MSCs for regenerative medicine requires an integrated understanding of multiple signaling pathways that regulate cell proliferation, stemness and differentiation. However, the potential molecular mechanisms mediating these functions are not completely understood. The effects of hedgehog (Hh) signaling on the osteogenic differentiation of MSCs are still controversial, and the underlying mechanisms are unclear. In the present study, we evaluated the direct effects of Hh signaling on the osteogenic differentiation of hUCB-MSCs and investigated potential downstream regulatory mechanisms responsible for Hh signaling. We observed that Hh signaling acts as a negative regulator of osteogenic differentiation through the suppression of RNA-binding Msi1, which in turn suppresses the expression of Wnt1 and the miR-148 family, especially miR-148b. Moreover, Hh and Msi1 are considered to be potential stemness markers of hUCB-MSCs due to their differentiation-dependent expression profiles. This study provides new insights into mechanisms regulating MSC differentiation and may have implications for a variety of therapeutic applications in the clinic.
Collapse
Affiliation(s)
- In-Sun Hong
- Adult Stem cell Research Center, Seoul National University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hu MJ, Ruan GP, Yao X, Ruan GH, Wang JX, Pang RQ, Cai XM, Zhu XQ, He J, Pan XH. Induced autologous stem cell transplantation for treatment of rabbit type 1 diabetes. Cell Biol Int 2013; 37:624-32. [PMID: 23483723 DOI: 10.1002/cbin.10083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/11/2013] [Indexed: 11/08/2022]
Abstract
We have examined the effects of induced autologous stem cells on blood sugar levels in a rabbit model of type 1 diabetes. Rabbit skin fibroblasts were induced to dedifferentiate into multipotent stem cells, and were transplanted into the treatment group via the pancreatic artery. After the fibroblasts had been induced for 72 h, some of them became multipotent stem cells. Four weeks after cell transplantation, blood glucose levels of the induced stem cell treatment group were significantly lower. The plasma insulin and plasma C-peptide levels of the treated group were significantly increased (P < 0.05). The shape and number of islets was different. In the control group, induced cell treatment group and non-induced cell treatment group. In the control group, islet β-cell nucleoli were obvious, and cell volumes were larger with more abundant cytoplasm. The rough endoplasmic reticulum was well-developed and a large number of secretory granules could be seen within the cytoplasm. In the induced cell treatment group, islet β cells were scattered, and their nuclei were oval and slightly irregular in shape. The cytoplasm of these cells contained a nearly normal number of secretory granules. In the non-induced cell treatment group, islet β-cells were atrophied and cell volumes were reduced. Cytoplasmic endocrine granules were significantly reduced or absent. In conclusion, treatment with induced multipotent stem cells can reduce blood sugar levels, improve islet cell function, and repair damaged pancreas in a rabbit model of type 1 diabetes.
Collapse
Affiliation(s)
- Mei-Jun Hu
- Stem Cell Engineering Laboratory of Yunnan Province, Kunming General Hospital of Chengdu Military Command, Kunming, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Domínguez-Bendala J, Ricordi C. Present and future cell therapies for pancreatic beta cell replenishment. World J Gastroenterol 2012; 18:6876-84. [PMID: 23322984 PMCID: PMC3531670 DOI: 10.3748/wjg.v18.i47.6876] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 05/27/2012] [Accepted: 07/18/2012] [Indexed: 02/06/2023] Open
Abstract
If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.
Collapse
|
23
|
Peripheral blood stem cells: phenotypic diversity and potential clinical applications. Stem Cell Rev Rep 2012; 8:917-25. [PMID: 22451417 DOI: 10.1007/s12015-012-9361-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A small proportion of cells in peripheral blood are actually pluripotent stem cells. These peripheral blood stem cells (PBSCs) are thought to be heterogeneous and could be exploited for a variety of clinical applications. The exact number of distinct populations is unknown. It is likely that individual PBSC populations detected by different experimental strategies are similar or overlapping but have been assigned different names. In this mini review, we divide PBSCs into seven groups: hematopoietic stem cells (HSCs), CD34- stem cells, CD14+ stem cells, mesenchymal stem cells (MSCs), very small embryonic-like (VSEL) stem cells, endothelial progenitor cells (EPCs), and other pluripotent stem cells. We review the major characteristics of these stem/progenitor cell populations and their potential applications in ophthalmology.
Collapse
|
24
|
Stanekzai J, Isenovic ER, Mousa SA. Treatment options for diabetes: potential role of stem cells. Diabetes Res Clin Pract 2012; 98:361-8. [PMID: 23020931 DOI: 10.1016/j.diabres.2012.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/27/2012] [Accepted: 09/04/2012] [Indexed: 01/09/2023]
Abstract
There are diseases and injuries in which a patient's cells or tissues are destroyed that can only be adequately corrected by tissue or organ transplants. Stem cells may be able to generate new tissue and even cure diseases for which there is no adequate therapy. Type 1 diabetes (T1DM), an insulin-dependent diabetes, is a chronic disease affecting genetically predisposed individuals, in which insulin-secreting beta (β)-cells within pancreatic islets of Langerhans are selectively and irreversibly destroyed by autoimmune assault. Type 2 diabetes (T2DM) is characterized by a gradual decrease in insulin sensitivity in peripheral tissues and the liver (insulin resistance), followed by a gradual decline in β-cell function and insulin secretion. Successful replacing of damaged β-cells has shown considerable potential in treating T1DM, but lack of adequate donors is a barrier. The literature suggests that embryonic and adult stem cells are promising alternatives in long-term treatment of diabetes. However, any successful strategy should address both the need for β-cell replacement and controlling the autoimmune response to cells that express insulin. This review summarizes the current knowledge of options and the potential of stem cell transplantation in diabetes treatment.
