1
|
Nghia NN, The Huy B, Hieu NH, Kim Phuong NT, Lee YI. A length-band fluorescence-based paper analytical device for detecting dipicolinic acid via ofloxacin complexation with Cu 2. Analyst 2025; 150:249-257. [PMID: 39641151 DOI: 10.1039/d4an01393j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu2+ ions, where Cu2+ quenches the fluorescence of OFL via static quenching. Upon the introduction of DPA, it interacts with the OFL-Cu2+ complex, resulting in an enhanced fluorescence signal from OFL. The assay demonstrated a limit of detection (LOD) of 0.08 μM over a range of 0.6-120 μM, as measured using a spectrofluorometer. The d-PAD was designed for efficient reagent transport through capillary action on paper substrates, allowing for rapid on-site DPA analysis without requiring advanced laboratory equipment. The length of the fluorescent bands on the d-PADs was proportional to the concentration of DPA, providing a simple and effective readout method. With a sensitivity of 0.6 μM, the device shows a strong response to varying DPA concentrations. This distance-based platform offers a straightforward and quantitative approach to result interpretation, making it a promising tool for detecting bacterial spores in real samples. The development and optimization of this paper-based microfluidic assay represent a significant step forward in portable diagnostic technologies.
Collapse
Affiliation(s)
- Nguyen Ngoc Nghia
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea.
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Vietnam
| | - Bui The Huy
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Republic of Korea.
| | - Nguyen Huu Hieu
- VNU-HCM, Key Laboratory of Chemical Engineering and Petroleum Processing (Key CEPP Lab), Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Kim Phuong
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Vietnam
| | - Yong-Ill Lee
- Anastro Laboratory, Institute of Basic Science, Changwon National University, Changwon 51140, Republic of Korea.
- Department of Pharmaceutical Sciences, Pharmaceutical Technical University, Tashkent 100084, Republic of Uzbekistan
| |
Collapse
|
2
|
Mubeen M, Khalid MA, Mukhtar M, Sumreen P, Tabassum M, Ashiq S, Abbas SA, Akram R, Iqbal A. Elucidating the Mechanism of Copper-Induced Photoluminescence Quenching in 2-Phenylbenzimidazole-5-Sulfonic Acid. J Fluoresc 2024:10.1007/s10895-024-03704-x. [PMID: 38683267 DOI: 10.1007/s10895-024-03704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
To explore the possible impact of 2-Phenylbenzimidazole-5-sulfonic acid (PBSA) on the function of a sunscreen, in this work we investigate the binding of copper metal ions (Cu2+) to PBSA. Due to the existence of an intrinsic interaction phenomenon between Cu2+ ions and PBSA molecules, the photoluminescence (PL) quenching arises owing to the charge transfer from PBSA to Cu2+ ions. The mechanism of fluorescence quenching is probed experimentally following excitation at 306 nm by evaluating various quenching parameters with the help of the Stern-Volmer plot. Through the assessment of the values of the Stern-Volmer constant (K SV = 45.2 M - 1 ) and bimolecular quenching rate constant (k q = 0.77 × 10 10 M - 1 . s - 1 ), it is deduced that the dynamic mode of PL quenching is operative between PBSA and Cu2+ ions. We evaluate the number of binding sites (n = 1) that advocate the presence of a single binding site in PBSA for Cu2+ ions. The numerical value of standard Gibbs free energy change,Δ G o ~ -27.485 kJ.mol-1 implies the spontaneous binding between Cu2+ ions and PBSA molecules. The results obtained give an insight into the mechanism of metal-induced PL quenching of water soluble PBSA sunscreen.
Collapse
Affiliation(s)
- Muhammad Mubeen
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Chemistry, Government Zamindar Graduate College, Gujrat, 50700, Pakistan
| | | | - Maria Mukhtar
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Poshmal Sumreen
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Mamoona Tabassum
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Shoaib Ashiq
- Department of Chemistry, Government Zamindar Graduate College, Gujrat, 50700, Pakistan
| | - Sheikh Aadil Abbas
- Department of Chemistry, Government Zamindar Graduate College, Gujrat, 50700, Pakistan
| | - Raheel Akram
- State Key Laboratory of Organic-Inorganic Composites, College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Azhar Iqbal
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
3
|
Jensen GC, Janis MK, Nguyen HN, David OW, Zastrow ML. Fluorescent Protein-Based Sensors for Detecting Essential Metal Ions across the Tree of Life. ACS Sens 2024; 9:1622-1643. [PMID: 38587931 PMCID: PMC11073808 DOI: 10.1021/acssensors.3c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Ogonna W David
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
4
|
Park JH, Sung Y, Jo S, Lee SH, Ryu JH, Sun IC, Ahn CH. Applications of Cu 2+-Loaded Silica Nanoparticles to Photothermal Therapy and Tumor-Specific Fluorescence Imaging. J Funct Biomater 2024; 15:81. [PMID: 38667538 PMCID: PMC11051373 DOI: 10.3390/jfb15040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Copper-based nanomaterials have been employed as therapeutic agents for cancer therapy and diagnosis. Nevertheless, persistent challenges, such as cellular toxicity, non-uniform sizes, and low photothermal efficiency, often constrain their applications. In this study, we present Cu2+-loaded silica nanoparticles fabricated through the chelation of Cu2+ ions by silanol groups. The integration of Cu2+ ions into uniformly sized silica nanoparticles imparts a photothermal therapy effect. Additionally, the amine functionalization of the silica coating facilitates the chemical conjugation of tumor-specific fluorescence probes. These probes are strategically designed to remain in an 'off' state through the Förster resonance energy transfer mechanism until exposed to cysteine enzymes in cancer cells, inducing the recovery of their fluorescence. Consequently, our Cu2+-loaded silica nanoparticles demonstrate an efficient photothermal therapy effect and selectively enable cancer imaging.
Collapse
Affiliation(s)
- Ji-Ho Park
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-H.P.)
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - Yejin Sung
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - SeongHoon Jo
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Seung Ho Lee
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-H.P.)
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - Ju Hee Ryu
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - In-Cheol Sun
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; (Y.S.)
| | - Cheol-Hee Ahn
- NanoBio Materials Laboratory, Department of Materials Science and Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea; (J.-H.P.)
| |
Collapse
|
5
|
Janeena A, Nagabalaji V, Suresh P, Ramudu KN, Srinivasan SV, Shanmugam G, Ayyadurai N. Engineering microbial cells with metal chelating hydroxylated unnatural amino acids for removable of synthetic pollutants from water. CHEMOSPHERE 2023; 311:136756. [PMID: 36228731 DOI: 10.1016/j.chemosphere.2022.136756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb2+) is a well-known heavy metal and toxic synthetic industrial pollutant in the ecosystem and causes severe threats to living organisms. It is paramount to develop a sustainable microbial engineering approach to remove synthetic pollutants from the environment. Genetic code engineering is emerging as an important microbial engineering tool in biosciences to biosynthesis congener protein production beyond the canonical set of natural molecules and expand the chemistries of living cells. Here, we prepare cells expressing unnatural amino acid encoded congener proteins for effectively removable toxic synthetic industrial pollutants (Pb2+) with high binding efficiency. Native and the developed congener proteins expressing cells adapted the Langmuir and Sips adsorption model that recommends uniform adsorption with Pb2+ ions. This could be due to a more significant number of functional groups on the protein surface. Fluorescence spectroscopic, field emission scanning electron microscope, X-ray photoelectron spectroscopic analysis, and protein-metal molecular stimulation coordination allowed us to explore the role of hydroxylation on Pb2+ adsorption. The bioreactor filled with immobilized protein-containing active granules showed >90% of lead removal in the contaminated water samples. The desorption of bound Pb2+ from GFP and its variants were studied by varying the pH to reuse the proteins for subsequent usage. We observed that about 70% of the GFP and its variants could be recycled and >75% of fluorescence efficiency could be recovered. Among all the variants, GFPHPDP exhibits high affinity and maintains the reusability efficiency in 7 consecutive cycles. These results suggest that genetic code engineering of cells encoding unnatural amino acids could be a next-generation microbial engineering tool for manipulating and developing the microbial strain's selective and effective removal of synthetic pollutants from the environment.
