1
|
Kitai Y, Watanabe O, Ohmiya S, Kisu T, Ota R, Kawakami K, Katoh H, Fukuzawa K, Takeda M, Nishimura H. Detailed analysis of low temperature inactivation of respiratory syncytial virus. Sci Rep 2024; 14:11823. [PMID: 38783052 PMCID: PMC11116427 DOI: 10.1038/s41598-024-62658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Our previous findings indicated that many respiratory syncytial virus (RSV) isolates are unstable at 4 °C compared to 20 °C. Some of the strains completely lose infectivity after 24 h at 4 °C. This study analyzed the inactivation process at 4 °C using a representative strain, RSV/Sendai/851/13. After 24 h of storage at 4 °C, the virus was completely inactivated but retained its ability to attach to and to be taken into host cells. It suggested a reduced fusion ability between the viral and cellular membranes. During storage at 4 °C, the RSV fusion (F) protein underwent a conformational change and was no longer recognized by pre-fusion form-specific antibodies. When the RSV/Sendai/851/13 strain was passaged at 4 °C, a variant with an amino acid substitution, I148T, in the F protein fusion peptide was selected. Also, an amino acid change in G protein demonstrating stability at low temperatures was obtained. These results show that the inactivation of RSV at 4 °C is due to the loss of membrane fusion activity in the F protein, which cannot maintain its pre-fusion state at 4 °C.
Collapse
Affiliation(s)
- Yuki Kitai
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan.
| | - Oshi Watanabe
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Suguru Ohmiya
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Tomoko Kisu
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Reiko Ota
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan
| | - Kazuyoshi Kawakami
- Department of Medical Microbiology, Mycology and Immunology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Hiroshi Katoh
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kaori Fukuzawa
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Makoto Takeda
- Department of Microbiology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hidekazu Nishimura
- Virus Research Center, Clinical Research Division, Sendai Medical Center, Sendai, Miyagi, Japan.
| |
Collapse
|
2
|
Huong TN, Lee ZQ, Lai SK, Lee HY, Tan BH, Sugrue RJ. Evidence that an interaction between the respiratory syncytial virus F and G proteins at the distal ends of virus filaments mediates efficient multiple cycle infection. Virology 2024; 591:109985. [PMID: 38227992 DOI: 10.1016/j.virol.2024.109985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Evidence for a stable interaction between the respiratory syncytial virus (RSV) F and G proteins on the surface of virus filaments was provided using antibody immunoprecipitation studies on purified RSV particles, and by the in situ analysis on the surface of RSV-infected cells using the proximity ligation assay. Imaging of the F and G protein distribution on virus filaments suggested that this protein complex was localised at the distal ends of the virus filaments, and suggested that this protein complex played a direct role in mediating efficient localised cell-to-cell virus transmission. G protein expression was required for efficient localised cell-to-cell transmission of RSV in cell monolayers which provided evidence that this protein complex mediates efficient multiple cycle infection. Collectively, these data provide evidence that F and G proteins form a complex on the surface of RSV particles, and that a role for this protein complex in promoting virus transmission is suggested.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Zhi Qi Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Soak Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Hsin Yee Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
3
|
Huong TN, Ravi Iyer L, Lui J, Wang DY, Tan BH, Sugrue RJ. The respiratory syncytial virus SH protein is incorporated into infectious virus particles that form on virus-infected cells. Virology 2023; 580:28-40. [PMID: 36746062 DOI: 10.1016/j.virol.2023.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 12/21/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
The association of the SH protein with respiratory syncytial virus (RSV) particles was examined in HEp2 cells and human ciliated nasal epithelial cells. Imaging of infected cells demonstrated the presence of the SH protein in virus filaments, and analysis of purified RSV particles revealed a SH protein species whose size was consistent with the glycosylated SH protein. Although the SH protein was detected in virus filaments it was not required for virus filament formation. Analysis of RSV-infected ciliated cells also revealed that the SH protein was trafficked into the cilia, and this correlated with reduced cilia density on these cells. Reduced cilia loss was not observed on ciliated cells infected with a RSV isolate that failed to express the SH protein. These data provide direct evidence that the SH protein is trafficked into virus particles, and suggests that the SH protein may also promote cilia dysfunction on nasal epithelial cells.
Collapse
Affiliation(s)
- Tra Nguyen Huong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Laxmi Ravi Iyer
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore
| | - Jing Lui
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Republic of Singapore
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore, 119228, Republic of Singapore
| | - Boon Huan Tan
- Biological Defence Program, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Republic of Singapore; LKC School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Republic of Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Republic of Singapore.
| |
Collapse
|
4
|
McGinnes Cullen L, Luo B, Wen Z, Zhang L, Durr E, Morrison TG. The Respiratory Syncytial Virus (RSV) G Protein Enhances the Immune Responses to the RSV F Protein in an Enveloped Virus-Like Particle Vaccine Candidate. J Virol 2023; 97:e0190022. [PMID: 36602367 PMCID: PMC9888267 DOI: 10.1128/jvi.01900-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a serious human respiratory pathogen, but no RSV vaccine has been licensed. Many vaccine candidates are focused on the viral F protein since the F protein is more conserved than the viral G protein across RSV strains and serotypes; thus, the F protein is thought more likely to induce a broader range of protection from infection. However, it is the G protein that binds the likely receptor, CX3CR1, in lung ciliated epithelial cells, raising the question of the importance of the G protein in vaccine candidates. Using virus-like particle (VLP) vaccine candidates, we have directly compared VLPs containing only the prefusion F protein (pre-F), only the G protein, or both glycoproteins. We report that VLPs containing both glycoproteins bind to anti-F-protein-specific monoclonal antibodies differently than do VLPs containing only the prefusion F protein. In RSV-naive cotton rats, VLPs assembled with only the pre-F protein stimulated extremely weak neutralizing antibody (NAb) titers, as did VLPs assembled with G protein. However, VLPs assembled with both glycoproteins stimulated quite robust neutralizing antibody titers, induced improved protection of the animals from RSV challenge compared to pre-F VLPs, and induced significantly higher levels of antibodies specific for F protein antigenic site 0, site III, and the AM14 binding site than did VLPs containing only the pre-F protein. These results indicate that assembly of pre-F protein with G protein in VLPs further stabilized the prefusion conformation or otherwise altered the conformation of the F protein, increasing the induction of protective antibodies. IMPORTANCE Respiratory syncytial virus (RSV) results in significant disease in infants, young children, and the elderly. Thus, development of an effective vaccine for these populations is a priority. Most ongoing efforts in RSV vaccine development have focused on the viral fusion (F) protein; however, the importance of the inclusion of G in vaccine candidates is unclear. Here, using virus-like particles (VLPs) assembled with only the F protein, only the G protein, or both glycoproteins, we show that VLPs assembled with both glycoproteins are a far superior vaccine in a cotton rat model compared with VLPs containing only F protein or only G protein. The results show that the presence of G protein in the VLPs influences the conformation of the F protein and the immune responses to F protein, resulting in significantly higher neutralizing antibody titers and better protection from RSV challenge. These results suggest that inclusion of G protein in a vaccine candidate may improve its effectiveness.