Collapse
Affiliation(s)
- Jamil Stanekzai
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | | | | |
Collapse
|
25
|
Yukawa H, Noguchi H, Oishi K, Miyamoto Y, Inoue M, Hasegawa M, Hayashi S, Baba Y. Differentiation of Mouse Pancreatic Stem Cells Into Insulin-Producing Cells by Recombinant Sendai Virus-Mediated Gene Transfer Technology. CELL MEDICINE 2012; 3:51-61. [PMID: 28058181 DOI: 10.3727/215517912x639487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Islet transplantation, including β-cells, has proven to be effective for diabetes in many recent studies; however, this treatment strategy requires sufficient organ donors. One attractive approach for the generation of β-cells is to utilize the expansion and differentiation of cells from pancreatic stem cells (PSCs), which are closely associated to the β-cells lineage. In this study, we investigated whether important transcription factors (Pdx-1, Ngn3, NeuroD, and MafA) in islet cells could be efficiently transduced into mouse PSCs (mPSCs) using Sendai virus (SeV) vectors and found that the transduced cells were differentiated into insulin-producing pancreatic β-cells. The mPSCs transduced with single transcription factors using SeV vectors could not express the insulin-2 mRNA. When combinations of two transcription factors were transduced using the SeV vectors, including combinations of Pdx-1 + NeuroD, Pdx-1 + MafA, and NeuroD + MafA, the expression of insulin-2 mRNA was low but could be detected. When combinations of three or more transcription factors were transduced using SeV vectors, the expression of insulin-2 mRNA could be detected. In particular, the transduction of the combination of PDX-1, NeuroD, and MafA produced the most effective for the expression of insulin-2 mRNA out of all of the different combinations examined. These data suggest that the transduction of transcription factors using SeV vectors facilitates mPSC differentiation into insulin-producing cells and showed the possibility of regenerating β-cells by using transduced PSCs.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Japan; †FIRST Research Center for Innovative Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Hirofumi Noguchi
- ‡ Baylor All Saints Medical Center and Baylor Research Institute , Dallas, TX , USA
| | - Koichi Oishi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Japan; §Research Institute of Environmental Medicine, Stress Adaption and Protection, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Yoshitaka Miyamoto
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Japan; ¶Department of Oral Disease Research, National Center for Geriatrics and Gerontology, Obu-shi, Aichi, Japan
| | - Makoto Inoue
- # DNAVEC Corporation , Tsukuba-shi, Ibaragi , Japan
| | | | - Shuji Hayashi
- Department of Advanced Medicine in Biotechnology and Robotics, Nagoya University Graduate School of Medicine, Higashi-ku, Nagoya, Japan; **The Foundation for Promotion of State of the Art in Medicine and Health Care, Chikusa-ku, Nagoya, Japan
| | - Yoshinobu Baba
- †FIRST Research Center for Innovative Nanobiodevices, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan; ††Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan; ‡‡Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Hayashi-cho, Takamatsu, Japan
| |
Collapse
|
26
|
Iskovich S, Goldenberg-Cohen N, Stein J, Yaniv I, Fabian I, Askenasy N. Elutriated Stem Cells Derived from the Adult Bone Marrow Differentiate into Insulin-Producing Cells In Vivo and Reverse Chemical Diabetes. Stem Cells Dev 2012; 21:86-96. [DOI: 10.1089/scd.2011.0057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Nitza Goldenberg-Cohen
- Krieger Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Jerry Stein
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Isaac Yaniv
- Department of Pediatric Hematology-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Ina Fabian
- Department of Cell Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nadir Askenasy
- Frankel Laboratory, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
27
|
Prabakar KR, Domínguez-Bendala J, Molano RD, Pileggi A, Villate S, Ricordi C, Inverardi L. Generation of glucose-responsive, insulin-producing cells from human umbilical cord blood-derived mesenchymal stem cells. Cell Transplant 2011; 21:1321-39. [PMID: 22195604 DOI: 10.3727/096368911x612530] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We sought to assess the potential of human cord blood-derived mesenchymal stem cells (CB-MSCs) to derive insulin-producing, glucose-responsive cells. We show here that differentiation protocols based on stepwise culture conditions initially described for human embryonic stem cells (hESCs) lead to differentiation of cord blood-derived precursors towards a pancreatic endocrine phenotype, as assessed by marker expression and in vitro glucose-regulated insulin secretion. Transplantation of these cells in immune-deficient animals shows human C-peptide production in response to a glucose challenge. These data suggest that human cord blood may be a promising source for regenerative medicine approaches for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Kamalaveni R Prabakar
