1
|
Alqarni AA, Aldhahir AM, Alghamdi SA, Alqahtani JS, Siraj RA, Alwafi H, AlGarni AA, Majrshi MS, Alshehri SM, Pang L. Role of prostanoids, nitric oxide and endothelin pathways in pulmonary hypertension due to COPD. Front Med (Lausanne) 2023; 10:1275684. [PMID: 37881627 PMCID: PMC10597708 DOI: 10.3389/fmed.2023.1275684] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Pulmonary hypertension (PH) due to chronic obstructive pulmonary disease (COPD) is classified as Group 3 PH, with no current proven targeted therapies. Studies suggest that cigarette smoke, the most risk factor for COPD can cause vascular remodelling and eventually PH as a result of dysfunction and proliferation of pulmonary artery smooth muscle cells (PASMCs) and pulmonary artery endothelial cells (PAECs). In addition, hypoxia is a known driver of pulmonary vascular remodelling in COPD, and it is also thought that the presence of hypoxia in patients with COPD may further exaggerate cigarette smoke-induced vascular remodelling; however, the underlying cause is not fully understood. Three main pathways (prostanoids, nitric oxide and endothelin) are currently used as a therapeutic target for the treatment of patients with different groups of PH. However, drugs targeting these three pathways are not approved for patients with COPD-associated PH due to lack of evidence. Thus, this review aims to shed light on the role of impaired prostanoids, nitric oxide and endothelin pathways in cigarette smoke- and hypoxia-induced pulmonary vascular remodelling and also discusses the potential of using these pathways as therapeutic target for patients with PH secondary to COPD.
Collapse
Affiliation(s)
- Abdullah A. Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Abdulelah M. Aldhahir
- Respiratory Therapy Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Sara A. Alghamdi
- Respiratory Care Department, Al Murjan Hospital, Jeddah, Saudi Arabia
| | - Jaber S. Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Rayan A. Siraj
- Department of Respiratory Care, College of Applied Medical Sciences, King Faisal University, Al Ahsa, Saudi Arabia
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Abdulkareem A. AlGarni
- King Abdulaziz Hospital, The Ministry of National Guard Health Affairs, Al Ahsa, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, College of Applied Medical Sciences, Al Ahsa, Saudi Arabia
| | - Mansour S. Majrshi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Respiratory Medicine, Royal Brompton Hospital, London, United Kingdom
| | - Saad M. Alshehri
- Department of Respiratory Therapy, King Fahad General Hospital, Jeddah, Saudi Arabia
| | - Linhua Pang
- Respiratory Medicine Research Group, Academic Unit for Translational Medical Sciences, University of Nottingham School of Medicine, Nottingham, United Kingdom
| |
Collapse
|
2
|
Cakir SN, Whitehead KM, Hendricks HKL, de Castro Brás LE. Novel Techniques Targeting Fibroblasts after Ischemic Heart Injury. Cells 2022; 11:cells11030402. [PMID: 35159212 PMCID: PMC8834471 DOI: 10.3390/cells11030402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
The great plasticity of cardiac fibroblasts allows them to respond quickly to myocardial injury and to contribute to the subsequent cardiac remodeling. Being the most abundant cell type (in numbers) in the heart, and a key participant in the several phases of tissue healing, the cardiac fibroblast is an excellent target for treating cardiac diseases. The development of cardiac fibroblast-specific approaches have, however, been difficult due to the lack of cellular specific markers. The development of genetic lineage tracing tools and Cre-recombinant transgenics has led to a huge acceleration in cardiac fibroblast research. Additionally, the use of novel targeted delivery approaches like nanoparticles and modified adenoviruses, has allowed researchers to define the developmental origin of cardiac fibroblasts, elucidate their differentiation pathways, and functional mechanisms in cardiac injury and disease. In this review, we will first characterize the roles of fibroblasts in the different stages of cardiac repair and then examine novel techniques targeting fibroblasts post-ischemic heart injury.
