1
|
Muthego D, Moloi SJ, Brown AP, Goche T, Chivasa S, Ngara R. Exogenous abscisic acid treatment regulates protein secretion in sorghum cell suspension cultures. PLANT SIGNALING & BEHAVIOR 2023; 18:2291618. [PMID: 38100609 PMCID: PMC10730228 DOI: 10.1080/15592324.2023.2291618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Drought stress adversely affects plant growth, often leading to total crop failure. Upon sensing soil water deficits, plants switch on biosynthesis of abscisic acid (ABA), a stress hormone for drought adaptation. Here, we used exogenous ABA application to dark-grown sorghum cell suspension cultures as an experimental system to understand how a drought-tolerant crop responds to ABA. We evaluated intracellular and secreted proteins using isobaric tags for relative and absolute quantification. While the abundance of only ~ 7% (46 proteins) intracellular proteins changed in response to ABA, ~32% (82 proteins) of secreted proteins identified in this study were ABA responsive. This shows that the extracellular matrix is disproportionately targeted and suggests it plays a vital role in sorghum adaptation to drought. Extracellular proteins responsive to ABA were predominantly defense/detoxification and cell wall-modifying enzymes. We confirmed that sorghum plants exposed to drought stress activate genes encoding the same proteins identified in the in vitro cell culture system with ABA. Our results suggest that ABA activates defense and cell wall remodeling systems during stress response. This could underpin the success of sorghum adaptation to drought stress.
Collapse
Affiliation(s)
- Dakalo Muthego
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| | - Sellwane J. Moloi
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| | | | - Tatenda Goche
- Department of Biosciences, Durham University, Durham, UK
- Department of Crop Science, Bindura University of Science Education, Bindura, Zimbabwe
| | | | - Rudo Ngara
- Department of Plant Sciences, University of the Free State, Phuthaditjhaba, South Africa
| |
Collapse
|
2
|
Gietler M, Fidler J, Labudda M, Nykiel M. Abscisic Acid-Enemy or Savior in the Response of Cereals to Abiotic and Biotic Stresses? Int J Mol Sci 2020; 21:E4607. [PMID: 32610484 PMCID: PMC7369871 DOI: 10.3390/ijms21134607] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/12/2023] Open
Abstract
Abscisic acid (ABA) is well-known phytohormone involved in the control of plant natural developmental processes, as well as the stress response. Although in wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) its role in mechanism of the tolerance to most common abiotic stresses, such as drought, salinity, or extreme temperatures seems to be fairly well recognized, not many authors considered that changes in ABA content may also influence the sensitivity of cereals to adverse environmental factors, e.g., by accelerating senescence, lowering pollen fertility, and inducing seed dormancy. Moreover, recently, ABA has also been regarded as an element of the biotic stress response; however, its role is still highly unclear. Many studies connect the susceptibility to various diseases with increased concentration of this phytohormone. Therefore, in contrast to the original assumptions, the role of ABA in response to biotic and abiotic stress does not always have to be associated with survival mechanisms; on the contrary, in some cases, abscisic acid can be one of the factors that increases the susceptibility of plants to adverse biotic and abiotic environmental factors.
Collapse
Affiliation(s)
- Marta Gietler
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, 02-776 Warsaw, Poland; (J.F.); (M.L.); (M.N.)
| | | | | | | |
Collapse
|
3
|
Xu P, Cai W. Function of Brassica napus BnABI3 in Arabidopsis gs1, an Allele of AtABI3, in Seed Development and Stress Response. FRONTIERS IN PLANT SCIENCE 2019; 10:67. [PMID: 30804960 PMCID: PMC6370748 DOI: 10.3389/fpls.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/17/2019] [Indexed: 05/30/2023]
Abstract
Abscisic acid (ABA) has been implicated in plant adaptation to various environmental stresses in addition to the regulation of seed dormancy and leaf senescence. ABI3 is a B3 domain-containing family protein and functions in the ABA signaling pathway during seed development. To date, the ABI3 orthologous have not been studied in Brassica napus. The aim of this study is to investigate the function of BnABI3 in plant development and stress response. Here, we identified an Arabidopsis line (gs1) from a population of mutagenized seeds and showed that GS1 is a new allele of AtABI3. When the Arabidopsis gs1 mutant was transformed with the BnABI3 gene, the transformed plants produced seeds that turned yellow and acquired desiccation tolerance. Moreover, BnABI3 regulates seed coat development and mucilage secretion by directly targeting the AtMUM1 and AtGATL5 genes. In addition, we showed that BnABI3 expression rescued gs1 freezing-induced green seed coloration by targeting AtSGR1/2 in transgenic Arabidopsis. BnABI3 is also involved in lateral root development and conferred a novel interaction between ABA and auxin signaling in roots. The potential role of ABI3 protein in endoplasmic reticulum homoeostasis was also tested. Altogether, our results indicated that BnABI3 mediates both plant development and the stress response.
Collapse
|
4
|
Differential Expression Proteins Contribute to Race-Specific Resistant Ability in Rice ( Oryza sativa L.). PLANTS 2019; 8:plants8020029. [PMID: 30678057 PMCID: PMC6410114 DOI: 10.3390/plants8020029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 11/20/2022]
Abstract
Rice blast, caused by the fungus, Magnaporthe grisea (M. grisea), lead to the decrease of rice yields widely and destructively, threatening global food security. Although many resistant genes had been isolated and identified in various rice varieties, it is still not enough to clearly understand the mechanism of race-specific resistant ability in rice, especially on the protein level. In this research, proteomic methods were employed to analyze the differentially expressed proteins (DEPs) in susceptible rice variety CO39 and its two near isogenic lines (NILs), CN-4a and CN-4b, in response to the infection of two isolates with different pathogenicity, GUY11 and 81278ZB15. A total of 50 DEPs with more than 1.5-fold reproducible change were identified. At 24 and 48 hpi of GUY11, 32 and 16 proteins in CN-4b were up-regulated, among which 16 and five were paralleled with the expression of their corresponding RNAs. Moreover, 13 of 50 DEPs were reported to be induced by M. grisea in previous publications. Considering the phenotypes of the three tested rice varieties, we found that 21 and 23 up-regulated proteins were responsible for the rice resistant ability to the two different blast isolates, 81278ZB15 and GUY11, respectively. Two distinct branches corresponding to GUY11 and 81278ZB15 were observed in the expression and function of the module cluster of DEPs, illuminating that the DEPs could be responsible for race-specific resistant ability in rice. In other words, DEPs in rice are involved in different patterns and functional modules’ response to different pathogenic race infection, inducing race-specific resistant ability in rice.