Collapse
Affiliation(s)
- Asuma Janeena
- Biochemistry and Biotechnology Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Velmurugan Nagabalaji
- Environmental Science and Engineering Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Prem Suresh
- Biochemistry and Biotechnology Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Kamini Numbi Ramudu
- Biochemistry and Biotechnology Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Shanmugam Venkatachalam Srinivasan
- Environmental Science and Engineering Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India
| | - Ganesh Shanmugam
- Organic and Bioorganic Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Niraikulam Ayyadurai
- Biochemistry and Biotechnology Division, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Chennai, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Zou W, Nguyen HN, Zastrow ML. Mutant Flavin-Based Fluorescent Protein Sensors for Detecting Intracellular Zinc and Copper in Escherichia coli. ACS Sens 2022; 7:3369-3378. [PMID: 36282086 PMCID: PMC9888404 DOI: 10.1021/acssensors.2c01376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Flavin-based fluorescent proteins (FbFPs) are a class of fluorescent reporters that undergo oxygen-independent fluorophore incorporation, which is an important advantage over green fluorescent proteins (GFPs) and mFruits. A FbFP derived from Chlamydomonas reinhardtii (CreiLOV) is a promising platform for designing new metal sensors. Some FbFPs are intrinsically quenched by metal ions, but the question of where metals bind and how to tune metal affinity has not been addressed. We used site-directed mutagenesis of CreiLOV to probe a hypothesized copper(II) binding site that led to fluorescence quenching. Most mutations changed the fluorescence quenching level, supporting the proposed site. One key mutation introducing a second cysteine residue in place of asparagine (CreiLOVN41C) significantly altered metal affinity and selectivity, yielding a zinc sensor. The fluorescence intensity and lifetime of CreiLOVN41C were reversibly quenched by Zn2+ ions with a biologically relevant affinity (apparent dissociation constant, Kd, of 1 nM). Copper quenching of CreiLOVN41C was retained but with several orders of magnitude higher affinity than CreiLOV (Kd = 0.066 fM for Cu2+, 5.4 fM for Cu+) and partial reversibility. We also show that CreiLOVN41C is an excellent intensity- and lifetime-based zinc sensor in aerobic and anaerobic live bacterial cells. Zn2+-induced fluorescence quenching is reversible over several cycles in Escherichia coli cell suspensions and can be imaged by fluorescence microscopy. CreiLOVN41C is a novel oxygen-independent metal sensor that significantly expands the current fluorescent protein-based toolbox of metal sensors and will allow for studies of anaerobic and low oxygen systems previously precluded by the use of oxygen-dependent GFPs.
Collapse
Affiliation(s)
- Wenping Zou
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Hazel N Nguyen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
7
|
Zharmukhamedov SK, Shabanova MS, Rodionova MV, Huseynova IM, Karacan MS, Karacan N, Aşık KB, Kreslavski VD, Alwasel S, Allakhverdiev SI. Effects of Novel Photosynthetic Inhibitor [CuL2]Br2 Complex on Photosystem II Activity in Spinach. Cells 2022; 11:cells11172680. [PMID: 36078088 PMCID: PMC9455146 DOI: 10.3390/cells11172680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
The effects of the novel [CuL2]Br2 complex (L = bis{4H-1,3,5-triazino [2,1-b]benzothiazole-2-amine,4-(2-imidazole)}copper(II) bromide complex) on the photosystem II (PSII) activity of PSII membranes isolated from spinach were studied. The absence of photosynthetic oxygen evolution by PSII membranes without artificial electron acceptors, but in the presence of [CuL2]Br2, has shown that it is not able to act as a PSII electron acceptor. In the presence of artificial electron acceptors, [CuL2]Br2 inhibits photosynthetic oxygen evolution. [CuL2]Br2 also suppresses the photoinduced changes of the PSII chlorophyll fluorescence yield (FV) related to the photoreduction of the primary quinone electron acceptor, QA. The inhibition of both characteristic PSII reactions depends on [CuL2]Br2 concentration. At all studied concentrations of [CuL2]Br2, the decrease in the FM level occurs exclusively due to a decrease in Fv. [CuL2]Br2 causes neither changes in the F0 level nor the retardation of the photoinduced rise in FM, which characterizes the efficiency of the electron supply from the donor-side components to QA through the PSII reaction center (RC). Artificial electron donors (sodium ascorbate, DPC, Mn2+) do not cancel the inhibitory effect of [CuL2]Br2. The dependences of the inhibitory efficiency of the studied reactions of PSII on [CuL2]Br2 complex concentration practically coincide. The inhibition constant Ki is about 16 µM, and logKi is 4.8. As [CuL2]Br2 does not change the aromatic amino acids’ intrinsic fluorescence of the PSII protein components, it can be proposed that [CuL2]Br2 has no significant effect on the native state of PSII proteins. The results obtained in the present study are compared to the literature data concerning the inhibitory effects of PSII Cu(II) aqua ions and Cu(II)-organic complexes.
Collapse
Affiliation(s)
- Sergey K. Zharmukhamedov
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
- Correspondence: (S.K.Z.); (S.I.A.)
| | - Mehriban S. Shabanova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | - Margarita V. Rodionova
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
| | - Irada M. Huseynova
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
| | - Mehmet Sayım Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Nurcan Karacan
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | - Kübra Begüm Aşık
- Department of Chemistry, Science Faculty, Gazi University, Teknikokullar, Ankara 06500, Turkey
| | | | - Saleh Alwasel
- College of Science, King Saud University, Riyadh 12372, Saudi Arabia
| | - Suleyman I. Allakhverdiev
- Institute of Basic Biological Problems, FRC PSCBR RAS, 142290 Pushchino, Russia
- Bionanotechnology Laboratory, Institute of Molecular Biology and Biotechnology, Azerbaijan National Academy of Sciences, AZ1073 Baku, Azerbaijan
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276 Moscow, Russia
- Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119991 Moscow, Russia
- Correspondence: (S.K.Z.); (S.I.A.)