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Domínguez-Bendala J, Lanzoni G, Inverardi L, Ricordi C. Concise review: mesenchymal stem cells for diabetes. Stem Cells Transl Med 2011. [PMID: 23197641 DOI: 10.5966/sctm.2011-0017] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have already made their mark in the young field of regenerative medicine. Easily derived from many adult tissues, their therapeutic worth has already been validated for a number of conditions. Unlike embryonic stem cells, neither their procurement nor their use is deemed controversial. Here we review the potential use of MSCs for the treatment of type 1 diabetes mellitus, a devastating chronic disease in which the insulin-producing cells of the pancreas (the β-cells) are the target of an autoimmune process. It has been hypothesized that stem cell-derived β-cells may be used to replenish the islet mass in diabetic patients, making islet transplantation (a form of cell therapy that has already proven effective at clinically restoring normoglycemia) available to millions of prospective patients. Here we review the most current advances in the design and application of protocols for the differentiation of transplantable β-cells, with a special emphasis in analyzing MSC potency according to their tissue of origin. Although no single method appears to be ripe enough for clinical trials yet, recent progress in reprogramming (a biotechnological breakthrough that relativizes the thus far insurmountable barriers between embryonal germ layers) bodes well for the rise of MSCs as a potential weapon of choice to develop personalized therapies for type 1 diabetes.
Collapse
|
29
|
Abstract
Current approaches aiming to cure type 1 diabetes (T1D) have made a negligible number of patients insulin-independent. In this review, we revisit the role of stem cell (SC)-based applications in curing T1D. The optimal therapeutic approach for T1D should ideally preserve the remaining β-cells, restore β-cell function, and protect the replaced insulin-producing cells from autoimmunity. SCs possess immunological and regenerative properties that could be harnessed to improve the treatment of T1D; indeed, SCs may reestablish peripheral tolerance toward β-cells through reshaping of the immune response and inhibition of autoreactive T-cell function. Furthermore, SC-derived insulin-producing cells are capable of engrafting and reversing hyperglycemia in mice. Bone marrow mesenchymal SCs display a hypoimmunogenic phenotype as well as a broad range of immunomodulatory capabilities, they have been shown to cure newly diabetic nonobese diabetic (NOD) mice, and they are currently undergoing evaluation in two clinical trials. Cord blood SCs have been shown to facilitate the generation of regulatory T cells, thereby reverting hyperglycemia in NOD mice. T1D patients treated with cord blood SCs also did not show any adverse reaction in the absence of major effects on glycometabolic control. Although hematopoietic SCs rarely revert hyperglycemia in NOD mice, they exhibit profound immunomodulatory properties in humans; newly hyperglycemic T1D patients have been successfully reverted to normoglycemia with autologous nonmyeloablative hematopoietic SC transplantation. Finally, embryonic SCs also offer exciting prospects because they are able to generate glucose-responsive insulin-producing cells. Easy enthusiasm should be mitigated mainly because of the potential oncogenicity of SCs.
Collapse
Affiliation(s)
- Paolo Fiorina
- Transplantation Research Center, Division of Nephrology, Children's Hospital/Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
30
|
Durvasula K, Thulé PM, Sambanis A. Combinatorial insulin secretion dynamics of recombinant hepatic and enteroendocrine cells. Biotechnol Bioeng 2011; 109:1074-82. [PMID: 22094821 DOI: 10.1002/bit.24373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 10/31/2011] [Indexed: 12/29/2022]
Abstract
One of the most promising cell-based therapies for combating insulin-dependent diabetes entails the use of genetically engineered non-β cells that secrete insulin in response to physiologic stimuli. A normal pancreatic β cell secretes insulin in a biphasic manner in response to glucose. The first phase is characterized by a transient stimulation of insulin to rapidly lower the blood glucose levels, which is followed by a second phase of insulin secretion to sustain the lowered blood glucose levels over a longer period of time. Previous studies have demonstrated hepatic and enteroendocrine cells to be appropriate hosts for recombinant insulin expression. Due to different insulin secretion kinetics from these cells, we hypothesized that a combination of the two cell types would mimic the biphasic insulin secretion of normal β cells with higher fidelity than either cell type alone. In this study, insulin secretion experiments were conducted with two hepatic cell lines (HepG2 and H4IIE) transduced with 1 of 3 adenoviruses expressing the insulin transgene and with a stably transfected recombinant intestinal cell line (GLUTag-INS). Insulin secretion was stimulated by exposing the cells to glucose only (hepatic cells), meat hydrolysate only (GLUTag-INS), or to a cocktail of the two secretagogues. It was found experimentally that the recombinant hepatic cells secreted insulin in a more sustained manner, whereas the recombinant intestinal cell line exhibited rapid insulin secretion kinetics upon stimulation. The insulin secretion profiles were computationally combined at different cell ratios to arrive at the combinatorial kinetics. Results indicate that combinations of these two cell types allow for tuning the first and second phase of insulin secretion better than either cell type alone. This work provides the basic framework in understanding the secretion kinetics of the combined system and advances it towards preclinical studies.