Collapse
|
5
|
Zhang D, Wang Y, Shen J, Yin J, Li D, Gao Y, Xu W, Liang J. OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. RICE (NEW YORK, N.Y.) 2018; 11:45. [PMID: 30073557 PMCID: PMC6081827 DOI: 10.1186/s12284-018-0232-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/04/2018] [Indexed: 05/22/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) is a WD40 type protein that is involved in multiple signaling pathways and is conserved from prokaryotes to eukaryotes. Here we report that rice RACK1A (OsRACK1A) is regulated by circadian clocks and plays an important role in the salt stress response. OsRACK1A was found to follow a rhythmic expression profile under circadian conditions at both the transcription and the translation levels, although the expression was arrhythmic under salt stress. Analysis of plant survival rates, fresh weight, proline content, malondialdehyde, and chlorophyll showed that suppression of OsRACK1A enhanced tolerance to salt stress. The ion concentration in both roots and leaves revealed that OsRACK1A-suppressed transgenic rice could maintain low Na+ and high K+ concentrations. Furthermore, OsRACK1A-suppressed transgenic rice accumulated significantly more abscisic acid (ABA) and more transcripts of ABA- and stress-inducible genes compared with the wild-type plants. Real-time quantitative polymerase chain reaction analysis revealed that many stress-related genes, including APETALA 2/Ethylene Responsive Factor (AP2/ERF) transcription factors, were upregulated in the OsRACK1A-suppressed transgenic rice line. We identified putative interactors of OsRACK1A, and found that OsRACK1A interacted with many salt stress-responsive proteins directly. These results suggest that OsRACK1A is regulated by circadian rhythm, and involved in the regulation of salt stress responses.
Collapse
Affiliation(s)
- Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuzhu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jinyu Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jianfeng Yin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dahong Li
- Department of Biological Engineering, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Yan Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weifeng Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Burns EE, Keith BK, Refai MY, Bothner B, Dyer WE. Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:105-114. [PMID: 29169105 DOI: 10.1016/j.jplph.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Plants are routinely confronted with numerous biotic and abiotic stressors, and in response have evolved highly effective strategies of systemic acquired resistance (SAR) and systemic acquired acclimation (SAA), respectively. A much more evolutionarily recent abiotic stress is the application of herbicides to control weedy plants, and their intensive use has selected for resistant weed populations that cause substantial crop yield losses and increase production costs. Non-target site resistance (NTSR) to herbicides is rapidly increasing worldwide and is associated with alterations in generalized stress defense networks. This work investigated protein post-translational modifications associated with NTSR in multiple herbicide resistant (MHR) Avena fatua, and their commonalities with those of SAR and SAA. We used proteomic, biochemical, and immunological approaches to compare constitutive protein profiles in MHR and herbicide susceptible (HS) A. fatua populations. Phosphoproteome and redox proteome surveys showed that post-translational modifications of proteins with functions in core cellular processes were reduced in MHR plants, while those involved in xenobiotic and stress response, reactive oxygen species detoxification and redox maintenance, heat shock response, and intracellular signaling were elevated in MHR as compared to HS plants. More specifically, MHR plants contained constitutively elevated levels of three protein kinases including the lectin S-receptor-like serine/threonine-protein kinase LecRK2, a well-characterized component of SAR. Analyses of superoxide dismutase enzyme activity and protein levels did not reveal constitutive differences between MHR and HS plants. The overall results support the idea that herbicide stress is perceived similarly to other abiotic stresses, and that A. fatua NTSR shares analogous features with SAR and SAA. We speculate that MHR A. fatua's previous exposure to sublethal herbicide doses, as well as earlier evolution under a diversity of abiotic and biotic stressors, has led to a heightened state of stress preparedness that includes NTSR to a number of unrelated herbicides.
Collapse
Affiliation(s)
- Erin E Burns
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Barbara K Keith
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Mohammed Y Refai
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - Brian Bothner
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - William E Dyer
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
7
|
Liu Y, Wang B, Li J, Song Z, Lu B, Chi M, Yang B, Qin D, Lam YW, Li J, Xu D. Salt Response Analysis in Two Rice Cultivars at Seedling Stage. ACTA PHYSIOLOGIAE PLANTARUM 2017; 39:215. [PMID: 31736527 PMCID: PMC6858053 DOI: 10.1007/s11738-017-2514-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 05/03/2023]
Abstract
In order to explore the salt-stress responses of two rice varieties, the physiological responses and biochemical responses were investigated using proteomics and classical biochemical methods. The results showed that the seedling growth was inhibited under salt condition in two rice varieties, the seedling growth in the tolerant variety was better than the sensitive variety. The sensitive variety(L7) appeared obvious salt-injury under 3-day salt stress, the tolerant variety (T07339) keep normal growth under 7-day salt stress except that the shoot length was decreased. Through the growth-parameters analysis, most of them in L7 were restrained by salinity and most in T07339 were unaffected. In T07339, the fresh root weight, the content of chlorophyll and the fresh shoot weight were even increased after 7 days of salt stress. A comparison of two-dimensional gel electrophoresis (2-DGE) protein profiles revealed 8 differently expressed proteins. Four proteins were expressed in different pattern between sensitive and tolerant varieties. These results provide novel insights into the investigations of the salt-response proteins that involved in improved salt tolerance.
Collapse
Affiliation(s)
- Yan Liu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Baoxiang Wang
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Jian Li
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Zhaoqiang Song
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Baiguan Lu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Ming Chi
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Bo Yang
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington, VT 05405, USA
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Derong Qin
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| | - Ying-Wai Lam
- Department of Biology, The University of Vermont, Burlington, VT 05405, USA
- Vermont Genetics Network Proteomics Facility, The University of Vermont, Burlington, VT 05405, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Dayong Xu
- Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, China /Jiangsu Collaborative Innovation Center for Modern Corp Production
| |
Collapse
|
8
|
Wang Y, Tong X, Qiu J, Li Z, Zhao J, Hou Y, Tang L, Zhang J. A phosphoproteomic landscape of rice (Oryza sativa) tissues. PHYSIOLOGIA PLANTARUM 2017; 160:458-475. [PMID: 28382632 DOI: 10.1111/ppl.12574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/24/2017] [Indexed: 06/07/2023]
Abstract
Protein phosphorylation is an important posttranslational modification that regulates various plant developmental processes. Here, we report a comprehensive, quantitative phosphoproteomic profile of six rice tissues, including callus, leaf, root, shoot meristem, young panicle and mature panicle from Nipponbare by employing a mass spectrometry (MS)-based, label-free approach. A total of 7171 unique phosphorylation sites in 4792 phosphopeptides from 2657 phosphoproteins were identified, of which 4613 peptides were differentially phosphorylated (DP) among the tissues. Motif-X analysis revealed eight significantly enriched motifs, such as [sP], [Rxxs] and [tP] from the rice phosphosites. Hierarchical clustering analysis divided the DP peptides into 63 subgroups, which showed divergent spatial-phosphorylation patterns among tissues. These clustered proteins are functionally related to nutrition uptake in roots, photosynthesis in leaves and tissue differentiation in panicles. Phosphorylations were specific in the tissues where the target proteins execute their functions, suggesting that phosphorylation might be a key mechanism to regulate the protein activity in different tissues. This study greatly expands the rice phosphoproteomic dataset, and also offers insight into the regulatory roles of phosphorylation in tissue development and functions.