Collapse
Affiliation(s)
- Lori McGinnes Cullen
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Bin Luo
- Pharmacology, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Zhiyun Wen
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Lan Zhang
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Eberhard Durr
- Infectious Diseases and Vaccines Discovery, Merck & Co., Inc., West Point, Pennsylvania, USA
| | - Trudy G. Morrison
- Department of Microbiology and Physiological Systems, Program in Immunology and Microbiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
5
|
Sugrue RJ, Tan BH. Defining the Assembleome of the Respiratory Syncytial Virus. Subcell Biochem 2023; 106:227-249. [PMID: 38159230 DOI: 10.1007/978-3-031-40086-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
During respiratory syncytial virus (RSV) particle assembly, the mature RSV particles form as filamentous projections on the surface of RSV-infected cells. The RSV assembly process occurs at the / on the cell surface that is modified by a virus infection, involving a combination of several different host cell factors and cellular processes. This induces changes in the lipid composition and properties of these lipid microdomains, and the virus-induced activation of associated Rho GTPase signaling networks drives the remodeling of the underlying filamentous actin (F-actin) cytoskeleton network. The modified sites that form on the surface of the infected cells form the nexus point for RSV assembly, and in this review chapter, they are referred to as the RSV assembleome. This is to distinguish these unique membrane microdomains that are formed during virus infection from the corresponding membrane microdomains that are present at the cell surface prior to infection. In this article, an overview of the current understanding of the processes that drive the formation of the assembleome during RSV particle assembly is given.
Collapse
Affiliation(s)
- Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | - Boon Huan Tan
- LKC School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore
| |
Collapse
|
6
|
Zhuang X, Shen X, Niu W, Kong L. Disulfide-stapled design of α-helical bundles to target the trimer-of-hairpins motif of human respiratory syncytial virus fusion protein. J Mol Graph Model 2021; 108:107984. [PMID: 34311259 DOI: 10.1016/j.jmgm.2021.107984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/27/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022]
Abstract
Human respiratory syncytial virus (RSV) is the major cause of acute lower respiratory tract infections worldwide in infants and young children. The RSV F glycoprotein is a class I fusion protein that mediates viral entry into host cells and is a major target of neutralizing antibodies. Targeting F glycoprotein has been recognized as a promising antiviral therapeutic strategy against RSV infection. Here, we reported the disulfide-stapled design of α-helical bundle to target the trimer-of-hairpins (TOH) motif of RSV F glycoprotein, which is the central regulatory module that triggers viral membrane fusion event. In TOH motif, three N-terminal heptad repeat (NtHR) helices form a trimeric coiled-coil core and other three C-terminal heptad repeat (CtHR) helices add to the core in an antiparallel manner. Interaction analysis between NtHR and CtHR revealed that the C-terminal tail of CtHR packs tightly against NtHR as compared to the N-terminal and middle regions of CtHR. A core binding site in CtHR C-terminus was identified, which represents a 13-mer chp peptide and can effectively interact with NtHR helix in native ordered conformation but would become largely disordered when splitting from the protein context of CtHR helix. Two chp helices were stapled together in a parallel manner with single, double or triple disulfide bridges, thus systematically resulting in seven disulfide-stapled α-helical bundles. Molecular simulations revealed that the double and triple stapling can effectively stabilize the structured conformation of α-helical bundles, whereas the free conformation of single-stapled bundles still remain intrinsically disordered in solvent. The double-stapled bundle chp-ds[508,516] and the triple-stapled bundle chp-ts[508,512,516] were rationally designed to have high potency; they can form a tight three-helix bundle with NtHR helix, thus potently targeting NtHR-CtHR interactions involved in RSV-F TOH motif through a competitive disruption mechanism.
Collapse
Affiliation(s)
- Xinrong Zhuang
- Department of Internal Medicine, Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Xuefeng Shen
- Department of Internal Medicine, Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Wensi Niu
- Department of Internal Medicine, Children's Hospital of Wujiang District, Suzhou 215200, China
| | - Lingjun Kong
- Department of Internal Medicine, Children's Hospital of Wujiang District, Suzhou 215200, China.
| |
Collapse
|
7
|
Liu Q, Zhou J, Gao J, Zhang X, Yang J, Hu C, Chu W, Yao M. Targeting the membrane fusion event of human respiratory syncytial virus with rationally designed α-helical hairpin traps. Life Sci 2021; 280:119695. [PMID: 34111463 DOI: 10.1016/j.lfs.2021.119695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022]
Abstract
AIMS Rational design of protein scaffolds with specific biological functions/activities has attracted much attention over the past decades. In the present study, we systematically examine the trimer-of-hairpins (TOH) motif of human respiratory syncytial virus (RSV) F protein, which plays a central role in viral membrane fusion and is a coiled-coil six-helix bundle formed by the antiparallel intermolecular interaction between three N-terminal heptad-repeat (HRN) helices and three C-terminal heptad-repeat (HRC) helices. MAIN METHODS A rational strategy that integrates dynamics simulation, thermodynamics calculation, fluorescence polarization and circular dichroism is proposed to design HRC-targeted α-helical hairpin traps based on the crystal template of HRN core. KEY FINDINGS The designed hairpin traps possess a typical helix-turn-helix scaffold that can be stabilized by stapling a disulfide bridge across its helical arms, which are highly structured (helicity >60%) and can mimic the native spatial arrangement of HRN helices in TOH motif to trap the hotspot sites of HRC with effective affinity (Kd is up to 6.4 μM). SIGNIFICANCE The designed α-helical hairpin traps can be used as lead entities for further developing TOH-disrupting agents to target RSV membrane fusion event and the proposed rational design strategy can be readily modified to apply for other type I viruses.
Collapse
Affiliation(s)
- Qiuhong Liu
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinqiao Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing Gao
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Xiaoqin Zhang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China.
| | - Jingrui Yang
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Chunling Hu
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weili Chu
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mengying Yao
- Department of Respiratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
8
|
Ravi LI, Tan TJ, Tan BH, Sugrue RJ. Virus-induced activation of the rac1 protein at the site of respiratory syncytial virus assembly is a requirement for virus particle assembly on infected cells. Virology 2021; 557:86-99. [PMID: 33677389 DOI: 10.1016/j.virol.2021.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
The distributions of the rac1, rhoA and cdc42 proteins in respiratory syncytial virus (RSV) infected cells was examined. All three rhoGTPases were detected within inclusion bodies, and while the rhoA and rac1 proteins were associated with virus filaments, only the rac1 protein was localised throughout the virus filaments. RSV infection led to increased rac1 protein activation, and using the rac1 protein inhibitor NS23766 we provided evidence that the increased rac1 activation occurred at the site of RSV assembly and facilitated F-actin remodeling during virus morphogenesis. A non-infectious virus-like particle (VLP) assay showed that the RSV VLPs formed in lipid-raft microdomains containing the rac1 protein, together with F-actin and filamin-1 (cell proteins associated with virus filaments). This provided evidence that the virus envelope proteins are trafficked to membrane microdomains containing the rac1 protein. Collectively, these data provide evidence that the rac1 protein plays a direct role in the RSV assembly process.