Collapse
Affiliation(s)
- Kiranmai Durvasula
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
31
|
Anzalone R, Lo Iacono M, Loria T, Di Stefano A, Giannuzzi P, Farina F, La Rocca G. Wharton's jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes. Stem Cell Rev Rep 2011; 7:342-63. [PMID: 20972649 DOI: 10.1007/s12015-010-9196-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSC) are uniquely capable of crossing germinative layers borders (i.e. are able to differentiate towards ectoderm-, mesoderm- and endoderm-derived cytotypes) and are viewed as promising cells for regenerative medicine approaches in several diseases. Type I diabetes therapy should potentially benefit from such differentiated cells: the search for alternatives to organ/islet transplantation strategies via stem cells differentiation is an ongoing task, significant goals having been achieved in most experimental settings (e.g. insulin production and euglycaemia restoration), though caution is still needed to ensure safe and durable effects in vivo. MSC are obtainable in high numbers via ex vivo culture and can be differentiated towards insulin-producing cells (IPC). Moreover, recent reports evidenced that MSC possess immunomodulatory activities (acting on both innate and acquired immunity effectors) which should result in a reduction of the immunogenicity of transplanted cells, thus limiting rejection. Moreover it has been proposed that MSC administration should be used to attenuate the autoimmune processes which lead to the destruction of beta cells. This review illustrates the recent advances made in differentiating human MSC to IPC. In particular, we compare the effectiveness of the differentiation protocols applied, the markers and functional assays used to characterize differentiated progeny, and the in vivo controls. We further speculate on how MSC derived from Wharton's jelly of human umbilical cord may represent a more promising regenerative medicine tool, as recently demonstrated for endoderm-derived organs (as liver) in human subjects, also considering their peculiar immunomodulatory features compared to other MSC populations.
Collapse
Affiliation(s)
- Rita Anzalone
- Sezione di Anatomia Umana, Dipartimento di Biomedicina Sperimentale e Neuroscienze Cliniche, Università degli Studi di Palermo, Via del Vespro 129, Palermo, PA 90127, Italy
| | | | | | | | | | | | | |
Collapse
|
32
|
Qujeq D, Pourghasm M, Joursaraei G, Feiyzi F, Farsi M, Faraji AS. Mononuclear derived from human umbilical cord normalize glycemia in alloxan-induced hyperglycemic rat. Cell Physiol Biochem 2011; 28:323-8. [PMID: 21865740 DOI: 10.1159/000331748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2011] [Indexed: 11/19/2022] Open
Abstract
The present study explored whether mononuclear cells derived from human umbilical cord blood could resolve hyperglycemia. In order to test this hypothesis, mononuclear cells derived from Human umbilical cord blood (HUCB) were transplanted into alloxan-induced hyperglycemic rats. Mononuclear cells (MNCs) were isolated by a conventional centrifuge method through a Ficoll- paque. Hyperglycemia was induced in rats by a single injection of alloxan at 50 mg/kg body weigh intraperitonealy. Rats were divided into three groups of ten each. Group I, served as control; Group II received alloxan alone; Group III received both alloxan and MNCs. The serum glucose and insulin level were measured before the animals received the MNCs and at 1, 4, 7, 12 and 15 weeks following the treatment. Glucose levels were monitored by the glucose oxidase technique. The insulin level was measured following Elisa assay by the insulin kit specific for rats made by Mercodia Co., Sweden. The results indicated that glucose levels in alloxan-injected rats rose at week 1 and remained elevated 301.00 ± 6.43 mg/dl for 15 weeks. In contrast, in week 15, after treated with MNCs, the blood glucose levels were 108.26 ± 6.84, mg/dl. Within a week after MNCs administration, blood glucose levels significantly reduced (245.74 ± 2.37 mg/dl and reached a baseline almost close to the normal glycemic values 15 week later (108.26 ± 6.84 mg/dl). Treated with MNCs in alloxan diabetic rats caused a significant rise in serum insulin accompanied by a drop in the blood glucose level.
Collapse
Affiliation(s)
- Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Babol University of Medical Sciences, Babol, Iran.
| | | | | | | | | | | |
Collapse
|
33
|
Wong RSY. Extrinsic factors involved in the differentiation of stem cells into insulin-producing cells: an overview. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:406182. [PMID: 21747828 PMCID: PMC3124109 DOI: 10.1155/2011/406182] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 03/28/2011] [Indexed: 12/31/2022]
Abstract
Diabetes mellitus is a chronic disease with many debilitating complications. Treatment of diabetes mellitus mainly revolves around conventional oral hypoglycaemic agents and insulin replacement therapy. Recently, scientists have turned their attention to the generation of insulin-producing cells (IPCs) from stem cells of various sources. To date, many types of stem cells of human and animal origins have been successfully turned into IPCs in vitro and have been shown to exert glucose-lowering effect in vivo. However, scientists are still faced with the challenge of producing a sufficient number of IPCs that can in turn produce sufficient insulin for clinical use. A careful choice of stem cells, methods, and extrinsic factors for induction may all be contributing factors to successful production of functional beta-islet like IPCs. It is also important that the mechanism of differentiation and mechanism by which IPCs correct hyperglycaemia are carefully studied before they are used in human subjects.