Collapse
Affiliation(s)
- Yifeng Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Xiaohong Tong
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Zhiyong Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Juan Zhao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Yuxuan Hou
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Jian Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
9
|
A Comprehensive Proteomic Survey of ABA-Induced Protein Phosphorylation in Rice (Oryza sativa L.). Int J Mol Sci 2017; 18:ijms18010060. [PMID: 28054942 PMCID: PMC5297695 DOI: 10.3390/ijms18010060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 11/27/2022] Open
Abstract
abscisic acid (ABA) is a key phytohormone regulating plant development and stress response. The signal transduction of ABA largely relies on protein phosphorylation. However; little is known about the phosphorylation events occurring during ABA signaling in rice thus far. By employing a label-free; MS (Mass Spectrometry)-based phosphoproteomic approach; we identified 2271 phosphosites of young rice seedlings and their intensity dynamics in response to ABA; during which 1060 proteins were found to be differentially phosphorylated. Western-blot analysis verified the differential phosphorylation pattern of D1, SMG1 and SAPK9 as indicated by the MS result; suggesting the high reliability of our phosphoproteomic data. The DP (differentially phosphorylated) proteins are extensively involved in ABA as well as other hormone signaling pathways. It is suggested that ABA antagonistically regulates brassinosteroid (BR) signaling via inhibiting BR receptor activity. The result of this study not only expanded our knowledge of rice phosphoproteome, but also shed more light on the pattern of protein phosphorylation in ABA signaling.
Collapse
|
10
|
Cheng J, Wang L, Zeng P, He Y, Zhou R, Zhang H, Wang Z. Identification of genes involved in rice seed priming in the early imbibition stage. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:61-69. [PMID: 26833720 DOI: 10.1111/plb.12438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 01/29/2016] [Indexed: 05/23/2023]
Abstract
Phase II of seed imbibition is a critical process during seed priming. To identify genes involved in rice seed priming, the altered proteins between the dry and imbibed (24 h) seeds were compared using a two-dimensional gel electrophoresis system in this study. Ten significantly changed proteins (fold change ≥ twofold; P < 0.01) were successfully identified, which could be categorised as carbohydrate and protein biosynthesis and metabolism-related, signalling-related, storage and stress-related proteins. A meta-analysis indicated that the highest expression of the identified genes was at the milk and dough stages and in the endosperm tissue. Quantitative real-time PCR analysis showed that there was significant variation in gene expression (except FAD-dependent oxidoreductase) in embryos during seed priming (0-48 h). The expression of genes associated with stress appeared at the early imbibition stage, while those associated with carbohydrate metabolism, protein synthesis and signalling increased at the late imbibition stage. Three identified proteins (glucose-1-phosphate adenylyltransferase large subunit, aminotransferase and prolamin precursor) had similar transcript and protein expression patterns in embryos. Based on phenotype and gene expression, the optimal stop time for seed priming is 24 h, when these three genes have relatively low expression, followed by significant induction during imbibition in embryos. These three genes are ideal candidate biomarkers for rice seed priming.
Collapse
Affiliation(s)
- J Cheng
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - L Wang
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - P Zeng
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Y He
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - R Zhou
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - H Zhang
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Z Wang
- Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
11
|
Impact of SNPs on Protein Phosphorylation Status in Rice (Oryza sativa L.). Int J Mol Sci 2016; 17:ijms17111738. [PMID: 27845739 PMCID: PMC5133773 DOI: 10.3390/ijms17111738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) are widely used in functional genomics and genetics research work. The high-quality sequence of rice genome has provided a genome-wide SNP and proteome resource. However, the impact of SNPs on protein phosphorylation status in rice is not fully understood. In this paper, we firstly updated rice SNP resource based on the new rice genome Ver. 7.0, then systematically analyzed the potential impact of Non-synonymous SNPs (nsSNPs) on the protein phosphorylation status. There were 3,897,312 SNPs in Ver. 7.0 rice genome, among which 9.9% was nsSNPs. Whilst, a total 2,508,261 phosphorylated sites were predicted in rice proteome. Interestingly, we observed that 150,197 (39.1%) nsSNPs could influence protein phosphorylation status, among which 52.2% might induce changes of protein kinase (PK) types for adjacent phosphorylation sites. We constructed a database, SNP_rice, to deposit the updated rice SNP resource and phosSNPs information. It was freely available to academic researchers at http://bioinformatics.fafu.edu.cn. As a case study, we detected five nsSNPs that potentially influenced heterotrimeric G proteins phosphorylation status in rice, indicating that genetic polymorphisms showed impact on the signal transduction by influencing the phosphorylation status of heterotrimeric G proteins. The results in this work could be a useful resource for future experimental identification and provide interesting information for better rice breeding.
Collapse
|
12
|
Wu X, Wang W. Commentary: Rapid Phosphoproteomic Effects of Abscisic Acid (ABA) on Wild-Type and ABA Receptor-Deficient A. thaliana Mutants. FRONTIERS IN PLANT SCIENCE 2016; 7:1062. [PMID: 27488055 PMCID: PMC4949249 DOI: 10.3389/fpls.2016.01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
|
13
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 DOI: 10.3389/fpls.2016.00571/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/27/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Kambham R Reddy
- Department of Plant and Soil Sciences, Mississippi State University Mississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University Mississippi State, Mississippi, MS, USA
| |
Collapse
|
14
|
Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:571. [PMID: 27200044 PMCID: PMC4855980 DOI: 10.3389/fpls.2016.00571] [Citation(s) in RCA: 563] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Accepted: 04/13/2016] [Indexed: 05/17/2023]
Abstract
Abiotic stress is a primary threat to fulfill the demand of agricultural production to feed the world in coming decades. Plants reduce growth and development process during stress conditions, which ultimately affect the yield. In stress conditions, plants develop various stress mechanism to face the magnitude of stress challenges, although that is not enough to protect them. Therefore, many strategies have been used to produce abiotic stress tolerance crop plants, among them, abscisic acid (ABA) phytohormone engineering could be one of the methods of choice. ABA is an isoprenoid phytohormone, which regulates various physiological processes ranging from stomatal opening to protein storage and provides adaptation to many stresses like drought, salt, and cold stresses. ABA is also called an important messenger that acts as the signaling mediator for regulating the adaptive response of plants to different environmental stress conditions. In this review, we will discuss the role of ABA in response to abiotic stress at the molecular level and ABA signaling. The review also deals with the effect of ABA in respect to gene expression.