| |
Collapse
|
8
|
Kumar A, Seok Chae P. A bis(fluorenyl-triazole)-conjugated naphthoquinoline-dione probe for a cascade detection of Cu2+ and F− and its logic circuit with a memory unit. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Zhao H, Zastrow ML. Transition Metals Induce Quenching of Monomeric Near-Infrared Fluorescent Proteins. Biochemistry 2022; 61:494-504. [PMID: 35289592 DOI: 10.1021/acs.biochem.1c00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transition metals such as zinc and copper are essential in numerous life processes, and both deficiency and toxic overload of these metals are associated with various diseases. Fluorescent metal sensors are powerful tools for studying the roles of metal ions in the physiology and pathology of biological systems. Green fluorescent protein (GFP) and its derivatives are highly utilized for protein-based sensor design, but application to anaerobic systems is limited because these proteins require oxygen to become fluorescent. Bacteriophytochrome-based monomeric near-infrared fluorescent proteins (miRFPs) covalently bind a bilin cofactor, which can be added exogenously for anaerobic cells. miRFPs can also have emission wavelengths extending to >700 nm, which is valuable for imaging applications. Here, we evaluated the suitability of miRFP670 and miRFP709 as platforms for single fluorescent protein metal ion sensors. We found that divalent metal ions like Zn2+, Co2+, Ni2+, and Cu2+ can quench from ∼6-20% (Zn2+, Co2+, and Ni2+) and up to nearly 90% (Cu2+) of the fluorescence intensity of pure miRFPs and have similar impacts in live Escherichia coli cells expressing miRFPs. The presence of a 6× histidine tag for purification influences metal quenching, but significant Cu2+-induced quenching and a picomolar binding affinity are retained in the absence of the His6 tag in both cuvettes and live bacterial cells. By comparing the Cu2+ and Cu+-induced quenching results for miRFP670 and miRFP709 and through examining absorption spectra and previously reported crystal structures, we propose a surface metal binding site near the biliverdin IXα chromophore.
Collapse
Affiliation(s)
- Haowen Zhao
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
10
|
Kumar A, Kumar S, Chae PS. A Chromo-Fluorogenic Naphthoquinolinedione-Based Probe for Dual Detection of Cu 2+ and Its Use for Various Water Samples. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030785. [PMID: 35164050 PMCID: PMC8838320 DOI: 10.3390/molecules27030785] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 11/18/2022]
Abstract
The presence of an abnormal amount of Cu2+ in the human body causes various health issues. In the current study, we synthesized a new naphthoquinolinedione-based probe (probe 1) to monitor Cu2+ in different water systems, such as tap water, lakes, and drain water. Two triazole units were introduced into the probe via a click reaction to increase the binding affinity to a metal ion. In day-light, probe 1 dissolved in a mixed solvent system (HEPES: EtOH = 1:4) showed a vivid color change from light greenish-yellow to pink in the presence of only Cu2+ among various metal ions. In addition, the green luminescence and fluorescence emission of the probe were effectively bleached out immediately after Cu2+ addition. The limit of detection (LOD) of the probe was 0.5 µM when a ratio-metric method was used for metal ion detection. The fluorescence titration data of the probe with Cu2+ showed a calculated LOD of 41.5 pM. Hence, probe 1 possesses the following dual response toward Cu2+ detection: color change and fluorescence quenching. Probe 1 was also useful for detecting Cu2+ spiked in tap/lake water as well as the cytoplasm of live HeLa cells. The current system was investigated using ultraviolet-visible and fluorescence spectroscopy as well as density functional theory calculations (DFT).
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
- Correspondence: (A.K.); (P.S.C.)
| | - Subodh Kumar
- Department of Chemistry, UGC Center for Advanced Studies, Guru Nanak Dev University, Amritsar 143005, India;
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Korea
- Correspondence: (A.K.); (P.S.C.)
| |
Collapse
|
11
|
Ding YJ, Jin X, Wang ZX, Wang W. Green Emission Carbon Nanodots as Fluorescence Turn-on Probe for Detecting Picolinic Acid. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821080037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Hernández-Gil J, Lewis JS, Reiner T, Drain CM, Gonzales J. Leveraging synthetic chlorins for bio-imaging applications. Chem Commun (Camb) 2021; 56:12608-12611. [PMID: 32945820 DOI: 10.1039/d0cc05494a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synthetic chlorins are not only fluorescent, the modulation of the tetrapyrrole system can also chelate metal ions. Conjugation of linkers at their pyrrolidines allows for conjugation to bio-molecules to create target specificity. By altering these chemo-photophysical properties, this work facilitates the use of chlorins in fluorescent imaging and positron emission tomography (PET).
Collapse
Affiliation(s)
- Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. and Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Herestraat 49, B3000, Leuven, Belgium
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. and Weill-Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA and Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. and Weill-Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA and Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Charles Michael Drain
- Department of Chemistry, Hunter College of The City University of New York, 695 Park Avenue, New York, NY 10065, USA
| | - Junior Gonzales
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA. and Department of Chemistry, Hunter College of The City University of New York, 695 Park Avenue, New York, NY 10065, USA
| |
Collapse
|
13
|
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, Klassen JL, Angeles-Boza AM. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities. Chem Rev 2021; 121:2648-2712. [PMID: 33524257 DOI: 10.1021/acs.chemrev.0c00921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The emergence of new pathogens and multidrug resistant bacteria is an important public health issue that requires the development of novel classes of antibiotics. Antimicrobial peptides (AMPs) are a promising platform with great potential for the identification of new lead compounds that can combat the aforementioned pathogens due to their broad-spectrum antimicrobial activity and relatively low rate of resistance emergence. AMPs of multicellular organisms made their debut four decades ago thanks to ingenious researchers who asked simple questions about the resistance to bacterial infections of insects. Questions such as "Do fruit flies ever get sick?", combined with pioneering studies, have led to an understanding of AMPs as universal weapons of the immune system. This review focuses on a subclass of AMPs that feature a metal binding motif known as the amino terminal copper and nickel (ATCUN) motif. One of the metal-based strategies of hosts facing a pathogen, it includes wielding the inherent toxicity of copper and deliberately trafficking this metal ion into sites of infection. The sudden increase in the concentration of copper ions in the presence of ATCUN-containing AMPs (ATCUN-AMPs) likely results in a synergistic interaction. Herein, we examine common structural features in ATCUN-AMPs that exist across species, and we highlight unique features that deserve additional attention. We also present the current state of knowledge about the molecular mechanisms behind their antimicrobial activity and the methods available to study this promising class of AMPs.
Collapse
Affiliation(s)
- Jasmin Portelinha
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Searle S Duay
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Chemistry Department, Adamson University, 900 San Marcelino Street, Ermita, Manila 1000, Philippines
| | - Seung I Yu
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Kara Heilemann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - M Daben J Libardo
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Samuel A Juliano
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Jonathan L Klassen
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Alfredo M Angeles-Boza
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States.,Institute of Material Science, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
14
|
Gonzales J, Hernández-Gil J, Wilson TC, Adilbay D, Cornejo M, Demétrio de Souza Franca P, Guru N, Schroeder CI, King GF, Lewis JS, Reiner T. Bimodal Imaging of Mouse Peripheral Nerves with Chlorin Tracers. Mol Pharm 2021; 18:940-951. [PMID: 33404254 DOI: 10.1021/acs.molpharmaceut.0c00946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Almost 17 million Americans have a history of cancer, a number expected to reach over 22 million by 2030. Cancer patients often undergo chemotherapy in the form of antineoplastic agents such as cis-platin and paclitaxel. Though effective, these agents can induce debilitating side effects; the most common neurotoxic effect, chemotherapy-induced peripheral neuropathy (CIPN), can endure long after treatment ends. Despite the widespread and chronic nature of the dysfunction, no tools exist to quantitatively measure chemotherapy-induced peripheral neuropathy. Such a tool would not only benefit patients but their stratification could also save significant financial and social costs associated with neuropathic pain. In our first step toward addressing this unmet clinical need, we explored a novel dual approach to localize peripheral nerves: Cerenkov luminescence imaging (CLI) and fluorescence imaging (FI). Our approach revolves around the targeting and imaging of voltage-gated sodium channel subtype NaV1.7, highly expressed in peripheral nerves from both harvested human and mouse tissues. For the first time, we show that Hsp1a, a radiolabeled NaV1.7-selective peptide isolated from Homoeomma spec. Peru, can serve as a targeted vector for delivering a radioactive sensor to the peripheral nervous system. In situ, we observe high signal-to-noise ratios in the sciatic nerves of animals injected with fluorescently labeled Hsp1a and radiolabeled Hsp1a. Moreover, confocal microscopy on fresh nerve tissue shows the same high ratios of fluorescence, corroborating our in vivo results. This study indicates that fluorescently labeled and radiolabeled Hsp1a tracers could be used to identify and demarcate nerves in a clinical setting.