Collapse
Affiliation(s)
- Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Timothy J Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Boon Huan Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Defense Medical and Environment Research Institute, DSO National Laboratories, 27 Medical Drive, 117510, Singapore; Infection and Immunity, Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore.
| |
Collapse
|
9
|
Host Retromer Protein Sorting Nexin 2 Interacts with Human Respiratory Syncytial Virus Structural Proteins and is Required for Efficient Viral Production. mBio 2020; 11:mBio.01869-20. [PMID: 32994321 PMCID: PMC7527724 DOI: 10.1128/mbio.01869-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The present study contributes new knowledge to understand HRSV assembly by providing evidence that nonglycosylated structural proteins M and N interact with elements of the secretory pathway, shedding light on their intracellular traffic. To the best of our knowledge, the present contribution is important given the scarcity of studies about the traffic of HRSV nonglycosylated proteins, especially by pointing to the involvement of SNX2, a retromer component, in the HRSV assembly process. Human respiratory syncytial virus (HRSV) envelope glycoproteins traffic to assembly sites through the secretory pathway, while nonglycosylated proteins M and N are present in HRSV inclusion bodies but must reach the plasma membrane, where HRSV assembly happens. Little is known about how nonglycosylated HRSV proteins reach assembly sites. Here, we show that HRSV M and N proteins partially colocalize with the Golgi marker giantin, and the glycosylated F and nonglycosylated N proteins are closely located in the trans-Golgi, suggesting their interaction in that compartment. Brefeldin A compromised the trafficking of HRSV F and N proteins and inclusion body sizes, indicating that the Golgi is important for both glycosylated and nonglycosylated HRSV protein traffic. HRSV N and M proteins colocalized and interacted with sorting nexin 2 (SNX2), a retromer component that shapes endosomes in tubular structures. Glycosylated F and nonglycosylated N HRSV proteins are detected in SNX2-laden aggregates with intracellular filaments projecting from their outer surfaces, and VPS26, another retromer component, was also found in inclusion bodies and filament-shaped structures. Similar to SNX2, TGN46 also colocalized with HRSV M and N proteins in filamentous structures at the plasma membrane. Cell fractionation showed enrichment of SNX2 in fractions containing HRSV M and N proteins. Silencing of SNX1 and 2 was associated with reduction in viral proteins, HRSV inclusion body size, syncytium formation, and progeny production. The results indicate that HRSV structural proteins M and N are in the secretory pathway, and SNX2 plays an important role in the traffic of HRSV structural proteins toward assembly sites.
Collapse
|
10
|
Preugschas HF, Hrincius ER, Mewis C, Tran GVQ, Ludwig S, Ehrhardt C. Late activation of the Raf/MEK/ERK pathway is required for translocation of the respiratory syncytial virus F protein to the plasma membrane and efficient viral replication. Cell Microbiol 2018; 21:e12955. [PMID: 30223301 DOI: 10.1111/cmi.12955] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/14/2022]
Abstract
Activation of the Raf/MEK/ERK cascade is required for efficient propagation of several RNA and DNA viruses, including human respiratory syncytial virus (RSV). In RSV infection, activation of the Raf/MEK/ERK cascade is biphasic. An early induction within minutes after infection is associated with viral attachment. Subsequently, a second activation occurs with, so far, unknown function in the viral life cycle. In this study, we aimed to characterise the role of Raf/MEK/ERK-mediated signalling during ongoing RSV infection. Our data show that inhibition of the kinase MEK after the virus has been internalised results in a reduction of viral titers. Further functional investigations revealed that the late-stage activation of ERK is required for a specific step in RSV replication, namely, the secretory transport of the RSV fusion protein F. Thus, MEK inhibition resulted in impaired surface accumulation of the F protein. F protein surface expression is essential for efficient replication as it is involved in viral filament formation, cell fusion, and viral transmission. In summary, we provide detailed insights of how host cell signalling interferes with RSV replication and identified the Raf/MEK/ERK kinase cascade as potential target for novel anti-RSV strategies.
Collapse
Affiliation(s)
- Hannah F Preugschas
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Eike R Hrincius
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Carolin Mewis
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany
| | - Giao V Q Tran
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,The Graduate School of the Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany
| | - Christina Ehrhardt
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University (WWU) Muenster, Muenster, Germany.,Cluster of Excellence "Cells-in-Motion" (EXC 1003-CiM), WWU Muenster, Muenster, Germany.,Interdisciplinary Center of Clinical Research (IZKF), WWU Muenster, Muenster, Germany.,Section for Experimental Virology, Institute of Medical Microbiology, Jena University Hospital, Jena, Germany
| |
Collapse
|
11
|
Rational Design of the Minimal Requirement for Helix–Helix Peptide Interactions in the Trimer-of-Hairpins Motif of Pediatric Pneumonia RSV Fusion Glycoprotein. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9756-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Abstract
Viroporins are short polypeptides encoded by viruses. These small membrane proteins assemble into oligomers that can permeabilize cellular lipid bilayers, disrupting the physiology of the host to the advantage of the virus. Consequently, efforts during the last few decades have been focused towards the discovery of viroporin channel inhibitors, but in general these have not been successful to produce licensed drugs. Viroporins are also involved in viral pathogenesis by engaging in critical interactions with viral proteins, or disrupting normal host cellular pathways through coordinated interactions with host proteins. These protein-protein interactions (PPIs) may become alternative attractive drug targets for the development of antivirals. In this sense, while thus far most antiviral molecules have targeted viral proteins, focus is moving towards targeting host proteins that are essential for virus replication. In principle, this largely would overcome the problem of resistance, with the possibility of using repositioned existing drugs. The precise role of these PPIs, their strain- and host- specificities, and the structural determination of the complexes involved, are areas that will keep the fields of virology and structural biology occupied for years to come. In the present review, we provide an update of the efforts in the characterization of the main PPIs for most viroporins, as well as the role of viroporins in these PPIs interactions.
Collapse
Affiliation(s)
| | - David Bhella
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| |
Collapse
|
13
|
Krivitskaya VZ, Sintsova KS, Petrova ER, Sverlova MV, Sorokin EV, Tsareva TR, Komissarov AB, Fadeev AV, Pisareva MM, Buzitskaya ZV, Afanaseva VS, Sukhovetskaya VF, Sominina AA. GENETIC AND ANTIGENIC CHARACTERISTICS OF RESPIRATORY SYNCYTIAL VIRUS STRAINS ISOLATED IN ST. PETERSBURG IN 2013-2016. Vopr Virusol 2017; 62:273-282. [PMID: 36494959 DOI: 10.18821/0507-4088-2017-62-6-273-282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Antigenic and genetic characteristics of Russian RSV isolates are presented for the first time. Of the 69 strains isolated in St. Petersburg, 93% belonged to the RSV-A antigenic group. The antigenic variations in the F-protein RSV were analyzed using a panel from 6 monoclonal antibodies by the method of micro-cultural ELISA. Depending on the decrease in the effectiveness of interaction with monoclonal antibodies (relative to the reference strain Long), RSV-A isolates were divided into 4 antigenic subgroups. The results of 24 isolates sequencing showed that more than 60% of them had substitutions in significant F-protein sites compared to the ON67-1210A reference strain of the current RSV genotype ON1/GA2. The most variable were the signal peptide and antigenic site II. When comparing the results of ELISA and sequencing, it was not possible to identify any specific key substitutions in the amino acid sequence of the F-protein that affect the interaction of the virus with antibodies. The nucleotide sequence of the F-gene from 19 of the 24 characterized isolates was close to that of ON67-1210A reference virus and was significantly different from RSV-A Long and A2 viruses. A separate group consisted of 5 strains, in which the F-protein structure was approximated to RSV Long.