Collapse
Affiliation(s)
- Sirin N Cakir
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kaitlin M Whitehead
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Hanifah K L Hendricks
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisandra E de Castro Brás
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
3
|
Rai N, Shihan M, Seeger W, Schermuly RT, Novoyatleva T. Genetic Delivery and Gene Therapy in Pulmonary Hypertension. Int J Mol Sci 2021; 22:ijms22031179. [PMID: 33503992 PMCID: PMC7865388 DOI: 10.3390/ijms22031179] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is a progressive complex fatal disease of multiple etiologies. Hyperproliferation and resistance to apoptosis of vascular cells of intimal, medial, and adventitial layers of pulmonary vessels trigger excessive pulmonary vascular remodeling and vasoconstriction in the course of pulmonary arterial hypertension (PAH), a subgroup of PH. Multiple gene mutation/s or dysregulated gene expression contribute to the pathogenesis of PAH by endorsing the proliferation and promoting the resistance to apoptosis of pulmonary vascular cells. Given the vital role of these cells in PAH progression, the development of safe and efficient-gene therapeutic approaches that lead to restoration or down-regulation of gene expression, generally involved in the etiology of the disease is the need of the hour. Currently, none of the FDA-approved drugs provides a cure against PH, hence innovative tools may offer a novel treatment paradigm for this progressive and lethal disorder by silencing pathological genes, expressing therapeutic proteins, or through gene-editing applications. Here, we review the effectiveness and limitations of the presently available gene therapy approaches for PH. We provide a brief survey of commonly existing and currently applicable gene transfer methods for pulmonary vascular cells in vitro and describe some more recent developments for gene delivery existing in the field of PH in vivo.
Collapse
Affiliation(s)
- Nabham Rai
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Mazen Shihan
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Werner Seeger
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ralph T. Schermuly
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
| | - Tatyana Novoyatleva
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University of Giessen, Aulweg 130, 35392 Giessen, Germany; (N.R.); (M.S.); (W.S.); (R.T.S.)
- Correspondence:
| |
Collapse
|
4
|
Type 2 inositol 1,4,5-trisphosphate receptor inhibits the progression of pulmonary arterial hypertension via calcium signaling and apoptosis. Heart Vessels 2018; 34:724-734. [PMID: 30460575 DOI: 10.1007/s00380-018-1304-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/09/2018] [Indexed: 12/21/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease associated with vasoconstriction and remodeling. Intracellular Ca2+ signaling regulates the contraction of pulmonary arteries and the proliferation of pulmonary arterial smooth muscle cells (PASMCs); however, it is not clear which molecules related to Ca2+ signaling contribute to the progression of PAH. In this study, we found the specific expression of type 2 inositol 1,4,5-trisphosphate receptor (IP3R2), which is an intracellular Ca2+ release channel, on the sarco/endoplasmic reticulum in mouse PASMCs, and demonstrated its inhibitory role in the progression of PAH using a chronic hypoxia-induced PAH mouse model. After chronic hypoxia exposure, IP3R2-/- mice exhibited the significant aggravation of PAH, as determined by echocardiography and right ventricular hypertrophy, with significantly greater medial wall thickness by immunohistochemistry than that of wild-type mice. In IP3R2-/- murine PASMCs with chronic hypoxia, a TUNEL assay revealed the significant suppression of apoptosis, whereas there was no significant change in proliferation. Thapsigargin-induced store-operated Ca2+ entry (SOCE) was significantly enhanced in IP3R2-/- PASMCs in both normoxia and hypoxia based on in vitro fluorescent Ca2+ imaging. Furthermore, the enhancement of SOCE in IP3R2-/- PASMCs was remarkably suppressed by the addition of DPB162-AE, an inhibitor of the stromal-interacting molecule (STIM)-Orai complex which is about 100 times more potent than 2-APB. Our results indicate that IP3R2 may inhibit the progression of PAH by promoting apoptosis and inhibiting SOCE via the STIM-Orai pathway in PASMCs. These findings suggest a previously undetermined role of IP3R in the development of PAH and may contribute to the development of targeted therapies.