Collapse
Affiliation(s)
- Junior Gonzales
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Javier Hernández-Gil
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,Biomedical MRI/MoSAIC, Department of Imaging and Pathology, Katholieke Universiteit Leuven, Herestraat 49, Leuven B3000, Belgium
| | - Thomas C Wilson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Dauren Adilbay
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Mike Cornejo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Paula Demétrio de Souza Franca
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,Department of Otorhinolaryngology and Head and Neck Surgery, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Navjot Guru
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| | - Christina I Schroeder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia.,National Cancer Institute, National Institute of Health, Frederick, Maryland 21704, United States
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States.,Department of Pharmacology, Weill-Cornell Medical College, New York, New York 10065, United States.,Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States.,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10065, United States.,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York 10065, United States
| |
Collapse
|
15
|
Verma A, Hossain SKS, Sunkari SS, Reibenspies J, Saha S. Ligand influence versus electronic configuration of d-metal ion in determining the fate of NIR emission from Ln III ions: a case study with Cu II, Ni II and Zn II complexes. NEW J CHEM 2021. [DOI: 10.1039/d0nj04020g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on fifteen lanthanide complexes, where Cu, Ni and Zn ions with a Schiff-base ligand act as an antenna, it is demonstrated that electronic configuration of the d-block metal ion is very crucial for obtaining emission in NIR region.
Collapse
Affiliation(s)
- Abhineet Verma
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi
- India
| | | | - Sailaja S. Sunkari
- Department of Chemistry
- Mahila Maha Vidhyalaya
- Banaras Hindu University
- Varanasi
- India
| | - Joseph Reibenspies
- X-ray Diffraction Laboratory
- Department of Chemistry
- Texas A&M University
- USA
| | - Satyen Saha
- Department of Chemistry
- Institute of Science
- Banaras Hindu University
- Varanasi
- India
| |
Collapse
|
16
|
Bartlett ME, Shuler SA, Rose DJ, Gilbert LM, Hegab RA, Lawton TJ, Messersmith RE. Paintable proteins: biofunctional coatings via covalent incorporation of proteins into a polymer network. NEW J CHEM 2021. [DOI: 10.1039/d1nj04687j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attaching proteins to surfaces while maintaining bioactivity is a promising avenue for developing new functional materials.
Collapse
Affiliation(s)
- Mairead E. Bartlett
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Scott A. Shuler
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Daniel J. Rose
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Lindsey M. Gilbert
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Rachel A. Hegab
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Thomas J. Lawton
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| | - Reid E. Messersmith
- Research and Exploratory Development Department, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, Maryland 20723, USA
| |
Collapse
|
17
|
A novel iron quantum cluster confined in hemoglobin as fluorescent sensor for rapid detection of Escherichia coli. Talanta 2020; 218:121137. [PMID: 32797894 DOI: 10.1016/j.talanta.2020.121137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
A new method based on fluorescent probe of iron quantum cluster has been proposed for rapid detection of Escherichia coli (E. coli). The iron quantum cluster was synthesized using hemoglobin as both a source of iron and a protective agent (Hb-FeQCs). The investigation of the sensitivity of Hb-FeQCs towards metal ions showed a highly selective turn off fluorescence for Cu2+. It suggests that Cu2+ can induce fluorescence quenching by binding to amino acids of Hb. The ability of E. coli bacteria to capture and reduce of Cu ions caused to efficient recovery of the fluorescence of Hb-FeQCs from Cu2+-caused quenching. This probe has a satisfactorily linear range of 0.35-35 μM for Cu2+ under the optimal iron quantum cluster concentration (500 μg/mL) with an 85 nM detection limit. Rapid and facile detection of E.coli bacteria with the limit of detection around 8.3 × 103 CFU/mL was successfully achieved in the artificially contaminated urine, tap water, and DMEM samples within 30 min. The fluorescence recovery was investigated by different types of bacteria and only E. coli revealed 56% recovery which related to its capability to Cu2+ reduction and the great potential of the fluorescent probe for rapid detection of pathogenic E. coli bacteria. Furthermore, the Hb-FeQCs can detect E. coli bacteria in an infected urine sample by retrieving up to 74% of its fluorescence which is helpful to accelerate the diagnosis and treatment of urinary tract infection (UTI).
Collapse
|
18
|
Zou W, Le K, Zastrow ML. Live‐Cell Copper‐Induced Fluorescence Quenching of the Flavin‐Binding Fluorescent Protein CreiLOV. Chembiochem 2020; 21:1356-1363. [DOI: 10.1002/cbic.201900669] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Wenping Zou
- Department of ChemistryUniversity of Houston 3585 Cullen Boulevard Houston TX 77204 USA
| | - Khoa Le
- Department of ChemistryUniversity of Houston 3585 Cullen Boulevard Houston TX 77204 USA
| | - Melissa L. Zastrow
- Department of ChemistryUniversity of Houston 3585 Cullen Boulevard Houston TX 77204 USA
| |
Collapse
|
19
|
Gour N, Kshtriya V, Gupta S, Koshti B, Singh R, Patel D, Joshi KB. Synthesis and Aggregation Studies of a Pyridothiazole-Based AIEE Probe and Its Application in Sensing Amyloid Fibrillation. ACS APPLIED BIO MATERIALS 2019; 2:4442-4455. [DOI: 10.1021/acsabm.9b00627] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nidhi Gour
- Department of Medicinal Chemistry, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Vivekshinh Kshtriya
- Department of Medicinal Chemistry, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Shradhey Gupta
- Department of Chemistry, School of Chemical Science and Technology, Central University, Sagar, Madhya Pradesh 470003, India
| | - Bharti Koshti
- Department of Medicinal Chemistry, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Central University, Sagar, Madhya Pradesh 470003, India
| | - Dhaval Patel
- Department of Bioinformatics and Structural Biology, Indian Institute of Advanced Research, Gandhinagar, Gujarat 382426, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Central University, Sagar, Madhya Pradesh 470003, India
| |
Collapse
|
20
|
Chen QL, Wu X, Cheng H, Li Q, Chen S. Facile synthesis of carbon nanobranches towards cobalt ion sensing and high-performance micro-supercapacitors. NANOSCALE ADVANCES 2019; 1:3614-3620. [PMID: 36133534 PMCID: PMC9417816 DOI: 10.1039/c9na00181f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/19/2019] [Indexed: 06/16/2023]
Abstract
We present a facile strategy for fabricating a new type of one-dimensional (1D) carbon nanomaterial named carbon nanobranches (CNBs) covered with botryoidal carbon dots (CDs) by direct pyrolysis of a green precursor (starch). The resultant CNBs display both photoluminescence and electrical conductivity and can be assembled into chemical sensors and energy-storage devices. In terms of their bright photoluminescence, CNBs with a fabulous crystalline structure are utilized as fluorescent probes to sensitively and selectively detect Co2+ with a very low detection limit of 2.85 nM and a wide linear concentration range from 10 nM to 1 mM. Moreover, an efficient micro-supercapacitor (micro-SC) is constructed based on conductive CNB fibers produced via a customized microfluidic spinning technique. The micro-SCs exhibit a large specific capacitance of 201.4 mF cm-2, an energy density of 4.5 μW h cm-2 and high cycling stability, and can successfully power 19 light-emitting diodes (LEDs). The main purpose of this paper is to offer a perspective into simplifying the connecting of research and industry by starting from green carbon-based materials.