Collapse
|
14
|
RSV glycoprotein and genomic RNA dynamics reveal filament assembly prior to the plasma membrane. Nat Commun 2017; 8:667. [PMID: 28939853 PMCID: PMC5610308 DOI: 10.1038/s41467-017-00732-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 07/20/2017] [Indexed: 11/25/2022] Open
Abstract
The human respiratory syncytial virus G protein plays an important role in the entry and assembly of filamentous virions. Here, we report the use of fluorescently labeled soybean agglutinin to selectively label the respiratory syncytial virus G protein in living cells without disrupting respiratory syncytial virus infectivity or filament formation and allowing for interrogations of respiratory syncytial virus virion assembly. Using this approach, we discovered that plasma membrane-bound respiratory syncytial virus G rapidly recycles from the membrane via clathrin-mediated endocytosis. This event is then followed by the dynamic formation of filamentous and branched respiratory syncytial virus particles, and assembly with genomic ribonucleoproteins and caveolae-associated vesicles prior to re-insertion into the plasma membrane. We demonstrate that these processes are halted by the disruption of microtubules and inhibition of molecular motors. Collectively, our results show that for respiratory syncytial virus assembly, viral filaments are produced and loaded with genomic RNA prior to insertion into the plasma membrane. Assembly of filamentous RSV particles is incompletely understood due to a lack of techniques suitable for live-cell imaging. Here Vanover et al. use labeled soybean agglutinin to selectively label RSV G protein and show how filamentous RSV assembly, initiated in the cytoplasm, uses G protein recycled from the plasma membrane.
Collapse
|
15
|
Ludwig A, Nguyen TH, Leong D, Ravi LI, Tan BH, Sandin S, Sugrue RJ. Caveolae provide a specialized membrane environment for respiratory syncytial virus assembly. J Cell Sci 2017; 130:1037-1050. [PMID: 28154158 PMCID: PMC5358342 DOI: 10.1242/jcs.198853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/26/2017] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is an enveloped virus that assembles into filamentous virus particles on the surface of infected cells. Morphogenesis of RSV is dependent upon cholesterol-rich (lipid raft) membrane microdomains, but the specific role of individual raft molecules in RSV assembly is not well defined. Here, we show that RSV morphogenesis occurs within caveolar membranes and that both caveolin-1 and cavin-1 (also known as PTRF), the two major structural and functional components of caveolae, are actively recruited to and incorporated into the RSV envelope. The recruitment of caveolae occurred just prior to the initiation of RSV filament assembly, and was dependent upon an intact actin network as well as a direct physical interaction between caveolin-1 and the viral G protein. Moreover, cavin-1 protein levels were significantly increased in RSV-infected cells, leading to a virus-induced change in the stoichiometry and biophysical properties of the caveolar coat complex. Our data indicate that RSV exploits caveolae for its assembly, and we propose that the incorporation of caveolae into the virus contributes to defining the biological properties of the RSV envelope.
Collapse
Affiliation(s)
- Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Tra Huong Nguyen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Daniel Leong
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510
| | - Laxmi Iyer Ravi
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore 117510
| | - Sara Sandin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Richard J Sugrue
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| |
Collapse
|
16
|
Expression and antigenicity of recombinant human respiratory syncytial virus glycoproteins having different affinity tags. Protein Expr Purif 2016; 132:1-8. [PMID: 28042093 DOI: 10.1016/j.pep.2016.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 11/21/2022]
Abstract
Human respiratory syncytial virus (HRSV) is a main cause of lower respiratory tract infections in infants and the elderly. Glycoprotein (G) is major antigen on the viral surface, and plays a key role for virus entry. Therefore, purification of the glycoprotein of HRSV is critical for the development of HRSV vaccine and serological diagnosis. In this study, we report the design and characterization of glycoprotein engineered rationally to enhance the protein solubility and to facilitate efficient purification. We permuted HRSV glycoproteins with two tags: (i) an immunoglobulin (Ig) M signal peptide and a protein A B domain tag to render HRSV glycoprotein secret into the culture media and (ii) a foldon and 6 × histidine tag with or without transmembrane domain. Three recombinant baculoviruses were constructed: (i) transmembrane-truncated HRSV glycoprotein (amino acid positions 66-298) inserted with the N-terminal IgM signal peptide and protein A B domain (MG-GΔTM), (ii) truncated HRSV glycoprotein (amino acid positions 66-298) fused with a C-terminal foldon and 6 × histidine tag (GΔTM-FH), and (iii) full-length HRSV glycoprotein (amino acid positions 1-298) fused with a C-terminal foldon and 6 × histidine tag (G-FH). Highly soluble recombinant MG-GΔTM protein was clearly purified using one-step affinity chromatography with IgG-sepharose resin, whereas the recombinant G-FH protein and truncated GΔTM-FH were purified partially using nickel-resin. Although, the antigenicity of GΔTM-FH was stronger than highly mannose-rich MG-GΔTM protein, MG-GΔTM induced neutralizing antibodies efficiently in the mice to protect from infectious HRSV.
Collapse
|
17
|
Bohmwald K, Espinoza JA, Rey-Jurado E, Gómez RS, González PA, Bueno SM, Riedel CA, Kalergis AM. Human Respiratory Syncytial Virus: Infection and Pathology. Semin Respir Crit Care Med 2016; 37:522-37. [PMID: 27486734 PMCID: PMC7171722 DOI: 10.1055/s-0036-1584799] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The human respiratory syncytial virus (hRSV) is by far the major cause of acute lower respiratory tract infections (ALRTIs) worldwide in infants and children younger than 2 years. The overwhelming number of hospitalizations due to hRSV-induced ALRTI each year is due, at least in part, to the lack of licensed vaccines against this virus. Thus, hRSV infection is considered a major public health problem and economic burden in most countries. The lung pathology developed in hRSV-infected individuals is characterized by an exacerbated proinflammatory and unbalanced Th2-type immune response. In addition to the adverse effects in airway tissues, hRSV infection can also cause neurologic manifestations in the host, such as seizures and encephalopathy. Although the origins of these extrapulmonary symptoms remain unclear, studies with patients suffering from neurological alterations suggest an involvement of the inflammatory response against hRSV. Furthermore, hRSV has evolved numerous mechanisms to modulate and evade the immune response in the host. Several studies have focused on elucidating the interactions between hRSV virulence factors and the host immune system, to rationally design new vaccines and therapies against this virus. Here, we discuss about the infection, pathology, and immune response triggered by hRSV in the host.
Collapse
Affiliation(s)
- Karen Bohmwald
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janyra A Espinoza
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Emma Rey-Jurado
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto S Gómez
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A Riedel
- Departamento de Ciencias Biológicas y Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andrés Bello, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
18
|
Abstract
Since the discovery that certain small viral membrane proteins, collectively termed as viroporins, can permeabilize host cellular membranes and also behave as ion channels, attempts have been made to link this feature to specific biological roles. In parallel, most viroporins identified so far are virulence factors, and interest has focused toward the discovery of channel inhibitors that would have a therapeutic effect, or be used as research tools to understand the biological roles of viroporin ion channel activity. However, this paradigm is being shifted by the difficulties inherent to small viral membrane proteins, and by the realization that protein-protein interactions and other diverse roles in the virus life cycle may represent an equal, if not, more important target. Therefore, although targeting the channel activity of viroporins can probably be therapeutically useful in some cases, the focus may shift to their other functions in following years. Small-molecule inhibitors have been mostly developed against the influenza A M2 (IAV M2 or AM2). This is not surprising since AM2 is the best characterized viroporin to date, with a well-established biological role in viral pathogenesis combined the most extensive structural investigations conducted, and has emerged as a validated drug target. For other viroporins, these studies are still mostly in their infancy, and together with those for AM2, are the subject of the present review.