Collapse
Affiliation(s)
- Rebecca S Y Wong
- Division of Human Biology, School of Medical and Health Sciences, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
34
|
Chandra V, G S, Muthyala S, Jaiswal AK, Bellare JR, Nair PD, Bhonde RR. Islet-like cell aggregates generated from human adipose tissue derived stem cells ameliorate experimental diabetes in mice. PLoS One 2011; 6:e20615. [PMID: 21687731 PMCID: PMC3110196 DOI: 10.1371/journal.pone.0020615] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 05/07/2011] [Indexed: 12/14/2022] Open
Abstract
Background Type 1 Diabetes Mellitus is caused by auto immune destruction of insulin producing beta cells in the pancreas. Currently available treatments include transplantation of isolated islets from donor pancreas to the patient. However, this method is limited by inadequate means of immuno-suppression to prevent islet rejection and importantly, limited supply of islets for transplantation. Autologous adult stem cells are now considered for cell replacement therapy in diabetes as it has the potential to generate neo-islets which are genetically part of the treated individual. Adopting methods of islet encapsulation in immuno-isolatory devices would eliminate the need for immuno-suppressants. Methodology/Principal Findings In the present study we explore the potential of human adipose tissue derived adult stem cells (h-ASCs) to differentiate into functional islet like cell aggregates (ICAs). Our stage specific differentiation protocol permit the conversion of mesodermic h-ASCs to definitive endoderm (Hnf3β, TCF2 and Sox17) and to PDX1, Ngn3, NeuroD, Pax4 positive pancreatic endoderm which further matures in vitro to secrete insulin. These ICAs are shown to produce human C-peptide in a glucose dependent manner exhibiting in-vitro functionality. Transplantation of mature ICAs, packed in immuno-isolatory biocompatible capsules to STZ induced diabetic mice restored near normoglycemia within 3–4 weeks. The detection of human C-peptide, 1155±165 pM in blood serum of experimental mice demonstrate the efficacy of our differentiation approach. Conclusions h-ASC is an ideal population of personal stem cells for cell replacement therapy, given that they are abundant, easily available and autologous in origin. Our findings present evidence that h-ASCs could be induced to differentiate into physiologically competent functional islet like cell aggregates, which may provide as a source of alternative islets for cell replacement therapy in type 1 diabetes.
Collapse
Affiliation(s)
- Vikash Chandra
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Swetha G
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
| | - Sudhakar Muthyala
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Amit K. Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Jayesh R. Bellare
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Prabha D. Nair
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, India
| | - Ramesh R. Bhonde
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
35
|
Iskovich S, Goldenberg-Cohen N, Stein J, Yaniv I, Farkas DL, Askenasy N. β-Cell Neogenesis: Experimental Considerations in Adult Stem Cell Differentiation. Stem Cells Dev 2011; 20:569-82. [DOI: 10.1089/scd.2010.0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Svetlana Iskovich
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Nitza Goldenberg-Cohen
- Krieger Laboratory of Ophthalmology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Jerry Stein
- Bone Marrow Transplantation Unit, Department of Pediatric Hematology-Oncology, Petach Tikva, Israel
| | - Isaac Yaniv
- Bone Marrow Transplantation Unit, Department of Pediatric Hematology-Oncology, Petach Tikva, Israel
| | | | - Nadir Askenasy
- Frankel Laboratory, Center for Stem Cell Research, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| |
Collapse
|
36
|
Suila H, Pitkanen V, Hirvonen T, Heiskanen A, Anderson H, Laitinen A, Natunen S, Miller-Podraza H, Satomaa T, Natunen J, Laitinen S, Valmu L. Are globoseries glycosphingolipids SSEA-3 and -4 markers for stem cells derived from human umbilical cord blood? J Mol Cell Biol 2010; 3:99-107. [DOI: 10.1093/jmcb/mjq041] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
37
|
Kadam SS, Sudhakar M, Nair PD, Bhonde RR. Reversal of experimental diabetes in mice by transplantation of neo-islets generated from human amnion-derived mesenchymal stromal cells using immuno-isolatory macrocapsules. Cytotherapy 2010; 12:982-91. [DOI: 10.3109/14653249.2010.509546] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Dinarvand P, Hashemi SM, Soleimani M. Effect of transplantation of mesenchymal stem cells induced into early hepatic cells in streptozotocin-induced diabetic mice. Biol Pharm Bull 2010; 33:1212-7. [PMID: 20606315 DOI: 10.1248/bpb.33.1212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular replacement therapy for diabetes mellitus has received much attention. In this study we investigated the effect of transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) induced into endoderm and early hepatic cells in streptozotocin (STZ)-induced diabetic mice. Mouse BM-MSCs were cultured in the presence of hepatocyte growth factor (HGF) and fibroblast growth factor (FGF-4) for 2 weeks and transplanted into diabetic mice. Blood glucose levels, intraperitoneal glucose tolerance test, serum insulin, body weight and islets histology were analyzed. The results demonstrated that transplantation of syngeneic induced MSCs could reverse STZ-induced diabetes in mice. The treatment of mice with hyperglycemia and islet destruction resulted in the repair of pancreatic islets. Blood glucose levels, intraperitoneal glucose tolerance test, and serum insulin were significantly recovered in induced BM-MSCs (iBM-MSCs) group. In addition, in the iBM-MSCs group the body weight and the number of islets were significantly increased compared to other groups. The results demonstrate that BM-MSCs induced into endoderm and early hepatic cells are suitable candidates for cell-based therapy of diabetes mellitus.