Collapse
Affiliation(s)
- Saroj K. Sah
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Kambham R. Reddy
- Department of Plant and Soil Sciences, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| | - Jiaxu Li
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State UniversityMississippi State, Mississippi, MS, USA
| |
Collapse
|
15
|
Laino P, Russo MP, Guardo M, Reforgiato-Recupero G, Valè G, Cattivelli L, Moliterni VMC. Rootstock-scion interaction affecting citrus response to CTV infection: a proteomic view. PHYSIOLOGIA PLANTARUM 2016; 156:444-67. [PMID: 26459956 DOI: 10.1111/ppl.12395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/28/2015] [Accepted: 09/12/2015] [Indexed: 05/19/2023]
Abstract
Citrus tristeza virus (CTV) is the causal agent of various diseases with dramatic effects on citrus crops worldwide. Most Citrus species, grown on their own roots, are symptomless hosts for many CTV isolates. However, depending on different scion-rootstock combination, CTV infection should result in distinct syndromes, being 'tristeza' the more severe one, leading to a complete decline of the susceptible plants in a few weeks. Transcriptomic analyses revealed several genes involved either in defense response, or systemic acquired resistance, as well as transcription factors and components of the phosphorylation cascades, to be differentially regulated during CTV infection in Citrus aurantifolia species. To date little is known about the molecular mechanism of this host-pathogen interaction, and about the rootstock effect on citrus response to CTV infection. In this work, the response to CTV infection has been investigated in tolerant and susceptible scion-rootstock combinations by two-dimensional gel electrophoresis (2DE). A total of 125 protein spots have been found to be differently accumulated and/or phosphorylated between the two rootstock combinations. Downregulation in tolerant plants upon CTV infection was detected for proteins involved in reactive oxygen species (ROS) scavenging and defense response, suggesting a probable acclimation response able to minimize the systemic effects of virus infection. Some of these proteins resulted to be modulated also in absence of virus infection, revealing a rootstock effect on scion proteome modulation. Moreover, the phospho-modulation of proteins involved in ROS scavenging and defense response, further supports their involvement either in scion-rootstock crosstalk or in the establishment of tolerance/susceptibility to CTV infection.
Collapse
Affiliation(s)
- Paolo Laino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Maria P Russo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Maria Guardo
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Giuseppe Reforgiato-Recupero
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per l'Agrumicoltura e le Colture Mediterranee, Acireale (CT), Italy
| | - Giampiero Valè
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rice Research Unit, Vercelli, Italy
| | - Luigi Cattivelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| | - Vita M C Moliterni
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Genomics Research Centre, Fiorenzuola d'Arda (PC), Italy
| |
Collapse
|
16
|
Xu E, Chen M, He H, Zhan C, Cheng Y, Zhang H, Wang Z. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice. FRONTIERS IN PLANT SCIENCE 2016; 7:2006. [PMID: 28105039 PMCID: PMC5213780 DOI: 10.3389/fpls.2016.02006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/16/2016] [Indexed: 05/20/2023]
Abstract
Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice.
Collapse
Affiliation(s)
- Enshun Xu
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Mingming Chen
- Department of Plant Science, College of Biological Sciences, Henan Agricultural UniversityZhengzhou, China
| | - Hui He
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Chengfang Zhan
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Yanhao Cheng
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
| | - Hongsheng Zhang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Hongsheng Zhang
| | - Zhoufei Wang
- The Laboratory of Seed Science and Technology, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural UniversityNanjing, China
- Zhoufei Wang
| |
Collapse
|
17
|
Černý M, Novák J, Habánová H, Cerna H, Brzobohatý B. Role of the proteome in phytohormonal signaling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:1003-15. [PMID: 26721743 DOI: 10.1016/j.bbapap.2015.12.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/30/2015] [Accepted: 12/16/2015] [Indexed: 02/07/2023]
Abstract
Phytohormones are orchestrators of plant growth and development. A lot of time and effort has been invested in attempting to comprehend their complex signaling pathways but despite success in elucidating some key components, molecular mechanisms in the transduction pathways are far from being resolved. The last decade has seen a boom in the analysis of phytohormone-responsive proteins. Abscisic acid, auxin, brassinosteroids, cytokinin, ethylene, gibberellins, nitric oxide, oxylipins, strigolactones, salicylic acid--all have been analyzed to various degrees. For this review, we collected data from proteome-wide analyses resulting in a list of over 2000 annotated proteins from Arabidopsis proteomics and nearly 500 manually filtered protein families merged from all the data available from different species. We present the currently accepted model of phytohormone signaling, highlight the contributions made by proteomic-based research and describe the key nodes in phytohormone signaling networks, as revealed by proteome analysis. These include ubiquitination and proteasome mediated degradation, calcium ion signaling, redox homeostasis, and phosphoproteome dynamics. Finally, we discuss potential pitfalls and future perspectives in the field. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.
Collapse
Affiliation(s)
- Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Jan Novák
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Habánová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Hana Cerna
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR, v.v.i. and CEITEC - Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, CZ-613 00 Brno, Czech Republic.
| |
Collapse
|
18
|
Quantitative iTRAQ-based proteomic analysis of phosphoproteins and ABA-regulated phosphoproteins in maize leaves under osmotic stress. Sci Rep 2015; 5:15626. [PMID: 26503333 PMCID: PMC4650667 DOI: 10.1038/srep15626] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022] Open
Abstract
Abscisic acid (ABA) regulates various developmental processes and stress responses in plants.
Protein phosphorylation/dephosphorylation is a central post-translational modification (PTM) in ABA
signaling. However, the phosphoproteins regulated by ABA under osmotic stress remain unknown in
maize. In this study, maize mutant vp5 (deficient in ABA biosynthesis) and wild-type
Vp5 were used to identify leaf phosphoproteins regulated by ABA under osmotic stress. Up to
4052 phosphopeptides, corresponding to 3017 phosphoproteins, were identified by Multiplex run
iTRAQ-based quantitative proteomic and LC-MS/MS methods. The 4052 phosphopeptides contained 5723
non-redundant phosphosites; 512 phosphopeptides (379 in Vp5, 133 in vp5) displayed at
least a 1.5-fold change of phosphorylation level under osmotic stress, of which 40 shared common in
both genotypes and were differentially regulated by ABA. Comparing the signaling pathways involved
in vp5 response to osmotic stress and those that in Vp5, indicated that ABA played a
vital role in regulating these pathways related to mRNA synthesis, protein synthesis and
photosynthesis. Our results provide a comprehensive dataset of phosphopeptides and phosphorylation
sites regulated by ABA in maize adaptation to osmotic stress. This will be helpful to elucidate the
ABA-mediate mechanism of maize endurance to drought by triggering phosphorylation or
dephosphorylation cascades.