Collapse
|
19
|
Morphogenesis of respiratory syncytial virus in human primary nasal ciliated epithelial cells occurs at surface membrane microdomains that are distinct from cilia. Virology 2015; 484:395-411. [DOI: 10.1016/j.virol.2015.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 05/12/2015] [Accepted: 05/19/2015] [Indexed: 11/21/2022]
|
20
|
Partial Attenuation of Respiratory Syncytial Virus with a Deletion of a Small Hydrophobic Gene Is Associated with Elevated Interleukin-1β Responses. J Virol 2015; 89:8974-81. [PMID: 26085154 DOI: 10.1128/jvi.01070-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/09/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The small hydrophobic (SH) gene of respiratory syncytial virus (RSV), a major cause of infant hospitalization, encodes a viroporin of unknown function. SH gene knockout virus (RSV ΔSH) is partially attenuated in vivo, but not in vitro, suggesting that the SH protein may have an immunomodulatory role. RSV ΔSH has been tested as a live attenuated vaccine in humans and cattle, and here we demonstrate that it protected against viral rechallenge in mice. We compared the immune response to infection with RSV wild type and RSV ΔSH in vivo using BALB/c mice and in vitro using epithelial cells, neutrophils, and macrophages. Strikingly, the interleukin-1β (IL-1β) response to RSV ΔSH infection was greater than to wild-type RSV, in spite of a decreased viral load, and when IL-1β was blocked in vivo, the viral load returned to wild-type levels. A significantly greater IL-1β response to RSV ΔSH was also detected in vitro, with higher-magnitude responses in neutrophils and macrophages than in epithelial cells. Depleting macrophages (with clodronate liposome) and neutrophils (with anti-Ly6G/1A8) demonstrated the contribution of these cells to the IL-1β response in vivo, the first demonstration of neutrophilic IL-1β production in response to viral lung infection. In this study, we describe an increased IL-1β response to RSV ΔSH, which may explain the attenuation in vivo and supports targeting the SH gene in live attenuated vaccines. IMPORTANCE There is a pressing need for a vaccine for respiratory syncytial virus (RSV). A number of live attenuated RSV vaccine strains have been developed in which the small hydrophobic (SH) gene has been deleted, even though the function of the SH protein is unknown. The structure of the SH protein has recently been solved, showing it is a pore-forming protein (viroporin). Here, we demonstrate that the IL-1β response to RSV ΔSH is greater in spite of a lower viral load, which contributes to the attenuation in vivo. This potentially suggests a novel method by which viruses can evade the host response. As all Pneumovirinae and some Paramyxovirinae carry similar SH genes, this new understanding may also enable the development of live attenuated vaccines for both RSV and other members of the Paramyxoviridae.
Collapse
|
21
|
Torres J, Surya W, Li Y, Liu DX. Protein-Protein Interactions of Viroporins in Coronaviruses and Paramyxoviruses: New Targets for Antivirals? Viruses 2015; 7:2858-83. [PMID: 26053927 PMCID: PMC4488717 DOI: 10.3390/v7062750] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/21/2015] [Accepted: 05/28/2015] [Indexed: 12/13/2022] Open
Abstract
Viroporins are members of a rapidly growing family of channel-forming small polypeptides found in viruses. The present review will be focused on recent structural and protein-protein interaction information involving two viroporins found in enveloped viruses that target the respiratory tract; (i) the envelope protein in coronaviruses and (ii) the small hydrophobic protein in paramyxoviruses. Deletion of these two viroporins leads to viral attenuation in vivo, whereas data from cell culture shows involvement in the regulation of stress and inflammation. The channel activity and structure of some representative members of these viroporins have been recently characterized in some detail. In addition, searches for protein-protein interactions using yeast-two hybrid techniques have shed light on possible functional roles for their exposed cytoplasmic domains. A deeper analysis of these interactions should not only provide a more complete overview of the multiple functions of these viroporins, but also suggest novel strategies that target protein-protein interactions as much needed antivirals. These should complement current efforts to block viroporin channel activity.
Collapse
Affiliation(s)
- Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Yan Li
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Ding Xiang Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
22
|
Jumat MR, Huong TN, Ravi LI, Stanford R, Tan BH, Sugrue RJ. Viperin protein expression inhibits the late stage of respiratory syncytial virus morphogenesis. Antiviral Res 2015; 114:11-20. [DOI: 10.1016/j.antiviral.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 11/05/2014] [Accepted: 11/18/2014] [Indexed: 01/13/2023]
|
23
|
Jumat MR, Nguyen Huong T, Wong P, Loo LH, Tan BH, Fenwick F, Toms GL, Sugrue RJ. Imaging analysis of human metapneumovirus-infected cells provides evidence for the involvement of F-actin and the raft-lipid microdomains in virus morphogenesis. Virol J 2014; 11:198. [PMID: 25408253 PMCID: PMC4243936 DOI: 10.1186/s12985-014-0198-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 11/05/2014] [Indexed: 11/13/2022] Open
Abstract
Backgound Due to difficulties of culturing Human metapneumovirus (HMPV) much of the current understanding of HMPV replication can be inferred from other closely related viruses. The slow rates of virus replication prevent many biochemical analyses of HMPV particles. In this study imaging was used to examine the process of HMPV morphogenesis in individually infected LLC-MK2 cells, and to better characterise the sites of HMPV assembly. This strategy has circumvented the problems associated with slow replication rates and allowed us to characterise both the HMPV particles and the sites of HMPV morphogenesis. Methods HMPV-infected LLC-MK2 cells were stained with antibodies that recognised the HMPV fusion protein (F protein), attachment protein (G protein) and matrix protein (M protein), and fluorescent probes that detect GM1 within lipid-raft membranes (CTX-B-AF488) and F-actin (Phalloidin-FITC). The stained cells were examined by confocal microscopy, which allowed imaging of F-actin, GM1 and virus particles in HMPV-infected cells. Cells co-expressing recombinant HMPV G and F proteins formed virus-like particles and were co-stained with antibodies that recognise the recombinant G and F proteins and phalloidin-FITC and CTX-B-AF594, and the distribution of the G and F proteins, GM1 and F-actin determined. Results HMPV-infected cells stained with anti-F, anti-G or anti-M revealed a filamentous staining pattern, indicating that the HMPV particles have a filamentous morphology. Staining of HMPV-infected cells with anti-G and either phalloidin-FITC or CTX-B-AF488 exhibited extensive co-localisation of these cellular probes within the HMPV filaments. This suggested that lipid-raft membrane domains and F-actin structures are present at the site of the virus morphogenesis, and are subsequently incorporated into the HMPV filaments. Furthermore, the filamentous virus-like particles that form in cells expressing the G protein formed in cellular structures containing GM1 and F-actin, suggesting the G protein contains intrinsic targeting signals to the sites of virus assembly. Conclusions These data suggest that HMPV matures as filamentous particles and that virus morphogenesis occurs within lipid-raft microdomains containing localized concentrations of F-actin. The similarity between HMPV morphogenesis and the closely related human respiratory syncytial virus suggests that involvement of F-actin and lipid-raft microdomains in virus morphogenesis may be a common feature of the Pneumovirinae. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0198-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muhammad Raihan Jumat
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Nanyang, 637551, Republic of Singapore.