Collapse
Affiliation(s)
- Peyman Dinarvand
- Department of Stem Cells and Tissue Engineering, Stem Cell Technology Research Center, Tehran 14155-3117, Iran
| | | | | |
Collapse
|
39
|
Phuc PV, Nhung TH, Loan DTT, Chung DC, Ngoc PK. Differentiating of banked human umbilical cord blood-derived mesenchymal stem cells into insulin-secreting cells. In Vitro Cell Dev Biol Anim 2010; 47:54-63. [DOI: 10.1007/s11626-010-9356-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 10/18/2010] [Indexed: 10/18/2022]
|
40
|
Zhao Y, Mazzone T. Human cord blood stem cells and the journey to a cure for type 1 diabetes. Autoimmun Rev 2010; 10:103-7. [PMID: 20728583 DOI: 10.1016/j.autrev.2010.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 08/15/2010] [Indexed: 12/22/2022]
Abstract
Umbilical cord blood contains several types of stem cells that are of interest to a wide range of disciplines in regenerative medicine. The translational potential to the clinical applications of cord blood stem cells has increased enormously in recent years, mainly because of its advantages including no risk to the donor, no ethical issues, low risk of graft-versus-host disease (GVHD) and rapid availability. Type 1 diabetes (T1D) is an autoimmune disease caused by an autoimmune destruction of pancreatic islet β cells. Understanding the nature and function of cord blood stem cells is an exciting challenge that might set the stage for new approaches to the treatment of T1D. Here, we review progress in this field and draw conclusions for the development of future therapeutics in T1D. New insights are provided on a unique type of cord blood-derived multipotent stem cells (CB-SC), including the molecular mechanisms underlying immune modulation by CB-SC, protection of β-cell mass, and promotion of islet β-cell neogenesis.
Collapse
Affiliation(s)
- Yong Zhao
- Section of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
41
|
Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic beta-like cells. Proc Natl Acad Sci U S A 2010; 107:13426-31. [PMID: 20616080 DOI: 10.1073/pnas.1007884107] [Citation(s) in RCA: 190] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is characterized by either the inability to produce insulin (type 1 diabetes) or as insensitivity to insulin secreted by the body (type 2 diabetes). In either case, the body is unable to move blood glucose efficiently across cell membranes to be used. This leads to a variety of local and systemic detrimental effects. Current treatments for diabetes focus on exogenous insulin administration and dietary control. Here, we describe a potential cure for diabetes using a cellular therapy to ameliorate symptoms associated with both reduced insulin secretion and insulin sensitivity. Using induced pluripotent stem (iPS) cells, we were able to derive beta-like cells similar to the endogenous insulin-secreting cells in mice. These beta-like cells secreted insulin in response to glucose and corrected a hyperglycemic phenotype in two mouse models of type 1 and 2 diabetes via an iPS cell transplant. Long-term correction of hyperglycemia was achieved, as determined by blood glucose and hemoglobin A1c levels. These data provide an initial proof of principle for potential clinical applications of reprogrammed somatic cells in the treatment of diabetes type 1 or 2.
Collapse
|
42
|
CD45+/CD133+positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency. Cell Biol Int 2010; 34:783-90. [DOI: 10.1042/cbi20090236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Abstract
Embryonic stem (ES) cell therapies are often promoted as the optimal stem cell source for regenerative medicine applications because of their ability to develop into any tissue in the body. Unfortunately, ES cell applications are currently limited by ethical, political, biological and regulatory hurdles. However, multipotent non-ES cells are available in large numbers in umbilical cord blood (CB). CB stem cells are capable of giving rise to hematopoietic, epithelial, endothelial and neural tissues both in vitro and in vivo. Thus, CB stem cells are amenable to treat a wide variety of diseases including cardiovascular, ophthalmic, orthopaedic, neurological and endocrine diseases. In addition, the recent use of CB in several regenerative medicine clinical studies has demonstrated its pluripotent nature. Here we review the latest developments in the use of CB in regenerative medicine. Examples of these usages include cerebral palsy and type I diabetes. The numbers of individuals affected with each of these diseases are estimated at 10 000 infants diagnosed with cerebral palsy annually and 15 000 youths diagnosed with type 1 diabetes annually. A summary of the initial results from such clinical studies using autologous cord blood stem cells will be presented.