Collapse
|
19
|
Rice_Phospho 1.0: a new rice-specific SVM predictor for protein phosphorylation sites. Sci Rep 2015; 5:11940. [PMID: 26149854 PMCID: PMC4493637 DOI: 10.1038/srep11940] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/04/2015] [Indexed: 12/30/2022] Open
Abstract
Experimentally-determined or computationally-predicted protein phosphorylation sites for distinctive species are becoming increasingly common. In this paper, we compare the predictive performance of a novel classification algorithm with different encoding schemes to develop a rice-specific protein phosphorylation site predictor. Our results imply that the combination of Amino acid occurrence Frequency with Composition of K-Spaced Amino Acid Pairs (AF-CKSAAP) provides the best description of relevant sequence features that surround a phosphorylation site. A support vector machine (SVM) using AF-CKSAAP achieves the best performance in classifying rice protein phophorylation sites when compared to the other algorithms. We have used SVM with AF-CKSAAP to construct a rice-specific protein phosphorylation sites predictor, Rice_Phospho 1.0 (http://bioinformatics.fafu.edu.cn/rice_phospho1.0). We measure the Accuracy (ACC) and Matthews Correlation Coefficient (MCC) of Rice_Phospho 1.0 to be 82.0% and 0.64, significantly higher than those measures for other predictors such as Scansite, Musite, PlantPhos and PhosphoRice. Rice_Phospho 1.0 also successfully predicted the experimentally identified phosphorylation sites in LOC_Os03g51600.1, a protein sequence which did not appear in the training dataset. In summary, Rice_phospho 1.0 outputs reliable predictions of protein phosphorylation sites in rice, and will serve as a useful tool to the community.
Collapse
|
20
|
Fan S, Meng Y, Song M, Pang C, Wei H, Liu J, Zhan X, Lan J, Feng C, Zhang S, Yu S. Quantitative phosphoproteomics analysis of nitric oxide-responsive phosphoproteins in cotton leaf. PLoS One 2014; 9:e94261. [PMID: 24714030 PMCID: PMC3979775 DOI: 10.1371/journal.pone.0094261] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/14/2014] [Indexed: 11/24/2022] Open
Abstract
Knowledge of phosphorylation events and their regulation is crucial to understanding the functional biology of plant proteins, but very little is currently known about nitric oxide-responsive phosphorylation in plants. Here, we report the first large-scale, quantitative phosphoproteome analysis of cotton (Gossypium hirsutum) treated with sodium nitroprusside (nitric oxide donor) by utilizing the isobaric tag for relative and absolute quantitation (iTRAQ) method. A total of 1315 unique phosphopeptides, spanning 1528 non-redundant phosphorylation sites, were detected from 1020 cotton phosphoproteins. Among them, 183 phosphopeptides corresponding to 167 phosphoproteins were found to be differentially phosphorylated in response to sodium nitroprusside. Several of the phosphorylation sites that we identified, including RQxS, DSxE, TxxxxSP and SPxT, have not, to our knowledge, been reported to be protein kinase sites in other species. The phosphoproteins identified are involved in a wide range of cellular processes, including signal transduction, RNA metabolism, intracellular transport and so on. This study reveals unique features of the cotton phosphoproteome and provides new insight into the biochemical pathways that are regulated by nitric oxide.
Collapse
Affiliation(s)
- Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province, China
| | - Yanyan Meng
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjing River, Institute of Economic Crop, Hubei Academy of Agricultural Science, Wuhan, Hubei Province, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province, China
- College of Agronomy, Northwest A & F University, Yangling, Shaanxi Province, China
| | - Xianjin Zhan
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjing River, Institute of Economic Crop, Hubei Academy of Agricultural Science, Wuhan, Hubei Province, China
| | - Jiayang Lan
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjing River, Institute of Economic Crop, Hubei Academy of Agricultural Science, Wuhan, Hubei Province, China
| | - Changhui Feng
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjing River, Institute of Economic Crop, Hubei Academy of Agricultural Science, Wuhan, Hubei Province, China
| | - Shengxi Zhang
- Key Laboratory of Cotton Biology and Breeding in the Middle Reaches of the Changjing River, Institute of Economic Crop, Hubei Academy of Agricultural Science, Wuhan, Hubei Province, China
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province, China
| |
Collapse
|
21
|
Chen F, Jiang L, Zheng J, Huang R, Wang H, Hong Z, Huang Y. Identification of differentially expressed proteins and phosphorylated proteins in rice seedlings in response to strigolactone treatment. PLoS One 2014; 9:e93947. [PMID: 24699514 PMCID: PMC3974870 DOI: 10.1371/journal.pone.0093947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 03/11/2014] [Indexed: 11/30/2022] Open
Abstract
Strigolactones (SLs) are recently identified plant hormones that inhibit shoot branching and control various aspects of plant growth, development and interaction with parasites. Previous studies have shown that plant D10 protein is a carotenoid cleavage dioxygenase that functions in SL biosynthesis. In this work, we used an allelic SL-deficient d10 mutant XJC of rice (Oryza sativa L. spp. indica) to investigate proteins that were responsive to SL treatment. When grown in darkness, d10 mutant seedlings exhibited elongated mesocotyl that could be rescued by exogenous application of SLs. Soluble protein extracts were prepared from d10 mutant seedlings grown in darkness in the presence of GR24, a synthetic SL analog. Soluble proteins were separated on two-dimensional gels and subjected to proteomic analysis. Proteins that were expressed differentially and phosphoproteins whose phosphorylation status changed in response to GR24 treatment were identified. Eight proteins were found to be induced or down-regulated by GR24, and a different set of 8 phosphoproteins were shown to change their phosphorylation intensities in the dark-grown d10 seedlings in response to GR24 treatment. Analysis of these proteins revealed that they are important enzymes of the carbohydrate and amino acid metabolic pathways and key components of the cellular energy generation machinery. These proteins may represent potential targets of the SL signaling pathway. This study provides new insight into the complex and negative regulatory mechanism by which SLs control shoot branching and plant development.
Collapse
Affiliation(s)
- Fangyu Chen
- School of Life Sciences, Xiamen University, Xiamen, China
| | | | | | - Rongyu Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- Department of Plant, Soil, and Entomological Sciences, and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Idaho, United States of America
| | - Houcong Wang
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Zonglie Hong
- School of Life Sciences, Xiamen University, Xiamen, China
- Department of Plant, Soil, and Entomological Sciences, and Program of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Idaho, United States of America
- * E-mail: (ZH); (YH)
| | - Yumin Huang
- School of Life Sciences, Xiamen University, Xiamen, China
- * E-mail: (ZH); (YH)
| |
Collapse
|
22
|
Chen X, Lin S, Liu Q, Huang J, Zhang W, Lin J, Wang Y, Ke Y, He H. Expression and interaction of small heat shock proteins (sHsps) in rice in response to heat stress. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:818-28. [DOI: 10.1016/j.bbapap.2014.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 02/12/2014] [Indexed: 11/24/2022]
|
23
|
Mason ME, Koch JL, Krasowski M, Loo J. Comparisons of protein profiles of beech bark disease resistant and susceptible American beech (Fagus grandifolia). Proteome Sci 2013; 11:2. [PMID: 23317283 PMCID: PMC3575302 DOI: 10.1186/1477-5956-11-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 12/23/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Beech bark disease is an insect-fungus complex that damages and often kills American beech trees and has major ecological and economic impacts on forests of the northeastern United States and southeastern Canadian forests. The disease begins when exotic beech scale insects feed on the bark of trees, and is followed by infection of damaged bark tissues by one of the Neonectria species of fungi. Proteomic analysis was conducted of beech bark proteins from diseased trees and healthy trees in areas heavily infested with beech bark disease. All of the diseased trees had signs of Neonectria infection such as cankers or fruiting bodies. In previous tests reported elsewhere, all of the diseased trees were demonstrated to be susceptible to the scale insect and all of the healthy trees were demonstrated to be resistant to the scale insect. Sixteen trees were sampled from eight geographically isolated stands, the sample consisting of 10 healthy (scale-resistant) and 6 diseased/infested (scale-susceptible) trees. RESULTS Proteins were extracted from each tree and analysed in triplicate by isoelectric focusing followed by denaturing gel electrophoresis. Gels were stained and protein spots identified and intensity quantified, then a statistical model was fit to identify significant differences between trees. A subset of BBD differential proteins were analysed by mass spectrometry and matched to known protein sequences for identification. Identified proteins had homology to stress, insect, and pathogen related proteins in other plant systems. Protein spots significantly different in diseased and healthy trees having no stand or disease-by-stand interaction effects were identified. CONCLUSIONS Further study of these proteins should help to understand processes critical to resistance to beech bark disease and to develop biomarkers for use in tree breeding programs and for the selection of resistant trees prior to or in early stages of BBD development in stands. Early identification of resistant trees (prior to the full disease development in an area) will allow forest management through the removal of susceptible trees and their root-sprouts prior to the onset of disease, allowing management and mitigation of costs, economic impact, and impacts on ecological systems and services.