Collapse
|
5
|
Ishihara T, Hayashi E, Yamamoto S, Kobayashi C, Tamura Y, Sawazaki R, Tamura F, Tahara K, Kasahara T, Ishihara T, Takenaga M, Fukuda K, Mizushima T. Encapsulation of beraprost sodium in nanoparticles: Analysis of sustained release properties, targeting abilities and pharmacological activities in animal models of pulmonary arterial hypertension. J Control Release 2015; 197:97-104. [DOI: 10.1016/j.jconrel.2014.10.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/30/2014] [Accepted: 10/27/2014] [Indexed: 11/29/2022]
|
6
|
Suen CM, Mei SHJ, Kugathasan L, Stewart DJ. Targeted delivery of genes to endothelial cells and cell- and gene-based therapy in pulmonary vascular diseases. Compr Physiol 2014; 3:1749-79. [PMID: 24265244 DOI: 10.1002/cphy.c120034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a devastating disease that, despite significant advances in medical therapies over the last several decades, continues to have an extremely poor prognosis. Gene therapy is a method to deliver therapeutic genes to replace defective or mutant genes or supplement existing cellular processes to modify disease. Over the last few decades, several viral and nonviral methods of gene therapy have been developed for preclinical PAH studies with varying degrees of efficacy. However, these gene delivery methods face challenges of immunogenicity, low transduction rates, and nonspecific targeting which have limited their translation to clinical studies. More recently, the emergence of regenerative approaches using stem and progenitor cells such as endothelial progenitor cells (EPCs) and mesenchymal stem cells (MSCs) have offered a new approach to gene therapy. Cell-based gene therapy is an approach that augments the therapeutic potential of EPCs and MSCs and may deliver on the promise of reversal of established PAH. These new regenerative approaches have shown tremendous potential in preclinical studies; however, large, rigorously designed clinical studies will be necessary to evaluate clinical efficacy and safety.
Collapse
Affiliation(s)
- Colin M Suen
- Sprott Centre for Stem Cell Research, The Ottawa Hospital Research Institute and University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
7
|
Crosswhite P, Chen K, Sun Z. AAV delivery of tumor necrosis factor-α short hairpin RNA attenuates cold-induced pulmonary hypertension and pulmonary arterial remodeling. Hypertension 2014; 64:1141-50. [PMID: 25185133 DOI: 10.1161/hypertensionaha.114.03791] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cold temperatures are associated with increased mortality and morbidity of cardiovascular and pulmonary disease. Cold exposure causes lung inflammation, pulmonary hypertension (PH), and right ventricle hypertrophy, but there is no effective therapy because of unknown mechanism. Here, we investigated whether RNA interference silencing of tumor necrosis factor (TNF)-α decreases cold-induced macrophage infiltration, PH, and pulmonary arterial (PA) remodeling. We found for the first time that continuous cold exposure (5.0°C) increased TNF-α expression and macrophage infiltration in the lungs and PAs right before elevation of right ventricle systolic pressure. The in vivo RNA interference silencing of TNF-α was achieved by intravenous delivery of recombinant AAV-2 carrying TNF-α short hairpin small-interfering RNA 24 hours before cold exposure. Cold exposure for 8 weeks significantly increased right ventricle pressure compared with the warm controls (40.19±4.9 versus 22.9±1.1 mm Hg), indicating that cold exposure caused PH. Cold exposure increased TNF-α, interleukin-6, and phosphodiesterase-1C protein expression in the lungs and PAs and increased lung macrophage infiltration. Notably, TNF-α short hairpin small-interfering RNA prevented the cold-induced increases in TNF-α, interleukin-6, and phosphodiesterase-1C protein expression, abolished lung macrophage infiltration, and attenuated PH (26.28±1.6 mm Hg), PA remodeling, and right ventricle hypertrophy. PA smooth muscle cells isolated from cold-exposed animals showed increased intracellular superoxide levels and cell proliferation along with decreased intracellular cGMP. These cold-induced changes were prevented by TNF-α short hairpin small-interfering RNA. In conclusions, upregulation of TNF-α played a critical role in the pathogenesis of cold-induced PH by promoting pulmonary macrophage infiltration and inflammation. AAV delivery of TNF-α short hairpin small-interfering RNA may be an effective therapeutic approach for cold-induced PH and PA remodeling.
Collapse
Affiliation(s)
- Patrick Crosswhite
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center
| | - Kai Chen
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center.