Collapse
Affiliation(s)
- David T Harris
- Department of Immunobiology, The University of Arizona, and Scientific Director, Cord Blood Registry, 1656 E. Mabel, MRB 221, PO Box 245221, Tucson, AZ 85724,, USA.
| |
Collapse
|
44
|
Leeb C, Jurga M, McGuckin C, Moriggl R, Kenner L. Promising New Sources for Pluripotent Stem Cells. Stem Cell Rev Rep 2009; 6:15-26. [DOI: 10.1007/s12015-009-9102-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
45
|
Lee S, Park JR, Seo MS, Roh KH, Park SB, Hwang JW, Sun B, Seo K, Lee YS, Kang SK, Jung JW, Kang KS. Histone deacetylase inhibitors decrease proliferation potential and multilineage differentiation capability of human mesenchymal stem cells. Cell Prolif 2009; 42:711-20. [PMID: 19689470 DOI: 10.1111/j.1365-2184.2009.00633.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Histone deacetylase (HDAC) is an important therapeutic target in cancer. Two of the main anticancer mechanisms of HDAC inhibitors are induction of terminal differentiation and inhibition of cell proliferation. To investigate the role of HDAC in maintenance of self-renewal and cell proliferation, we treated mesenchymal stem cells (MSCs) that originated from adipose tissue or umbilical cord blood with valproic acid (VPA) and sodium butyrate (NaBu). MATERIALS AND METHODS Human MSCs were isolated from mammary fat tissue and cord blood. We performed MTT assay and flow cytometry-based cell cycle analysis to assess self-renewal of MSCs. In vitro differentiation assays into osteogenic, adipogenic, neurogenic and chondrogenic lineages were conducted to investigate MSC multipotency. Immunocytochemistry, Western blot and reverse transcription-polymerase chain reaction were used to interrogate molecular pathways. RESULTS VPA and NaBu flattened the morphology of MSCs and inhibited their growth. VPA and NaBu activated the transcription of p21(CIP1/WAF1) by increasing the acetylation of histone H3 and H4 and eventually blocked the cell cycle at G2/M phase. The expression level of p16(INK4A), a cdk inhibitor that is closely related to cellular senescence, was not changed by HDAC inhibitor treatment. We performed controlled differentiation into bone, fat, cartilage and nervous tissue to elucidate the role of HDAC in the pluripotency of MSC to differentiate into functional tissues. VPA and NaBu decreased the efficiency of adipogenic, chondrogenic, and neurogenic differentiation as visualized by specific staining and reverse transcription-polymerase chain reaction. In contrast, osteogenic differentiation was elevated by HDAC inhibitor treatment. CONCLUSION HDAC activity is essential for maintaining the self-renewal and pluripotency of MSCs.
Collapse
Affiliation(s)
- S Lee
- Adult Stem Cell Research Center, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pappa KI, Anagnou NP. Novel sources of fetal stem cells: where do they fit on the developmental continuum? Regen Med 2009; 4:423-33. [PMID: 19438317 DOI: 10.2217/rme.09.12] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The recent isolation of fetal stem cells from several sources either at the early stages of development or during the later trimesters of gestation, sharing similar growth kinetics and expressing pluripotency markers, provides strong support to the notion that these cells may be biologically closer to embryonic stem cells, actually representing intermediates between embryonic stem cells and adult mesenchymal stem cells, regarding proliferation rates and plasticity features, and thus able to confer an advantage over postnatal mesenchymal stem cells derived from conventional adult sources such as bone marrow. This conclusion has been strengthened by the different pattern of growth potential between the two stage-specific types of sources, as assessed by transcriptomic and proteomic analysis. A series of recent studies regarding the numerous novel features of fetal stem cells has reignited our interest in the field of stem-cell biology and in the possibilities for the eventual repair of damaged organs and the generation of in vitro tissues on biomimetic scaffolds for transplantation. These studies, employing elegant approaches and novel technologies, have provided new insights regarding the nature and the potential of fetal stem cells derived from placenta, amniotic fluid, amnion or umbilical cord. In this update, we highlight the major progression that has occurred in fetal stem-cell biology and discuss the most important areas for future investigation in the field of regenerative medicine.
Collapse
Affiliation(s)
- Kalliopi I Pappa
- First Department of Obstetrics & Gynecology, University of Athens School of Medicine, Greece.
| | | |
Collapse
|
47
|
Tamagawa T, Ishiwata I, Sato K, Nakamura Y. Induced in vitro differentiation of pancreatic-like cells from human amnion-derived fibroblast-like cells. Hum Cell 2009; 22:55-63. [PMID: 19624306 DOI: 10.1111/j.1749-0774.2009.00069.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There is growing evidence that the human amnion contains various types of stem cells. As amniotic tissue is readily available, it has the potential to be an important source of material for regenerative medicine. In the present study, we evaluated the potential of human amnion-derived fibroblast-like (HADFIL) cells to differentiate into pancreatic islet cells. Two HADFIL cell populations, derived from two different neonates, were analyzed. The expression of pancreatic cell-specific genes was examined before and after in vitro induction of cellular differentiation. We found that Pdx-1, Isl-1, Pax-4, and Pax-6 showed significantly increased expression following the induction of differentiation. In addition, immunostaining demonstrated that insulin, glucagon, and somatostatin were present in HADFIL cells following the induction of differentiation. These results indicate that HADFIL cell populations have the potential to differentiate into pancreatic islet cells. Although further studies are necessary to determine whether such in vitro-differentiated cells can function in vivo as pancreatic islet cells, these amniotic cell populations might be of value in therapeutic applications that require human pancreatic islet cells.