Collapse
Affiliation(s)
- Qiao-Ling Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology) Nanjing 210009 P. R. China +86-25-83172258 +86-25-83172258
| | - Xingjiang Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology) Nanjing 210009 P. R. China +86-25-83172258 +86-25-83172258
| | - Hengyang Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology) Nanjing 210009 P. R. China +86-25-83172258 +86-25-83172258
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology) Nanjing 210009 P. R. China +86-25-83172258 +86-25-83172258
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology) Nanjing 210009 P. R. China +86-25-83172258 +86-25-83172258
| |
Collapse
|
21
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
22
|
Hu M, Chen J, Wang J, Zhang Y, Liu L, Morais PC, Bi H. Cu 2+-Complex of hydrophilic nitrogen-rich polymer dots applied as a new MRI contrast agent. Biomater Sci 2017; 5:2319-2327. [PMID: 29027548 DOI: 10.1039/c7bm00731k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We report on a novel Cu2+-complex of nitrogen-rich polymer dots for magnetic resonance imaging (MRI). The N-rich polymer dots are prepared from N-vinyl imidazole (VIm) by a one-pot hydrothermal synthesis at 220 °C (24 h) and used later on to fabricate a Cu2+-PVIm dot complex via efficient incorporation of Cu2+ into aqueous medium. The obtained Cu2+-PVIm dot complexes display relaxivity (r1 = 1.05 mM-1 s-1) two times higher than Cu2+ in aqueous solution (r1 = 0.43 mM-1 s-1) and three times higher than Cu2+ in aqueous solution coordinated with VIm monomers (r1 = 0.32 mM-1 s-1), which show a remarkable contrast enhancement for T1-weighted MRI while efficiently labeling MCF-7 cells and other biomedical applications.
Collapse
Affiliation(s)
- Mengyue Hu
- College of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
23
|
Ghosh D, Rhodes S, Winder D, Atkinson A, Gibson J, Ming W, Padgett C, Landge S, Aiken K. Spectroscopic investigation of bis-appended 1,2,3-triazole probe for the detection of Cu(II) ion. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Gao B, Zhao F, Miao Y, Min H, Xu L, Huang C. Boron- and nitrogen-doped photoluminescent polymer carbon nanoparticles as nanosensors for imaging detection of Cu2+ and biothiols in living cells. RSC Adv 2017. [DOI: 10.1039/c7ra07683e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Boron and nitrogen co-doped ellipsoidal polymer carbon nanoparticles-based nanoprobe for fluorescence detection and imaging of biothiols in biological samples.
Collapse
Affiliation(s)
- Buhong Gao
- Advanced Analysis & Testing Center
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Fengyi Zhao
- College of Forestry
- Nanjing Forestry University
- Nanjing
- China
| | - Yingchun Miao
- Advanced Analysis & Testing Center
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Huihua Min
- Advanced Analysis & Testing Center
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Li Xu
- Advanced Analysis & Testing Center
- Nanjing Forestry University
- Nanjing 210037
- China
- College of Science
| | - Chaobo Huang
- College of Chemical Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| |
Collapse
|
25
|
Gutiérrez M, Navarro R, Sánchez F, Douhal A. Photodynamics of Zr-based MOFs: effect of explosive nitroaromatics. Phys Chem Chem Phys 2017; 19:16337-16347. [DOI: 10.1039/c7cp02590d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present work describes the fluorescence spectroscopy and photodynamics of two different Zr mixed-linkers MOFs (Zr-NDC/Tz and Zr-NDC/CN) and their interactions with nitroaromatics.
Collapse
Affiliation(s)
- M. Gutiérrez
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL
- Universidad de Castilla-La Mancha
- 45071 Toledo
- Spain
| | - R. Navarro
- Instituto de Química Orgánica
- CSIC
- 28006 Madrid
- Spain
| | - F. Sánchez
- Instituto de Química Orgánica
- CSIC
- 28006 Madrid
- Spain
| | - A. Douhal
- Departamento de Química Física
- Facultad de Ciencias Ambientales y Bioquímica, and INAMOL
- Universidad de Castilla-La Mancha
- 45071 Toledo
- Spain
| |
Collapse
|
26
|
Park DM, Reed DW, Yung MC, Eslamimanesh A, Lencka MM, Anderko A, Fujita Y, Riman RE, Navrotsky A, Jiao Y. Bioadsorption of Rare Earth Elements through Cell Surface Display of Lanthanide Binding Tags. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:2735-42. [PMID: 26836847 PMCID: PMC5381720 DOI: 10.1021/acs.est.5b06129] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
With the increasing demand for rare earth elements (REEs) in many emerging clean energy technologies, there is an urgent need for the development of new approaches for efficient REE extraction and recovery. As a step toward this goal, we genetically engineered the aerobic bacterium Caulobacter crescentus for REE adsorption through high-density cell surface display of lanthanide binding tags (LBTs) on its S-layer. The LBT-displayed strains exhibited enhanced adsorption of REEs compared to cells lacking LBT, high specificity for REEs, and an adsorption preference for REEs with small atomic radii. Adsorbed Tb(3+) could be effectively recovered using citrate, consistent with thermodynamic speciation calculations that predicted strong complexation of Tb(3+) by citrate. No reduction in Tb(3+) adsorption capacity was observed following citrate elution, enabling consecutive adsorption/desorption cycles. The LBT-displayed strain was effective for extracting REEs from the acid leachate of core samples collected at a prospective rare earth mine. Our collective results demonstrate a rapid, efficient, and reversible process for REE adsorption with potential industrial application for REE enrichment and separation.