| |
Collapse
|
8
|
Gubrij IB, Martin SR, Pangle AK, Kurten R, Johnson LG. Attenuation of monocrotaline-induced pulmonary hypertension by luminal adeno-associated virus serotype 9 gene transfer of prostacyclin synthase. Hum Gene Ther 2014; 25:498-505. [PMID: 24512101 DOI: 10.1089/hum.2013.187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (iPAH) is associated with high morbidity and mortality. We evaluated whether luminal delivery of the human prostacyclin synthase (hPGIS) cDNA with adeno-associated virus (AAV) vectors could attenuate PAH. AAV serotype 5 (AAV5) and AAV9 vectors containing the hPGIS cDNA under the control of a cytomegalovirus-enhanced chicken β-actin (CB) promoter or vehicle (saline) were instilled into lungs of rats. Two days later, rats were injected with monocrotaline (MCT, 60 mg/kg) or saline. Biochemical, hemodynamic, and morphologic assessments were performed when the rats developed symptoms (3-4 weeks) or at 6 weeks. Luminal (airway) administration of AAV5 and AAV9CBhPGIS vectors (MCT-AAV5 and MCT-AAV9 rats) significantly increased plasma levels of 6-keto-PGF1(α) as compared with MCT-controls, and closely resembled levels measured in rats not treated with MCT (saline-saline). Right ventricular (RV)/left ventricular (LV)+septum (S) ratios and RV systolic pressure (RVSP) were greater in MCT-control rats than in saline-saline rats, whereas the ratios and RVSP in MCT-AAV5CBhPGIS and MCT-AAV9CBhPGIS rats were similar to saline-saline rats. Thickening of the muscular media of small pulmonary arteries of MCT-control rats was detected in histological sections, whereas the thickness of the muscular media in MCT-AAV5CBhPGIS and MCT-AAV9CBhPGIS rats was similar to saline-saline controls. In experiments with different promoters, a trend toward increased levels of PGF1(α) expression was detected in lung homogenates, but not plasma, of MCT-treated rats transduced with an AAV9-hPGIS vector containing a CB promoter. This correlated with significant reductions in the RV/LV+S ratio and RVSP in MCT-AAV9CBhPGIS rats that resembled levels in saline-saline rats. No changes in levels of PGF1(α), RV/LV+S, or RVSP were detected in rats transduced with AAV9-hPGIS vectors containing a modified CB promoter (CB7) or a distal epithelial cell-specific promoter (CC10). Thus, AAV9CBhPGIS vectors prevented development of MCT-induced PAH and associated pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Igor B Gubrij
- 1 Division of Pulmonary and Critical Care, Department of Medicine, University of Arkansas for Medical Sciences , Little Rock, AR 72205
| | | | | | | | | |
Collapse
|
9
|
Hadri L, Kratlian RG, Benard L, Maron BA, Dorfmüller P, Ladage D, Guignabert C, Ishikawa K, Aguero J, Ibanez B, Turnbull IC, Kohlbrenner E, Liang L, Zsebo K, Humbert M, Hulot JS, Kawase Y, Hajjar RJ, Leopold JA. Therapeutic efficacy of AAV1.SERCA2a in monocrotaline-induced pulmonary arterial hypertension. Circulation 2013; 128:512-23. [PMID: 23804254 DOI: 10.1161/circulationaha.113.001585] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by dysregulated proliferation of pulmonary artery smooth muscle cells leading to (mal)adaptive vascular remodeling. In the systemic circulation, vascular injury is associated with downregulation of sarcoplasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) and alterations in Ca(2+) homeostasis in vascular smooth muscle cells that stimulate proliferation. We, therefore, hypothesized that downregulation of SERCA2a is permissive for pulmonary vascular remodeling and the development of PAH. METHODS AND RESULTS SERCA2a expression was decreased significantly in remodeled pulmonary arteries from patients with PAH and the rat monocrotaline model of PAH in comparison with controls. In human pulmonary artery smooth muscle cells in vitro, SERCA2a overexpression by gene transfer decreased proliferation and migration significantly by inhibiting NFAT/STAT3. Overexpresion of SERCA2a in human pulmonary artery endothelial cells in vitro increased endothelial nitric oxide synthase expression and activation. In monocrotaline rats with established PAH, gene transfer of SERCA2a via intratracheal delivery of aerosolized adeno-associated virus serotype 1 (AAV1) carrying the human SERCA2a gene (AAV1.SERCA2a) decreased pulmonary artery pressure, vascular remodeling, right ventricular hypertrophy, and fibrosis in comparison with monocrotaline-PAH rats treated with a control AAV1 carrying β-galactosidase or saline. In a prevention protocol, aerosolized AAV1.SERCA2a delivered at the time of monocrotaline administration limited adverse hemodynamic profiles and indices of pulmonary and cardiac remodeling in comparison with rats administered AAV1 carrying β-galactosidase or saline. CONCLUSIONS Downregulation of SERCA2a plays a critical role in modulating the vascular and right ventricular pathophenotype associated with PAH. Selective pulmonary SERCA2a gene transfer may offer benefit as a therapeutic intervention in PAH.