Collapse
|
48
|
Abstract
We review progress towards the goal of utilizing stem cells as a source of engineered pancreatic beta-cells for therapy of diabetes. Protocols for the in vitro differentiation of embryonic stem (ES) cells based on normal developmental cues have generated beta-like cells that produce high levels of insulin, albeit at low efficiency and without full responsiveness to extracellular levels of glucose. Induced pluripotent stem (iPS) cells also can yield insulin-producing cells following similar approaches. An important recent report shows that when transplanted into mice, human ES-derived cells with a phenotype corresponding to pancreatic endoderm matured to yield cells capable of maintaining near-normal regulation of blood sugar [Kroon et al., 2008]. Major hurdles that must be overcome to enable the broad clinical translation of these advances include teratoma formation by ES and iPS cells, and the need for immunosuppressive drugs. Classes of stem cells that can be expanded extensively in culture but do not form teratomas, such as amniotic fluid-derived stem cells and hepatic stem cells, offer possible alternatives for the production of beta-like cells, but further evidence is required to document this potential. Generation of autologous iPS cells should prevent transplant rejection, but may prove prohibitively expensive. Banking strategies to identify small numbers of stem cell lines homozygous for major histocompatibility loci have been proposed to enable beneficial genetic matching that would decrease the need for immunosuppression.
Collapse
Affiliation(s)
- Mark E Furth
- Department of Urology and Wake Forest, Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
49
|
Lee J, Han DJ, Kim SC. In vitro differentiation of human adipose tissue-derived stem cells into cells with pancreatic phenotype by regenerating pancreas extract. Biochem Biophys Res Commun 2008; 375:547-51. [PMID: 18725201 DOI: 10.1016/j.bbrc.2008.08.064] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Accepted: 08/11/2008] [Indexed: 10/21/2022]
Abstract
Pancreas extract from regenerating pancreas after partial pancreatectomy is known to contain factors that induce islet neogenesis in animals with streptozotocin (STZ)-induced diabetes [A.A. Hardikar, R.R. Bhonde, Modulating experimental diabetes by treatment with cytosolic extract from the regenerating pancreas, Diabetes Res. Clin. Pract. 46 (1999) 203-211]. In this study, we evaluate the effects of regenerating pancreas extract (RPE) from 90% partially pancreatectomized rats on induction of pancreatic differentiation of human adipose tissue-derived stem cells (hASCs). We found that undifferentiated hASCs expressed OCT-3/4, Nanog, and REX-1, markers of embryonic stem cells (ESCs). Genes involved in early pancreas development showed increased expression in RPE-treated culture. Sox17 and IPF-1 were expressed only in RPE-treated culture. Immunocytochemical analysis showed C-peptide-positive cells in RPE-treated culture but not in undifferentiated hASCs. In conclusion, hASCs have the characteristics of ESCs and the potential to differentiate into pancreas cell lineages phenotypically in response to RPE.
Collapse
Affiliation(s)
- Jiyeon Lee
- Laboratory of Cell Therapy, Asan Institute for Life Sciences, Asan Medical Center, Seoul 138-736, Republic of Korea
| | | | | |
Collapse
|
50
|
Sordi V, Bertuzzi F, Piemonti L. Diabetes mellitus: an opportunity for therapy with stem cells? Regen Med 2008; 3:377-97. [PMID: 18462060 DOI: 10.2217/17460751.3.3.377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In both Type 1 and 2 diabetes, insufficient numbers of insulin-producing beta-cells are a major cause of defective control of blood glucose and its complications. Restoration of damaged beta-cells by endocrine pancreas regeneration would be an ideal therapeutic option. The possibility of generating insulin-secreting cells with adult pancreatic stem or progenitor cells has been investigated extensively. The conversion of differentiated cells such as hepatocytes into beta-cells is being attempted using molecular insights into the transcriptional make-up of beta-cells. Additionally, the enhanced proliferation of beta-cells in vivo or in vitro is being pursued as a strategy for regenerative medicine for diabetes. Advances have also been made in directing the differentiation of embryonic stem cells into beta-cells. Although progress is encouraging, major gaps in our understanding of developmental biology of the pancreas and adult beta-cell dynamics remain to be bridged before a therapeutic application is made possible.
Collapse
Affiliation(s)
- Valeria Sordi
- Laboratory of Experimental Surgery, San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy
| | | | | |
Collapse
|