Collapse
Affiliation(s)
- Dan M. Park
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 92550, United States
| | - David W. Reed
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Mimi C. Yung
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 92550, United States
| | - Ali Eslamimanesh
- OLI Systems, Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, New Jersey 07927, United States
| | - Malgorzata M. Lencka
- OLI Systems, Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, New Jersey 07927, United States
| | - Andrzej Anderko
- OLI Systems, Inc., 240 Cedar Knolls Road, Suite 301, Cedar Knolls, New Jersey 07927, United States
| | - Yoshiko Fujita
- Idaho National Laboratory, Idaho Falls, Idaho 83415, United States
| | - Richard E. Riman
- Department of Materials Science and Engineering, Rutgers, The State University of New Jersey, 607 Taylor Road, Piscataway, New Jersey 08855, United States
| | - Alexandra Navrotsky
- Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California Davis, Davis, California 95616, United States
| | - Yongqin Jiao
- Physical and Life Science Directorate, Lawrence Livermore National Laboratory, Livermore, California 92550, United States
| |
Collapse
|
27
|
Lin Y, Wang C, Li L, Wang H, Liu K, Wang K, Li B. Tunable Fluorescent Silica-Coated Carbon Dots: A Synergistic Effect for Enhancing the Fluorescence Sensing of Extracellular Cu²⁺ in Rat Brain. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27262-70. [PMID: 26592139 DOI: 10.1021/acsami.5b08499] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Carbon quantum dots (CDs) combined with self-assembly strategy have created an innovative way to fabricate novel hybrids for biological analysis. This study demonstrates a new fluorescence platform with enhanced selectivity for copper ion sensing in the striatum of the rat brain following the cerebral calm/sepsis process. Here, the fabrication of silica-coated CDs probes is based on the efficient hybridization of APTES which act as a precursor of organosilane self-assembly, with CDs to form silica-coated CDs probes. The fluorescent properties including intensity, fluorescence quantum yield, excitation-independent region, and red/blue shift of the emission wavelength of the probe are tunable through reliable regulation of the ratio of CDs and APTES, realizing selectivity and sensitivity-oriented Cu(2+) sensing. The as-prepared probes (i.e., 3.33% APTES-0.9 mg mL(-1) CDs probe) show a synergistic amplification effect of CDs and APTES on enhancing the fluorescence signal of Cu(2+) detection through fluorescent self-quenching. The underlying mechanism can be ascribed to the stronger interaction including chelation and electrostatic attraction between Cu(2+) and N and O atoms-containing as well as negatively charged silica-coated CDs than other interference. Interestingly, colorimetric assay and Tyndall effect can be observed and applied to directly distinguish the concentration of Cu(2+) by the naked eye. The proposed fluorescent platform here has been successfully applied to monitor the alteration of striatum Cu(2+) in rat brain during the cerebral calm/sepsis process. The versatile properties of the probe provide a new and effective fluorescent platform for the sensing method in vivo sampled from the rat brain.
Collapse
Affiliation(s)
- Yuqing Lin
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Chao Wang
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Linbo Li
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Hao Wang
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Kangyu Liu
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Keqing Wang
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| | - Bo Li
- Department of Chemistry and ‡College of Resources Environment and Tourism, Capital Normal University , Beijing 100048, China
| |
Collapse
|
28
|
Developing a genetically encoded green fluorescent protein mutant for sensitive light-up fluorescent sensing and cellular imaging of Hg(II). Anal Chim Acta 2015; 876:77-82. [DOI: 10.1016/j.aca.2015.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/16/2015] [Accepted: 03/18/2015] [Indexed: 01/17/2023]
|
29
|
Zheng Y, Yang D, Wu X, Yan H, Zhao Y, Feng B, Duan K, Weng J, Wang J. A facile approach for the synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC Adv 2015. [DOI: 10.1039/c5ra14720d] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this study, vitamin-based small organic molecules were used as precursors to synthesize carbon dots by means of a hydrothermal approach.
Collapse
Affiliation(s)
- Yawen Zheng
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Dan Yang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Xin Wu
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Haoran Yan
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Yuancong Zhao
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Bo Feng
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Ke Duan
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| | - Jianxin Wang
- Key Laboratory of Advanced Technologies of Materials
- Ministry of Education
- School of Materials Science and Engineering
- Southwest Jiaotong University
- Chengdu 610031
| |
Collapse
|
30
|
Bourge M, Fort C, Soler MN, Satiat-Jeunemaître B, Brown SC. A pulse-chase strategy combining click-EdU and photoconvertible fluorescent reporter: tracking Golgi protein dynamics during the cell cycle. THE NEW PHYTOLOGIST 2015; 205:938-50. [PMID: 25266734 DOI: 10.1111/nph.13069] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/13/2014] [Indexed: 05/12/2023]
Abstract
Imaging or quantifying protein synthesis in cellulo through a well-resolved analysis of the cell cycle (also defining G1 subcompartments) is a methodological challenge. Click chemistry is the method of choice to reveal the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU) and track proliferating nuclei undergoing DNA synthesis. However, the click reaction quenches fluorescent proteins. Our challenge was to reconcile these two tools. A robust protocol based on a high-resolution cytometric cell cycle analysis in tobacco (Nicotiana tabacum) BY2 cells expressing fluorescent Golgi markers has been established. This was broadly applicable to tissues, cell clusters, and other eukaryotic material, and compatible with Scale clearing. EdU was then used with the photoconvertible protein sialyl transferase (ST)-Kaede as a Golgi marker in a photoconversion pulse-chase cytometric configuration resolving, in addition, subcompartments of G1. Quantitative restoration of protein fluorescence was achieved by introducing acidic EDTA washes to strip the copper from these proteins which were then imaged at neutral pH. The rate of synthesis of this Golgi membrane marker was low during early G1, but in the second half of G1 (30% of cycle duration) much of the synthesis occurred. Marker synthesis then persisted during S and G2. These insights into Golgi biology are discussed in terms of the cell's ability to adapt exocytosis to cell growth needs.
Collapse
Affiliation(s)
- Mickaël Bourge
- Pôle de Biologie Cellulaire, Imagif, Centre de Recherche de Gif (FRC3115), CNRS, Saclay Plant Sciences, 91198, Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Singh G, Singh J, Mangat SS, Singh J, Rani S. Chalcomer assembly of optical chemosensors for selective Cu2+ and Ni2+ ion recognition. RSC Adv 2015. [DOI: 10.1039/c4ra14329a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The o-, m- and p-isomeric units of chalconyl triazole-based, caged organosilicon complexes were efficiently synthesized and explored for their cationic chemosensing activities.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Jandeep Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | | | - Jasbhinder Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Sunita Rani
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| |
Collapse
|
32
|
Tantimongcolwat T, Isarankura-Na-Ayudhya C, Srisarin A, Galla HJ, Prachayasittikul V. Polyacrylamide hydrogel encapsulated E. coli expressing metal-sensing green fluorescent protein as a potential tool for copper ion determination. EXCLI JOURNAL 2014; 13:401-15. [PMID: 26417267 PMCID: PMC4464391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 03/27/2014] [Indexed: 11/29/2022]
Abstract
A simple, inexpensive and field applicable metal determination system would be a powerful tool for the efficient control of metal ion contamination in various sources e.g. drinking-water, water reservoir and waste discharges. In this study, we developed a cell-based metal sensor for specific and real-time detection of copper ions. E. coli expressing metal-sensing green fluorescent protein (designated as TG1/(CG)6GFP and TG1/H6CdBP4GFP) were constructed and served as a metal analytical system. Copper ions were found to exert a fluorescence quenching effect, while zinc and cadmium ions caused minor fluorescence enhancement in the engineered bacterial suspension. To construct a user-friendly and reagentless metal detection system, TG1/H6CdBP4GFP and TG1/(CG)6GFP were encapsulated in polyacrylamide hydrogels that were subsequently immobilized on an optical fiber equipped with a fluorescence detection module. The sensor could be applied to measure metal ions by simply dipping the encapsulated bacteria into a metal solution and monitoring fluorescence changes in real time as a function of the metal concentration in solution. The sensor system demonstrated high specificity toward copper ions. The fluorescence intensities of the encapsulated TG1/(CG)6GFP and TG1/H6CdBP4GFP were quenched by approximately 70 % and 80 % by a high-dose of copper ions (50 mM), respectively. The level of fluorescence quenching exhibited a direct correlation with the copper concentration, with a linear correlation coefficient (r) of 0.99. The cell-based metal sensor was able to efficiently monitor copper concentrations ranging between 5 M and 50 mM, encompassing the maximum allowed copper contamination in drinking water (31.15 M) established by the WHO. Furthermore, the cell-based metal sensor could undergo prolonged storage for at least 2 weeks without significantly influencing the copper sensitivity.