| | - Tra Nguyen Huong
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Nanyang, 637551, Republic of Singapore.
| | - Puisan Wong
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Republic of Singapore.
| | - Liat Hui Loo
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Nanyang, 637551, Republic of Singapore.
| | - Boon Huan Tan
- Detection and Diagnostics Laboratory, DSO National Laboratories, 27 Medical Drive, Singapore, 117510, Republic of Singapore.
| | - Fiona Fenwick
- School of Clinical Medical Sciences, The University of Newcastle, Newcastle upon Tyne, NE24HH, UK.
| | - Geoffrey L Toms
- School of Clinical Medical Sciences, The University of Newcastle, Newcastle upon Tyne, NE24HH, UK.
| | - Richard J Sugrue
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Nanyang, 637551, Republic of Singapore.
| |
Collapse
|
24
|
Abstract
Human metapneumovirus is a major cause of respiratory tract infections worldwide. Previous reports have shown that the viral attachment glycoprotein (G) modulates innate and adaptive immune responses, leading to incomplete immunity and promoting reinfection. Using bioinformatics analyses, static light scattering, and small-angle X-ray scattering, we show that the extracellular region of G behaves as a heavily glycosylated, intrinsically disordered polymer. We discuss potential implications of these findings for the modulation of immune responses by G.
Collapse
|
25
|
Tiwari PM, Eroglu E, Boyoglu-Barnum S, He Q, Willing GA, Vig K, Dennis VA, Singh SR. Atomic force microscopic investigation of respiratory syncytial virus infection in HEp-2 cells. J Microsc 2013; 253:31-41. [PMID: 24251370 DOI: 10.1111/jmi.12095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/07/2013] [Indexed: 01/14/2023]
Abstract
Respiratory syncytial virus (RSV) primarily causes bronchiolitis and pneumonia in infants. In spite of intense research, no safe and effective vaccine has been developed yet. For understanding its pathogenesis and development of anti-RSV drugs/therapeutics, it is indispensable to study the RSV-host interaction. Although, there are limited studies using electron microscopy to elucidate the infection process of RSV, to our knowledge, no study has reported the morphological impact of RSV infection using atomic force microscopy. We report the cytoplasmic and nuclear changes in human epidermoid cell line type 2 using atomic force microscopy. Human epidermoid cell line type 2 cells, grown on cover slips, were infected with RSV and fixed after various time periods, processed and observed for morphological changes using atomic force microscopy. RSV infected cells showed loss of membrane integrity, with degeneration in the cellular content and cytoskeleton. Nuclear membrane was disintegrated and nuclear volume was decreased. The chromatin of the RSV infected cells was condensed, progressing towards degeneration via pyknosis and apoptosis. Membrane protrusions of ~150-200 nm diameter were observed on RSV infected cells after 6 h, suggestive of prospective RSV budding sites. To our knowledge, this is the first study of RSV infection process using atomic force microscopy. Such morphological studies could help explore viral infection process aiding the development of anti-RSV therapies.
Collapse
Affiliation(s)
- P M Tiwari
- Center for NanoBiotechnology Research, Alabama State University, Montgomery, Alabama 36101, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Boyoglu-Barnum S, Gaston KA, Todd SO, Boyoglu C, Chirkova T, Barnum TR, Jorquera P, Haynes LM, Tripp RA, Moore ML, Anderson LJ. A respiratory syncytial virus (RSV) anti-G protein F(ab')2 monoclonal antibody suppresses mucous production and breathing effort in RSV rA2-line19F-infected BALB/c mice. J Virol 2013; 87:10955-67. [PMID: 23885067 PMCID: PMC3807296 DOI: 10.1128/jvi.01164-13] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/12/2013] [Indexed: 12/27/2022] Open
Abstract
Respiratory syncytial virus (RSV) belongs to the family Paramyxoviridae and is the single most important cause of serious lower respiratory tract infections in young children, yet no highly effective treatment or vaccine is available. Increased airway resistance and increased airway mucin production are two manifestations of RSV infection in children. RSV rA2-line19F infection induces pulmonary mucous production and increased breathing effort in BALB/c mice and provides a way to assess these manifestations of RSV disease in an animal model. In the present study, we investigated the effect of prophylactic treatment with the F(ab')2 form of the anti-G protein monoclonal antibody (MAb) 131-2G on disease in RSV rA2-line19F-challenged mice. F(ab')2 131-2G does not affect virus replication. It and the intact form that does decrease virus replication prevented increased breathing effort and airway mucin production, as well as weight loss, pulmonary inflammatory-cell infiltration, and the pulmonary substance P and pulmonary Th2 cytokine levels that occur in mice challenged with this virus. These data suggest that the RSV G protein contributes to prominent manifestations of RSV disease and that MAb 131-2G can prevent these manifestations of RSV disease without inhibiting virus infection.
Collapse
Affiliation(s)
- Seyhan Boyoglu-Barnum
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Kelsey A. Gaston
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Sean O. Todd
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Cemil Boyoglu
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Tatiana Chirkova
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Thomas R. Barnum
- University of Georgia Odum School of Ecology, Athens, Georgia, USA
| | - Patricia Jorquera
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Lia M. Haynes
- Division of Viral Diseases, NCIRD, CDC, Atlanta, Georgia, USA
| | - Ralph A. Tripp
- University of Georgia Department of Infectious Diseases, Animal Health Research Center, Athens, Georgia, USA
| | - Martin L. Moore
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Larry J. Anderson
- Emory University Department of Pediatrics and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Loo LH, Jumat MR, Fu Y, Ayi TC, Wong PS, Tee NWS, Tan BH, Sugrue RJ. Evidence for the interaction of the human metapneumovirus G and F proteins during virus-like particle formation. Virol J 2013; 10:294. [PMID: 24067107 PMCID: PMC3849350 DOI: 10.1186/1743-422x-10-294] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/26/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human metapneumovirus (HMPV) is now a major cause of lower respiratory infection in children. Although primary isolation of HMPV has been achieved in several different cell lines, the low level of virus replication and the subsequent recovery of low levels of infectious HMPV have hampered biochemical studies on the virus. These experimental methodologies usually require higher levels of biological material that can be achieved following HMPV infection. In this study we demonstrate that expression of the HMPV F, G and M proteins in mammalian cells leads to HMPV virus-like particles (VLP) formation. This experimental strategy will serve as a model system to allow the process of HMPV virus assembly to be examined. METHODS The HMPV F, G and M proteins were expressed in mammalian cell lines. Protein cross-linking studies, sucrose gradient centrifugation and in situ imaging was used to examine interactions between the virus proteins. VLP formation was examined using sucrose density gradient centrifugation and electron microscopy analysis. RESULTS Analysis of cells co-expressing the F, G and M proteins demonstrated that these proteins interacted. Furthermore, in cells co-expression the three HMPV proteins the formation VLPs was observed. Image analysis revealed the VLPs had a similar morphology to the filamentous virus morphology that we observed on HMPV-infected cells. The capacity of each protein to initiate VLP formation was examined using a VLP formation assay. Individual expression of each virus protein showed that the G protein was able to form VLPs in the absence of the other virus proteins. Furthermore, co-expression of the G protein with either the M or F proteins facilitated their incorporation into the VLP fraction. CONCLUSION Co-expression of the F, G and M proteins leads to the formation of VLPs, and that incorporation of the F and M proteins into VLPs is facilitated by their interaction with the G protein. Our data suggests that the G protein plays a central role in VLP formation, and further suggests that the G protein may also play a role in the recruitment of the F and M proteins to sites of virus particle formation during HMPV infection.