Collapse
Affiliation(s)
- Mary E Mason
- US Forest Service, Northern Research Station, 359 Main Rd, Delaware, OH, 43015, USA.
| | | | | | | |
Collapse
|
24
|
Zhang Z, Chen J, Lin S, Li Z, Cheng R, Fang C, Chen H, Lin W. Proteomic and phosphoproteomic determination of ABA's effects on grain-filling of Oryza sativa L. inferior spikelets. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:259-73. [PMID: 22325889 DOI: 10.1016/j.plantsci.2011.11.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/16/2011] [Accepted: 11/19/2011] [Indexed: 05/08/2023]
Abstract
Cultivars of rice (Oryza sativa L.), especially the large-spikelet-type, often fail to achieve the high yield potential due to poor grain-filling of their inferior (late-flowering) spikelets. The superior (early-flowering) spikelets normally contain more abscisic acid (ABA) than the inferior spikelets. It was speculated that ABA might play a pivotal role in the grain-filling of inferior spikelets. To understand the molecular regulation involved in this process, we employed the 2-D gel-based comparative proteomic and phosphoproteomic analyses to search for differentially expressed proteins in the inferior spikelets under exogenous ABA treatment. A total of 111 significantly differential proteins and 31 phosphoproteins were found in the inferior spikelets after treatment. Among them, 100 proteins and 23 phosphoproteins were identified by using MALDI-TOF/TOF MS. In addition, the gene expression patterns of the inferior spikelets were confirmed with RT-PCR. These differentially expressed proteins are active in defense response, carbohydrate, protein, amino acid, energy and secondary metabolisms, as well as cell development and photosynthesis. The results suggest that the grain-filling of rice inferior spikelets is regulated by ABA through some proteins and phosphoproteins participating in carbon, nitrogen and energy metabolisms.
Collapse
Affiliation(s)
- Zhixing Zhang
- Institute of Agricultural Ecology, Fujian Agricultural and Forestry University, Fuzhou, Fujian 35002, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nam MH, Huh SM, Kim KM, Park WJ, Seo JB, Cho K, Kim DY, Kim BG, Yoon IS. Comparative proteomic analysis of early salt stress-responsive proteins in roots of SnRK2 transgenic rice. Proteome Sci 2012; 10:25. [PMID: 22462395 PMCID: PMC3364906 DOI: 10.1186/1477-5956-10-25] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 03/31/2012] [Indexed: 01/14/2023] Open
Abstract
Background The rice roots are highly salt-sensitive organ and primary root growth is rapidly suppressed by salt stress. Sucrose nonfermenting 1-related protein kinase2 (SnRK2) family is one of the key regulator of hyper-osmotic stress signalling in various plant cells. To understand early salt response of rice roots and identify SnRK2 signaling components, proteome changes of transgenic rice roots over-expressing OSRK1, a rice SnRK2 kinase were investigated. Results Proteomes were analyzed by two-dimensional electrophoresis and protein spots were identified by LC-MS/MS from wild type and OSRK1 transgenic rice roots exposed to 150 mM NaCl for either 3 h or 7 h. Fifty two early salt -responsive protein spots were identified from wild type rice roots. The major up-regulated proteins were enzymes related to energy regulation, amino acid metabolism, methylglyoxal detoxification, redox regulation and protein turnover. It is noted that enzymes known to be involved in GA-induced root growth such as fructose bisphosphate aldolase and methylmalonate semialdehyde dehydrogenase were clearly down-regulated. In contrast to wild type rice roots, only a few proteins were changed by salt stress in OSRK1 transgenic rice roots. A comparative quantitative analysis of the proteome level indicated that forty three early salt-responsive proteins were magnified in transgenic rice roots at unstressed condition. These proteins contain single or multiple potential SnRK2 recognition motives. In vitro kinase assay revealed that one of the identified proteome, calreticulin is a good substrate of OSRK1. Conclusions Our present data implicate that rice roots rapidly changed broad spectrum of energy metabolism upon challenging salt stress, and suppression of GA signaling by salt stress may be responsible for the rapid arrest of root growth and development. The broad spectrum of functional categories of proteins affected by over-expression of OSRK1 indicates that OSRK1 is an upstream regulator of stress signaling in rice roots. Enzymes involved in glycolysis, branched amino acid catabolism, dnaK-type molecular chaperone, calcium binding protein, Sal T and glyoxalase are potential targets of OSRK1 in rice roots under salt stress that need to be further investigated.
Collapse
Affiliation(s)
- Myung Hee Nam
- Bio-Crops Development Division, National Academy of Agricultural Sciences, Suwon 441-857, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Que S, Li K, Chen M, Wang Y, Yang Q, Zhang W, Zhang B, Xiong B, He H. PhosphoRice: a meta-predictor of rice-specific phosphorylation sites. PLANT METHODS 2012; 8:5. [PMID: 22305189 PMCID: PMC3395875 DOI: 10.1186/1746-4811-8-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/03/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND As a result of the growing body of protein phosphorylation sites data, the number of phosphoprotein databases is constantly increasing, and dozens of tools are available for predicting protein phosphorylation sites to achieve fast automatic results. However, none of the existing tools has been developed to predict protein phosphorylation sites in rice. RESULTS In this paper, the phosphorylation site predictors, NetPhos 2.0, NetPhosK, Kinasephos, Scansite, Disphos and Predphosphos, were integrated to construct meta-predictors of rice-specific phosphorylation sites using several methods, including unweighted voting, unreduced weighted voting, reduced unweighted voting and weighted voting strategies. PhosphoRice, the meta-predictor produced by using weighted voting strategy with parameters selected by restricted grid search and conditional random search, performed the best at predicting phosphorylation sites in rice. Its Matthew's Correlation Coefficient (MCC) and Accuracy (ACC) reached to 0.474 and 73.8%, respectively. Compared to the best individual element predictor (Disphos_default), PhosphoRice archieved a significant increase in MCC of 0.071 (P < 0.01), and an increase in ACC of 4.6%. CONCLUSIONS PhosphoRice is a powerful tool for predicting unidentified phosphorylation sites in rice. Compared to the existing methods, we found that our tool showed greater robustness in ACC and MCC. PhosphoRice is available to the public at http://bioinformatics.fafu.edu.cn/PhosphoRice.