Collapse
Affiliation(s)
- Tanawut Tantimongcolwat
- Center for Innovation Development and Technology Transfer, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | | | - Apapan Srisarin
- Department of Clinical Microscopy, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Hans-Joachim Galla
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, Muenster 48149, Germany
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand,*To whom correspondence should be addressed: Virapong Prachayasittikul, Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand; phone: +6624414376; Fax: +6624414380, E-mail:
| |
Collapse
|
33
|
Masullo T, Puccio R, Di Pierro M, Tagliavia M, Censi P, Vetri V, Militello V, Cuttitta A, Colombo P. Development of a Biosensor for Copper Detection in Aqueous Solutions Using an Anemonia sulcata Recombinant GFP. Appl Biochem Biotechnol 2013; 172:2175-87. [DOI: 10.1007/s12010-013-0669-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/01/2013] [Indexed: 10/25/2022]
|
34
|
Kotagiri N, Niedzwiedzki DM, Ohara K, Achilefu S. Activatable Probes Based on Distance-Dependent Luminescence Associated with Cerenkov Radiation. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Kotagiri N, Niedzwiedzki DM, Ohara K, Achilefu S. Activatable probes based on distance-dependent luminescence associated with Cerenkov radiation. Angew Chem Int Ed Engl 2013; 52:7756-60. [PMID: 23765506 DOI: 10.1002/anie.201302564] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Indexed: 11/10/2022]
Abstract
Let me get my nanoruler: Activatable probes based on radionuclide and quantum dots (QDs) were constructed using DNA as a linker. Cerenkov radiation from (64)Cu was used to excite the QDs in a distance-dependent manner. The luminescence was lowest nearest to the QD and increased with distance.
Collapse
Affiliation(s)
- Nalinikanth Kotagiri
- Department of Radiology, Washington University School of Medicine, 4525 Scott Avenue, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
36
|
Dual on–off and off–on switchable oligoaziridine biosensor. Biosens Bioelectron 2013; 39:64-9. [DOI: 10.1016/j.bios.2012.06.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/20/2012] [Accepted: 06/21/2012] [Indexed: 11/18/2022]
|
37
|
Qiao ZA, Huo Q, Chi M, Veith GM, Binder AJ, Dai S. A "ship-in-a-bottle" approach to synthesis of polymer dots@silica or polymer dots@carbon core-shell nanospheres. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:6017-21. [PMID: 22976113 DOI: 10.1002/adma.201202620] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 07/24/2012] [Indexed: 05/24/2023]
Abstract
A "ship-in-a-bottle" approach to the entrapment and assembly of nanometer-sized polymer dots in hollow silica or carbon nanospheres with size-selective micropores is presented. This new type of core-shell nanospheres exhibits excellent photoluminescence properties and significant adsorption capabilities for transition-metal ions.
Collapse
Affiliation(s)
- Zhen-An Qiao
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | |
Collapse
|
38
|
Fluorescence of a Histidine-Modified Enhanced Green Fluorescent Protein (EGFP) Effectively Quenched by Copper(II) Ions. J Fluoresc 2012; 23:273-81. [DOI: 10.1007/s10895-012-1145-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
|
39
|
Diiminic Schiff Bases: An Intriguing Class of Compounds for a Copper-Nanoparticle-Induced Fluorescence Study. Chemistry 2012; 18:15845-55. [DOI: 10.1002/chem.201201242] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/15/2012] [Indexed: 11/07/2022]
|
40
|
Ongun MZ, Ertekin K, Gocmenturk M, Ergun Y, Suslu A. Copper ion sensing with fluorescent electrospun nanofibers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 90:177-185. [PMID: 22343077 DOI: 10.1016/j.saa.2012.01.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/02/2012] [Accepted: 01/18/2012] [Indexed: 05/31/2023]
Abstract
In this work, the use of electrospun nanofibrous materials as highly responsive fluorescence quenching-based copper sensitive chemosensor is reported. Poly(methyl methacrylate) and ethyl cellulose were used as polymeric support materials. Sensing slides were fabricated by electrospinning technique. Copper sensors based on the change in the fluorescence signal intensity of fluoroionophore; N'-3-(4-(dimethylamino phenly)allylidene)isonicotinohydrazide. The sensor slides exhibited high sensitivities due to the high surface area of the nanofibrous membrane structures. The preliminary results of Stern-Volmer analysis show that the sensitivities of electrospun nanofibrous membranes to detect Cu(II) ions are 6-20-fold higher than those of the continuous thin films. By this way we obtained linear calibration plots for Cu(II) ions in the concentration range of 10(-12)-10(-5)M. The response times of the sensing slides were less than 1 min. Stability of the employed ionophore in the matrix materials was excellent and when stored in the ambient air of the laboratory there was no significant drift in signal intensity after 6 months. Our stability tests are still in progress.
Collapse
Affiliation(s)
- Merve Zeyrek Ongun
- University of Dokuz Eylul, The Graduate School of Natural and Applied Sciences, Department of Chemistry, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
41
|
Liu S, Tian J, Wang L, Zhang Y, Qin X, Luo Y, Asiri AM, Al-Youbi AO, Sun X. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:2037-41. [PMID: 22419383 DOI: 10.1002/adma.201200164] [Citation(s) in RCA: 858] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/24/2012] [Indexed: 05/20/2023]
Abstract
Increasing reaction temperature produces photoluminescent polymer nanodots (PPNDs) with decreased particle size and increased quantum yield. Such PPNDs are used as an effective fluorescent sensing platform for label-free sensitive and selective detection of Cu(II) ions with a detection limit as low as 1 nM. This method is successfully applied to determine Cu(2+) in real water samples.
Collapse
Affiliation(s)
- Sen Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Changchun, Jilin, China
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hötzer B, Ivanov R, Brumbarova T, Bauer P, Jung G. Visualization of Cu²⁺ uptake and release in plant cells by fluorescence lifetime imaging microscopy. FEBS J 2012; 279:410-9. [PMID: 22118589 DOI: 10.1111/j.1742-4658.2011.08434.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A principal objective in life sciences is the visualization of biochemical processes. Fluorescence-based techniques are widely used to demonstrate transport of relevant substances across cellular membranes. In this paper we report a novel noninvasive, real-time fluorescence lifetime imaging microscopy method for visualizing uptake and release of divalent copper ions (Cu(2+) ) in vivo. For this purpose, we employed a green fluorescent protein (GFP) form able to change its fluorescence lifetime upon Cu(2+) binding. We demonstrate that this technique is selective for Cu(2+) . We show the reversible decrease of the fluorescence lifetime of GFP from 2.2 to 1.6 ns in Escherichia coli and from 1.8 to 1.3 ns in root cells of Arabidopsis after the addition of Cu(2+) . Cu(2+) uptake of epidermal tobacco cells leads to a drop of the GFP lifetime from 2.5 to 2.2 ns. In summary, the spatially resolved visualization of Cu(2+) distribution in vivo is demonstrated in prokaryote and eukaryote cells.