Collapse
Affiliation(s)
- Liat Hui Loo
- Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Increased hydroxymethylglutaryl coenzyme A reductase activity during respiratory syncytial virus infection mediates actin dependent inter-cellular virus transmission. Antiviral Res 2013; 100:259-68. [PMID: 23994498 DOI: 10.1016/j.antiviral.2013.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/26/2013] [Accepted: 08/19/2013] [Indexed: 01/26/2023]
Abstract
We have examined the role that hydroxymethylglutaryl coenzyme A reductase (HMGCR) plays during respiratory syncytial virus (RSV) maturation. Imaging analysis indicated that virus-induced changes in F-actin structure correlated with the formation of virus filaments, and that these virus filaments played a direct role in virus cell-to-cell transmission. Treatment with cytochalasin D (CYD) prevented virus filament formation and virus transmission, but this could be reversed by removal of CYD. This observation, together with the presence of F-actin within the virus filaments suggested that newly polymerised F-actin was required for virus transmission. The virus-induced change in F-actin was inhibited by the HMGCR inhibitor lovastatin, and this correlated with the inhibition of both virus filament formation and the incorporation of F-actin in these virus structures. Furthermore, this inhibitory effect on virus filament formation correlated with a significant reduction in RSV transmission. Collectively these data suggested that HMGCR-mediated changes in F-actin structure play an important role in the inter-cellular transmission of mature RSV particles. These data also highlighted the interplay between cellular metabolism and RSV transmission, and demonstrate that this interaction can be targeted using anti-virus strategies.
Collapse
|
29
|
The respiratory syncytial virus fusion protein and neutrophils mediate the airway mucin response to pathogenic respiratory syncytial virus infection. J Virol 2013; 87:10070-82. [PMID: 23843644 DOI: 10.1128/jvi.01347-13] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of death due to a viral etiology in infants. RSV disease is characterized by epithelial desquamation, neutrophilic bronchiolitis and pneumonia, and obstructive pulmonary mucus. It has been shown that infection of BALB/cJ mice with RSV clinical isolate A2001/2-20 (2-20) results in a higher early viral load, greater airway necrosis, and higher levels of interleukin-13 (IL-13) and airway mucin expression than infection with RSV laboratory strain A2. We hypothesized that the fusion (F) protein of RSV 2-20 is a mucus-inducing viral factor. In vitro, the fusion activity of 2-20 F but not that of A2 F was enhanced by expression of RSV G. We generated a recombinant F-chimeric RSV by replacing the F gene of A2 with the F gene of 2-20, generating A2-2-20F. Similar to the results obtained with the parent 2-20 strain, infection of BALB/cJ mice with A2-2-20F resulted in a higher early viral load and higher levels of subsequent pulmonary mucin expression than infection with the A2 strain. A2-2-20F infection induced greater necrotic airway damage and neutrophil infiltration than A2 infection. We hypothesized that the neutrophil response to A2-2-20F infection is involved in mucin expression. Antibody-mediated depletion of neutrophils in RSV-infected mice resulted in lower tumor necrosis factor alpha levels, fewer IL-13-expressing CD4 T cells, and less airway mucin production in the lung. Our data are consistent with a model in which the F and attachment (G) glycoprotein functional interaction leads to enhanced fusion and F is a key factor in airway epithelium infection, pathogenesis, and subsequent airway mucin expression.
Collapse
|
30
|
Shaikh FY, Crowe JE. Molecular mechanisms driving respiratory syncytial virus assembly. Future Microbiol 2013; 8:123-31. [PMID: 23252497 DOI: 10.2217/fmb.12.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Respiratory syncytial virus is a single-stranded RNA virus in the Paramyxoviridae family that preferentially assembles and buds from the apical surface of polarized epithelial cells, forming filamentous structures that contain both viral proteins and the genomic RNA. Recent studies have described both viral and host factors that are involved in ribonucleoprotein assembly and trafficking of viral proteins to the cell surface. At the cell surface, viral proteins assemble into filaments that probably require interactions between viral proteins, host proteins and the cell membrane. Finally, a membrane scission event must occur to release the free virion. This article will review the recent literature describing the mechanisms that drive respiratory syncytial virus assembly and budding.
Collapse
Affiliation(s)
- Fyza Y Shaikh
- Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | |
Collapse
|
31
|
Lovastatin treatment mitigates the pro-inflammatory cytokine response in respiratory syncytial virus infected macrophage cells. Antiviral Res 2013; 98:332-43. [PMID: 23523944 DOI: 10.1016/j.antiviral.2013.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 03/01/2013] [Accepted: 03/09/2013] [Indexed: 12/16/2022]
Abstract
Disease severity following respiratory syncytial virus (RSV) infection is associated with inflammation due to enhanced pro-inflammatory cytokine secretion, and lung macrophage cells play a role in this process. In this study we evaluated the hydroxymethylglutaryl coenzyme A reductase inhibitor lovastatin as an anti-inflammatory drug to control RSV-induced cytokine secretion in the murine RAW 264.7 (RAW) macrophage cell line and in primary murine lung macrophages. These cells could be efficiently infected with RSV in vitro, and although no significant level of infectious virus particles were produced, the increased expression of several virus structural proteins could be detected. Virus infection and gene expression correlated with increased pro-inflammatory cytokine secretion by 24 h post infection. Lovastatin treatment did not reduce the cellular cholesterol levels in RSV-infected cells, nor did it inhibit RSV infection. However, we observed a significant reduction in the pro-inflammatory cytokine levels in lovastatin-treated RSV-infected cells. Since enhanced pro-inflammatory cytokine secretion is a major factor in RSV-associated pathology our findings highlighted the potential use of statins to mitigate and control the inflammatory response due to RSV infection. Furthermore, our study suggested that RAW cells maybe a simple and cost-effective model cell system to screen small molecule libraries to identify compounds that are effective in reducing RSV-induced inflammation.
Collapse
|
32
|
Lay MK, González PA, León MA, Céspedes PF, Bueno SM, Riedel CA, Kalergis AM. Advances in understanding respiratory syncytial virus infection in airway epithelial cells and consequential effects on the immune response. Microbes Infect 2012; 15:230-42. [PMID: 23246463 DOI: 10.1016/j.micinf.2012.11.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/29/2012] [Accepted: 11/29/2012] [Indexed: 01/06/2023]
Abstract
This article reviews aspects of respiratory syncytial virus (RSV) infection in airway epithelial cells (AECs), including cytopathogenesis, entry, replication and the induction of immune response to the virus, including a new role for thymic stromal lymphopoietin in RSV immunopathology.
Collapse
Affiliation(s)
- Margarita K Lay
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago E-8331010, Chile
| | | | | | | | | | | | | |
Collapse
|
33
|
Gelfand EW. Development of asthma is determined by the age-dependent host response to respiratory virus infection: therapeutic implications. Curr Opin Immunol 2012; 24:713-9. [PMID: 22981683 PMCID: PMC3508171 DOI: 10.1016/j.coi.2012.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 08/22/2012] [Indexed: 10/27/2022]
Abstract
Lower respiratory tract virus infections are the major cause of asthma exacerbations. Severity of infection and age at initial encounter with virus appear to be major determinants of the risk for allergic asthma later in life. In animal models, reinfection of mice initially infected as neonates leads to markedly enhanced alterations in airway function and inflammation, unlike reinfection of older mice. Both innate and adaptive immune responses contribute to this susceptibility with lung dendritic cells showing marked differences in phenotype and function in young compared to older mice, and these differences are further enhanced following virus infection. These findings have implications for therapeutic targeting, for example, of RSV G and F surface proteins at different stages of the response to infection.