Collapse
Affiliation(s)
- Lahouaria Hadri
- Cardiovascular Research Center, Box 1030, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Kataoka M, Kawakami T, Tamura Y, Yoshino H, Satoh T, Tanabe T, Fukuda K. Gene transfer therapy by either type 1 or type 2 adeno-associated virus expressing human prostaglandin I2 synthase gene is effective for treatment of pulmonary arterial hypertension. J Cardiovasc Pharmacol Ther 2012; 18:54-9. [PMID: 23008153 DOI: 10.1177/1074248412457046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prostaglandin I(2) (PGI(2)) plays an important role in the clinical treatment of pulmonary arterial hypertension (PAH). However, the administration of PGI(2) involves continuous intravenous infusion using an indwelling catheter, which limits the patient's quality of life and increases the risk of infection. We therefore investigated whether human PGI(2) synthase (hPGIS) gene transfer using an adeno-associated virus (AAV) vector is still effective in a mouse model of PAH and tested for differences in the therapeutic efficacy of PAH among AAV serotypes. The PAH was induced by subjecting mice to hypoxia (10% O(2)). Type 1 AAV expressing hPGIS (AAV1-hPGIS) or type 2 AAV expressing hPGIS (AAV2-hPGIS) was injected into the thigh muscle of mice. Both vectors expressing hPGIS produced strong hPGIS protein expression in the mouse thigh skeletal muscles after 8 weeks of hypoxia. The administration of AAV1-hPGIS or AAV2-hPGIS also significantly inhibited the hypoxia-induced increase in right ventricular systolic pressure, the ratio of right ventricular weight to body weight (RV/BW), and the ratio of RV weight to left ventricular plus septal weight (RV/LV + S), and significantly attenuated the hypoxia-induced increase in medial wall thickness of peripheral pulmonary arteries. Furthermore, there were no significant differences in the degree of amelioration in RV systolic pressure, RV/BW, RV/LV + S, and percentage of wall thickness of peripheral pulmonary arteries between AAV1-hPGIS and AAV2-hPGIS administrations. In conclusion, we revealed that type 1 and type 2 AAV are equally effective for the treatment of PAH in a hypoxia-induced mouse model. Gene-transfer therapy using AAV expressing hPGIS is, therefore, a potential therapeutic breakthrough for PAH.
Collapse
Affiliation(s)
- Masaharu Kataoka
- Department of Cardiology, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
In vivo therapy of myocardial infarction with mesenchymal stem cells modified with prostaglandin I synthase gene improves cardiac performance in mice. Life Sci 2011; 88:455-64. [PMID: 21219910 DOI: 10.1016/j.lfs.2010.12.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/28/2010] [Accepted: 12/15/2010] [Indexed: 01/01/2023]
Abstract
AIM Intra-myocardial injection of adult bone marrow-derived stem cells (MSC) has recently been proposed as a therapy to repair damaged cardiomyocytes after acute myocardial infarction (AMI). PGI(2) has vasodilatation effects; however, the effects of combining both MSC and PGI(2) therapy on AMI have never been evaluated. MAIN METHODS We genetically enhanced prostaglandin I synthase (PGIS) gene expression in mouse mesenchymal stem cells (MSC) using lentiviral vector transduction (MSC(PGIS)). Mice were subjected to an AMI model and injected (intra-myocardially) with either 5×10(4) MSCs or MSC(PGIS) before surgery. Fourteen days post AMI, mice were analyzed with echocardiography, immunohistochemistry, and apoptotic, and traditional tissue assays. KEY FINDINGS Lenti-PGIS transduction did not change any characteristic of the MSCs. PGIS over-expressed MSCs secreted 6-keto-PGF1α in the culture medium and decreased free radical damage during hypoxia/re-oxygenation and H(2)O(2) treatment. Furthermore, splenocyte proliferation was significantly suppressed with MSC(PGIS) as compared with MSCs alone. Fourteen days post AMI, echocardiography showed more improvement in cardiac function of the MSC(PGIS) group than the MSC alone group, sham-operated group, or artery ligation only group. The histology of MSC(PGIS) treated hearts revealed MSCs in the infarcted region and decreased myocardial fibrosis/apoptosis with limited cardiac remodeling. Furthermore, the level of the vascular endothelial growth factor was elevated in the MSC(PGIS) group as compared to the other three groups. SIGNIFICANCE In summary, our results provide both in vitro and in vivo evidence for the beneficial role of MSC(PGIS) in limiting the process of detrimental cardiac remodeling in a mouse AMI model during early stages of the disease.
Collapse
|