Collapse
Affiliation(s)
- Shufu Que
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kuan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaobin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenfeng Zhang
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoqian Zhang
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bangshu Xiong
- Key Laboratory of Nondestructive Test of Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China
| | - Huaqin He
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
27
|
Chen X, Zhang W, Zhang B, Zhou J, Wang Y, Yang Q, Ke Y, He H. Phosphoproteins regulated by heat stress in rice leaves. Proteome Sci 2011; 9:37. [PMID: 21718517 PMCID: PMC3150237 DOI: 10.1186/1477-5956-9-37] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 06/30/2011] [Indexed: 12/23/2022] Open
Abstract
Background High temperature is a critical abiotic stress that reduces crop yield and quality. Rice (Oryza sativa L.) plants remodel their proteomes in response to high temperature stress. Moreover, phosphorylation is the most common form of protein post-translational modification (PTM). However, the differential expression of phosphoproteins induced by heat in rice remains unexplored. Methods Phosphoprotein in the leaves of rice under heat stress were displayed using two-dimensional electrophoresis (2-DE) and Pro-Q Diamond dye. Differentially expressed phosphoproteins were identified by MALDI-TOF-TOF-MS/MS and confirmed by Western blotting. Results Ten heat-phosphoproteins were identified from twelve protein spots, including ribulose bisphos-phate carboxylase large chain, 2-Cys peroxiredoxin BAS1, putative mRNA binding protein, Os01g0791600 protein, OSJNBa0076N16.12 protein, putative H(+)-transporting ATP synthase, ATP synthase subunit beta and three putative uncharacterized proteins. The identification of ATP synthase subunit beta was further validated by Western-blotting. Four phosphorylation site predictors were also used to predict the phosphorylation sites and the specific kinases for these 10 phosphoproteins. Conclusion Heat stress induced the dephosphorylation of RuBisCo and the phosphorylation of ATP-β, which decreased the activities of RuBisCo and ATP synthase. The observed dephosphorylation of the mRNA binding protein and 2-Cys peroxiredoxin may be involved in the transduction of heat-stress signaling, but the functional importance of other phosphoproteins, such as H+-ATPase, remains unknown.
Collapse
Affiliation(s)
- Xinhai Chen
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenfeng Zhang
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baoqian Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiechao Zhou
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongfei Wang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaobin Yang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqin Ke
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huaqin He
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou 350002, China.,College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
28
|
Zhang R, Yang C, Wang C, Wei Z, Xia D, Wang Y, Liu G, Wang Y. Time-course analyses of abscisic acid level and the expression of genes involved in abscisic acid biosynthesis in the leaves of Betula platyphylla. Mol Biol Rep 2011; 39:2505-13. [PMID: 21681433 DOI: 10.1007/s11033-011-1002-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 06/01/2011] [Indexed: 11/27/2022]
Abstract
Abscisic acid (ABA) is a plant hormone regulating the essential physiological processes of plants and plant responses to various environmental stresses. Recent studies revealed that the key enzymes involved in ABA biosynthesis were zeaxanthin epoxidase (ZEP), 9-cis-epoxycarotenoid dioxygenases (NCED), short-chain dehydrogenase/reductase (SDR), and ABA-aldehyde oxidase (AAO). In this study, we cloned 12 unique genes potentially involved in ABA synthesis, including 5 of BpNCEDs, 1 of BpAAO, and 6 of BpZEPs from birch leaves. We analyzed the time-course expression of these 12 genes during the phase from May to August by real time reverse transcriptase-polymerase chain reaction (RT-PCR). Further, we determined birch endogenous ABA content during this period by liquid chromatography tandem mass spectrometry (LC-MS/MS). The results indicated that ABA level significantly (P < 0.05) increased during the early stages of development and ABA was present in birch leaves throughout the studied period, suggesting that endogenous ABA is necessary for the normal growth and development of plants. The correlation between the expression of above-mentioned genes and ABA levels was analyzed by Pearson correlation analysis. The results revealed that the expression of three genes, namely, BpNCED4, BpNCED5 and BpZE6 significantly (P < 0.05) correlated with the ABA level. Therefore, these three genes may play important roles in ABA biosynthesis.
Collapse
Affiliation(s)
- Rongshu Zhang
- Key Laboratory of Forest Tree Genetic Improvement and Biotechnology Ministry of Education, Northeast Forestry University, 26 Hexing Road, Harbin 150040, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Alvarez S, Hicks LM, Pandey S. ABA-dependent and -independent G-protein signaling in Arabidopsis roots revealed through an iTRAQ proteomics approach. J Proteome Res 2011; 10:3107-22. [PMID: 21545083 DOI: 10.1021/pr2001786] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heterotrimeric G-proteins are important signal transducers in all eukaryotes. The plant hormone abscisic acid (ABA) has emerged as a key regulator of G-protein-mediated signaling pathways in plants. ABA-regulation of G-protein signaling involves both conventional and novel mechanisms. We have utilized the null mutant of the Arabidopsis G-protein α subunit gpa1 to evaluate to what extent ABA-dependent changes in the proteome are regulated by G-proteins. We used Arabidopsis root tissue as both ABA and G-proteins, individually and in combination, affect root growth and development. We identified 720 proteins, of which 42 showed GPA1-dependent and 74 showed ABA-dependent abundance changes. A majority of ABA-regulated proteins were also GPA1-dependent. Our data provide insight into how tissue specificity might be achieved in ABA-regulated G-protein signaling. A number of proteins related to ER body formation and intracellular trafficking were altered in gpa1 mutant, suggesting a novel role for GPA1 in these pathways. A potential link between ABA metabolism and ABA signaling was also revealed. The comparison of protein abundance changes in the absence of ABA offers clues to the role of GPA1 in ABA-independent signaling pathways, for example, regulation of cell division. These findings substantially contribute to our knowledge of G-protein signaling mechanisms in plants.