Collapse
Affiliation(s)
- Benjamin Hötzer
- Biophysical Chemistry, Saarland University, Saarbrücken, Germany.
| | | | | | | | | |
Collapse
|
43
|
Zhao H, Nan T, Tan G, Gao W, Cao Z, Sun S, Li Z, Li QX, Wang B. Development of two highly sensitive immunoassays for detection of copper ions and a suite of relevant immunochemicals. Anal Chim Acta 2011; 702:102-8. [DOI: 10.1016/j.aca.2011.06.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/16/2011] [Accepted: 06/13/2011] [Indexed: 11/30/2022]
|
44
|
Determination of copper(II) ion concentration by lifetime measurements of green fluorescent protein. J Fluoresc 2011; 21:2143-53. [PMID: 21773693 DOI: 10.1007/s10895-011-0916-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/04/2011] [Indexed: 10/18/2022]
Abstract
The understanding of cellular processes and functions and the elucidation of their physiological mechanisms is an important aim in the life sciences. One important aspect is the uptake and the release of essential substances as well as their interactions with the cellular environment. As green fluorescent protein (GFP) can be genetically encoded in cells it can be used as an internal sensor giving a deeper insight into biochemical pathways. Here we report that the presence of copper(II) ions leads to a decrease of the fluorescence lifetime (τ(fl)) of GFP and provide evidence for Förster resonance energy transfer (FRET) as the responsible quenching mechanism. We identify the His(6)-tag as the responsible binding site for Cu(2+) with a dissociation constant K(d) = 9 ± 2 μM and a Förster radius R(0) = 2.1 ± 0.1 nm. The extent of the lifetime quenching depends on [Cu(2+)] which is comprehended by a mathematical titration model. We envision that Cu(2+) can be quantified noninvasively and in real-time by measuring τ(fl) of GFP.
Collapse
|
45
|
Ayyadurai N, Saravanan Prabhu N, Deepankumar K, Lee SG, Jeong HH, Lee CS, Yun H. Development of a Selective, Sensitive, and Reversible Biosensor by the Genetic Incorporation of a Metal-Binding Site into Green Fluorescent Protein. Angew Chem Int Ed Engl 2011; 50:6534-7. [DOI: 10.1002/anie.201008289] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/19/2011] [Indexed: 11/06/2022]
|
46
|
Development of a Selective, Sensitive, and Reversible Biosensor by the Genetic Incorporation of a Metal-Binding Site into Green Fluorescent Protein. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201008289] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Marek M, Milles S, Schreiber G, Daleke DL, Dittmar G, Herrmann A, Müller P, Pomorski TG. The yeast plasma membrane ATP binding cassette (ABC) transporter Aus1: purification, characterization, and the effect of lipids on its activity. J Biol Chem 2011; 286:21835-43. [PMID: 21521689 DOI: 10.1074/jbc.m111.244525] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ATP binding cassette (ABC) transporter Aus1 is expressed under anaerobic growth conditions at the plasma membrane of the yeast Saccharomyces cerevisiae and is required for sterol uptake. These observations suggest that Aus1 promotes the translocation of sterols across membranes, but the precise transport mechanism has yet to be identified. In this study, an extraction and purification procedure was developed to characterize the Aus1 transporter. The detergent-solubilized protein was able to bind and hydrolyze ATP. Mutagenesis of the conserved lysine to methionine in the Walker A motif abolished ATP hydrolysis. Likewise, ATP hydrolysis was inhibited by classical inhibitors of ABC transporters. Upon reconstitution into proteoliposomes, the ATPase activity of Aus1 was specifically stimulated by phosphatidylserine (PS) in a stereoselective manner. We also found that Aus1-dependent sterol uptake, but not Aus1 expression and trafficking to the plasma membrane, was affected by changes in cellular PS levels. These results suggest a direct interaction between Aus1 and PS that is critical for the activity of the transporter.
Collapse
Affiliation(s)
- Magdalena Marek
- Institute of Biology, Humboldt University of Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Acikgoz S, Aktas G, Inci MN, Altin H, Sanyal A. FRET between BODIPY Azide Dye Clusters within PEG-Based Hydrogel: A Handle to Measure Stimuli Responsiveness. J Phys Chem B 2010; 114:10954-60. [DOI: 10.1021/jp101663b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Isarankura-Na-Ayudhya C, Tantimongcolwat T, Galla HJ, Prachayasittikul V. Fluorescent protein-based optical biosensor for copper ion quantitation. Biol Trace Elem Res 2010; 134:352-63. [PMID: 19649570 DOI: 10.1007/s12011-009-8476-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
In the present study, spectroscopic determinations of copper ions using chimeric metal-binding green fluorescent protein (His6GFP) as an active indicator have been explored. Supplementation of copper ions to the GFP solution led to a remarkable decrease of fluorescent intensity corresponding to metal concentrations. For circumstances, rapid declining of fluorescence up to 60% was detected in the presence of 500 microM copper. This is in contrast to those observed in the case of zinc and calcium ions, in which approximately 10-20% of fluorescence was affected. Recovery of its original fluorescence up to 80% was mediated by the addition of ethylenediamine tetraacetic acid. More importantly, in the presence of metal ions, the emission wavelength maximum remains unchanged while reduction of the optical density of the absorption spectrum has been observed. This indicates that the chromophore's ground state was possibly affected by the static quenching process. Results from circular dichroism measurements revealed that the overall patterns of circular dichroism spectra after exposure to copper ions were not significantly different from that of the control, where the majority of sharp positive band around 195-196 nm in combination with a broad negative deflection around 215-216 nm was obtained. Taken together, it can be presumed that copper ions exerted their static quenching on the fluorescence rather than structural or conformational alteration. However, notification has to be made that some peptide rearrangements may also occur in the presence of metal ions. Further studies were conducted to investigate the feasibility of using the His6GFP as a sensing unit for copper ions. The His6GFP was encapsulated in Sol-gel and immobilized onto the optical fiber connected with a fluorescence detecting device. The Sol-gel was doped into the metal solution where the quenching of fluorescence could be monitored in real time. The sensing unit provided a high sensitivity of detection in the range of 0.5 microM to 50 mM with high selectivity for copper ions. All these findings open up a high potential to apply the fluorescent protein-based bioanalytical tool for copper determination in the future.
Collapse
|
50
|
Choi ES, Han SS, Cheong DE, Park MY, Kim JS, Kim GJ. Generation of a fast maturating red fluorescent protein by a combined approach of elongation mutagenesis and functional salvage screening. Biochem Biophys Res Commun 2010; 391:598-603. [PMID: 19932087 DOI: 10.1016/j.bbrc.2009.11.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 11/17/2009] [Indexed: 10/20/2022]
Abstract
Fluorescent proteins that can be useful as indicators or reporters must have rapid maturation time, high quantum yield and photobleaching stability. A red fluorescent protein DsRed that has a high quantum yield and photostability has an innately slow maturation time when compared to other fluorescence proteins. In this study, we combined a functional salvage screen (FSS) and elongation mutagenesis to obtain a DsRed variant that maintained structural features closely linked with a high quantum yield and photostability and evolved to have a rapid maturation time. It is expected that the variant generated here, FmRed (fast maturating red fluorescent protein), will be widely used as an indicator or reporter because it maintained traits superior to that of the wild-type protein and also matured rapidly.
Collapse
Affiliation(s)
- Eun-Sil Choi
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | | | | | | | | | | |
Collapse
|