Collapse
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA.
| |
Collapse
|
34
|
Cholesterol-rich microdomains as docking platforms for respiratory syncytial virus in normal human bronchial epithelial cells. J Virol 2011; 86:1832-43. [PMID: 22090136 DOI: 10.1128/jvi.06274-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Respiratory syncytial virus (RSV) is one of the major causes of respiratory infections in children, and it is the main pathogen causing bronchiolitis in infants. The binding and entry mechanism by which RSV infects respiratory epithelial cells has not yet been determined. In this study, the earliest stages of RSV infection in normal human bronchial epithelial cells were probed by tracking virions with fluorescent lipophilic dyes in their membranes. Virions colocalized with cholesterol-containing plasma membrane microdomains, identified by their ability to bind cholera toxin subunit B. Consistent with an important role for cholesterol in RSV infection, cholesterol depletion profoundly inhibited RSV infection, while cholesterol repletion reversed this inhibition. Merger of the outer leaflets of the viral envelope and the cell membrane appeared to be triggered at these sites. Using small-molecule inhibitors, RSV infection was found to be sensitive to Pak1 inhibition, suggesting the requirement of a subsequent step of cytoskeletal reorganization that could involve plasma membrane rearrangements or endocytosis. It appears that RSV entry depends on its ability to dock to cholesterol-rich microdomains (lipid rafts) in the plasma membrane where hemifusion events begin, assisted by a Pak1-dependent process.
Collapse
|
35
|
Requirements for Human Respiratory Syncytial Virus Glycoproteins in Assembly and Egress from Infected Cells. Adv Virol 2011; 2011. [PMID: 21931576 PMCID: PMC3175114 DOI: 10.1155/2011/343408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is an enveloped RNA virus that assembles and buds from the plasma membrane of infected cells. The ribonucleoprotein complex (RNP) must associate with the viral matrix protein and glycoproteins to form newly infectious particles prior to budding. The viral proteins involved in HRSV assembly and egress are mostly unexplored. We investigated whether the glycoproteins of HRSV were involved in the late stages of viral replication by utilizing recombinant viruses where each individual glycoprotein gene was deleted and replaced with a reporter gene to maintain wild-type levels of gene expression. These engineered viruses allowed us to study the roles of the glycoproteins in assembly and budding in the context of infectious virus. Microscopy data showed that the F glycoprotein was involved in the localization of the glycoproteins with the other viral proteins at the plasma membrane. Biochemical analyses showed that deletion of the F and G proteins affected incorporation of the other viral proteins into budded virions. However, efficient viral release was unaffected by the deletion of any of the glycoproteins individually or in concert. These studies attribute a novel role to the F and G proteins in viral protein localization and assembly.
Collapse
|
36
|
Bimolecular complementation of paramyxovirus fusion and hemagglutinin-neuraminidase proteins enhances fusion: implications for the mechanism of fusion triggering. J Virol 2009; 83:10857-68. [PMID: 19710150 DOI: 10.1128/jvi.01191-09] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
For paramyxoviruses, entry requires a receptor-binding protein (hemagglutinin-neuraminidase [HN], H, or G) and a fusion protein (F). Like other class I viral fusion proteins, F is expressed as a prefusion metastable protein that undergoes a refolding event to induce fusion. HN binding to its receptor triggers F refolding by an unknown mechanism. HN may serve as a clamp that stabilizes F in its prefusion state until HN binds the target cell (the "clamp model"). Alternatively, HN itself may undergo a conformational change after receptor binding that destabilizes F and causes F to trigger (the "provocateur model"). To examine F-HN interactions by bimolecular fluorescence complementation (BiFC), the cytoplasmic tails of parainfluenza virus 5 (PIV5) F and HN were fused to complementary fragments of yellow fluorescent protein (YFP). Coexpression of the BiFC constructs resulted in fluorescence; however, coexpression with unrelated BiFC constructs also produced fluorescence. The affinity of the two halves of YFP presumably superseded the F-HN interaction. Unexpectedly, coexpression of the BiFC F and HN constructs greatly enhanced fusion in multiple cell types. We hypothesize that the increase in fusion occurs because the BiFC tags bring F and HN together more frequently than occurs in a wild-type (wt) scenario. This implies that normally much of wt F is not associated with wt HN, in conflict with the clamp model for activation. Correspondingly, we show that wt PIV5 fusion occurs in an HN concentration-dependent manner. Also inconsistent with the clamp model are the findings that BiFC F does not adopt a postfusion conformation when expressed in the absence of HN and that HN coexpression does not provide resistance to the heat-induced triggering of F. In support of a provocateur model of F activation, we demonstrate by analysis of the morphology of soluble F trimers that the hyperfusogenic mutation S443P has a destabilizing effect on F.
Collapse
|
37
|
Oshansky CM, Zhang W, Moore E, Tripp RA. The host response and molecular pathogenesis associated with respiratory syncytial virus infection. Future Microbiol 2009; 4:279-97. [PMID: 19327115 DOI: 10.2217/fmb.09.1] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since the isolation of respiratory syncytial virus (RSV) in 1956, its significance as an important human pathogen in infants, the elderly and the immunocompromised has been established. Many important mechanisms contributing to RSV infection, replication and disease pathogenesis have been uncovered; however, there is still insufficient knowledge in these and related areas, which must be addressed to facilitate the development of safe and effective vaccines and therapeutic treatments. A better understanding of the molecular pathogenesis of RSV infection, particularly the host-cell response and transcription profiles to RSV infection, is required to advance disease intervention strategies. Substantial information is accumulating regarding how RSV proteins modulate molecular signaling and regulation of cytokine and chemokine responses to infection, molecular signals regulating programmed cell death, and innate and adaptive immune responses to infection. This review discusses RSV manipulation of the host response to infection and related disease pathogenesis.
Collapse
Affiliation(s)
- Christine M Oshansky
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
38
|
Human respiratory syncytial virus glycoproteins are not required for apical targeting and release from polarized epithelial cells. J Virol 2008; 82:8664-72. [PMID: 18562526 DOI: 10.1128/jvi.00827-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) is released from the apical membrane of polarized epithelial cells. However, little is known about the processes of assembly and release of HRSV and which viral gene products are involved in the directional maturation of the virus. Based on previous studies showing that the fusion (F) glycoprotein contained an intrinsic apical sorting signal and that N- and O-linked glycans can act as apical targeting signals, we investigated whether the glycoproteins of HRSV were involved in its directional targeting and release. We generated recombinant viruses with each of the three glycoprotein genes deleted individually or in groups. Each deleted gene was replaced with a reporter gene to maintain wild-type levels of gene expression. The effects of deleting the glycoprotein genes on apical maturation and on targeting of individual proteins in polarized epithelial cells were examined by using biological, biochemical, and microscopic assays. The results of these studies showed that the HRSV glycoproteins are not required for apical maturation or release of the virus. Further, deletion of one or more of the glycoprotein genes did not affect the intracellular targeting of the remaining viral glycoproteins or the nucleocapsid protein to the apical membrane.
Collapse
|