Collapse
Affiliation(s)
- Sophie Alvarez
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, USA
| | | | | |
Collapse
|
30
|
Agrawal GK, Rakwal R. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics 2011; 11:1630-49. [DOI: 10.1002/pmic.201000696] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/05/2011] [Accepted: 01/24/2011] [Indexed: 12/13/2022]
|
31
|
Navrot N, Finnie C, Svensson B, Hägglund P. Plant redox proteomics. J Proteomics 2011; 74:1450-62. [PMID: 21406256 DOI: 10.1016/j.jprot.2011.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/17/2022]
Abstract
In common with other aerobic organisms, plants are exposed to reactive oxygen species resulting in formation of post-translational modifications related to protein oxidoreduction (redox PTMs) that may inflict oxidative protein damage. Accumulating evidence also underscores the importance of redox PTMs in regulating enzymatic activities and controlling biological processes in plants. Notably, proteins controlling the cellular redox state, e.g. thioredoxin and glutaredoxin, appear to play dual roles to maintain oxidative stress resistance and regulate signal transduction pathways via redox PTMs. To get a comprehensive overview of these types of redox-regulated pathways there is therefore an emerging interest to monitor changes in redox PTMs on a proteome scale. Compared to some other PTMs, e.g. protein phosphorylation, redox PTMs have received less attention in plant proteome analysis, possibly due to technical challenges such as with maintaining the in vivo redox states of proteins and the lability of certain PTMs, e.g. nitrosylations, during sample preparation and mass spectrometric analysis. The present review article provides an overview of the recent developments in the emerging area of plant redox proteomics.
Collapse
Affiliation(s)
- Nicolas Navrot
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Building 224, DK-2800, Kgs Lyngby, Denmark
| | | | | | | |
Collapse
|
32
|
Goggin DE, Powles SB, Steadman KJ. Selection for low or high primary dormancy in Lolium rigidum Gaud seeds results in constitutive differences in stress protein expression and peroxidase activity. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1037-47. [PMID: 20974739 PMCID: PMC3022398 DOI: 10.1093/jxb/erq334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 05/20/2023]
Abstract
Seed dormancy in wild Lolium rigidum Gaud (annual ryegrass) populations is highly variable and not well characterized at the biochemical level. To identify some of the determinants of dormancy level in these seeds, the proteomes of subpopulations selected for low and high levels of primary dormancy were compared by two-dimensional polyacrylamide gel electrophoresis of extracts from mature, dry seeds. High-dormancy seeds showed higher expression of small heat shock proteins, enolase, and glyoxalase I than the low-dormancy seeds. The functional relevance of these differences in protein expression was confirmed by the fact that high-dormancy seeds were more tolerant to high temperatures imposed at imbibition and had consistently higher glyoxalase I activity over 0-42 d dark stratification. Higher expression of a putative glutathione peroxidase in low-dormancy seeds was not accompanied by higher activity, but these seeds had a slightly more oxidized glutathione pool and higher total peroxidase activity. Overall, these biochemical and physiological differences suggest that L. rigidum seeds selected for low dormancy are more prepared for rapid germination via peroxidase-mediated cell wall weakening, whilst seeds selected for high dormancy are constitutively prepared to survive environmental stresses, even in the absence of stress during seed development.
Collapse
Affiliation(s)
- Danica E Goggin
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, 35 Stirling Highway Crawley 6009, Western Australia, Australia.
| | | | | |
Collapse
|
33
|
Sghaier-Hammami B, Jorrín-Novo JV, Gargouri-Bouzid R, Drira N. Abscisic acid and sucrose increase the protein content in date palm somatic embryos, causing changes in 2-DE profile. PHYTOCHEMISTRY 2010; 71:1223-36. [PMID: 20605176 DOI: 10.1016/j.phytochem.2010.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 05/06/2010] [Accepted: 05/07/2010] [Indexed: 05/22/2023]
Abstract
Various supplements (abscisic acid (ABA) or sucrose) were added to the initial embryo culture medium (M3) with the aim of improving the vigour of vitroplants deriving from date palm somatic embryogenesis. ABA (20 and 40 microM) and sucrose (90 g/l) applied for 4 and 2 weeks respectively increased embryo thickness, with no apparent difference in length. ABA (5-40 microM) increased embryo proliferation rate. Somatic embryos maintained in modified M3 (M3 supplemented with ABA and an increased sucrose concentration) contained a higher amount of protein than those maintained in initial M3 (no ABA, 30 g/l of sucrose), with a 1.5-1.7-fold increase depending on the compound and concentration assayed. The 1-D and 2-DE protein profiles showed qualitative and quantitative differences between the somatic embryos cultured in initial M3 (control) and in modified M3. Statistical analysis of spot intensity was performed by principal component analysis, yielding two accurate groups of samples and determining the most discriminating spots. Samples were also clustered using Euclidean distance with an average linkage algorithm. Thirty-four variable spots were identified using mass spectrometry analysis. Identified proteins were classified into the following functional categories: energy metabolism (five proteins); protein translation, folding and degradation (9); redox maintenance (5); cytoskeleton (3); storage protein (2); and with no assigned function as (10). While "up-regulation" of stress-related proteins and "down-regulation" of energy metabolism proteins were observed in somatic embryos matured in M3 supplemented with ABA, storage proteins (legumin) were "up-regulated" in somatic embryos matured in M3 supplemented with increased sucrose.
Collapse
Affiliation(s)
- Besma Sghaier-Hammami
- Laboratoire des Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Sfax, Tunisia.
| | | | | | | |
Collapse
|
34
|
Kang S, Chen S, Dai S. Proteomics characteristics of rice leaves in response to environmental factors. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11515-010-0027-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I. Plant proteomics update (2007–2008): Second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteomics 2009; 72:285-314. [DOI: 10.1016/j.jprot.2009.01.026] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Ke Y, Han G, He H, Li J. Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun 2008; 379:133-8. [PMID: 19103168 DOI: 10.1016/j.bbrc.2008.12.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Accepted: 12/07/2008] [Indexed: 10/21/2022]
Abstract
Drought is the largest constraint on rice production in Asia. Protein phosphorylation has been recognized as an important mechanism for environmental stress signaling. However, the differential expression of proteins and phosphoproteins induced by drought in rice is still largely unknown. In this paper, we report the identification of differentially expressed proteins and phosphoproteins induced by drought in rice using proteomic approaches. Three drought-responsive proteins were identified. Late embryogenesis abundant (LEA)-like protein and chloroplast Cu-Zn superoxide dismutase (SOD) were up-regulated by drought whereas Rieske Fe-S precursor protein was down-regulated. Ten drought-responsive phosphoproteins were identified: NAD-malate dehydrogenase, OSJNBa0084K20.14 protein, abscisic acid- and stress-inducible protein, ribosomal protein, drought-induced S-like ribonuclease, ethylene-inducible protein, guanine nucleotide-binding protein beta subunit-like protein, r40c1 protein, OSJNBb0039L24.13 protein and germin-like protein 1. Seven of these phosphoproteins have not previously been reported to be involved in rice drought stress. These results provide new insight into the regulatory mechanism of drought-induced proteins and implicate several previously unrecognized proteins in response to drought stress.
Collapse
Affiliation(s)
- Yuqin Ke
- Key Laboratory of Ministry of Education for Genetic, Breeding and Multiple Utilization of Crops, Fuzhou, China
| | | | | | | |
Collapse
|