1
|
Duvivier L, Gerard L, Diaz A, Gillet JP. Linking ABC transporters to the hallmarks of cancer. Trends Cancer 2024; 10:124-134. [PMID: 37884430 DOI: 10.1016/j.trecan.2023.09.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Human ATP-binding cassette (ABC) transporters are ubiquitously expressed and transport a broad range of endogenous and xenobiotic substrates across extra- and intracellular membranes. Mutations in ABC genes cause 21 monogenic diseases, and polymorphisms in these genes are associated with susceptibility to complex diseases. ABC transporters also play a major role in drug bioavailability, and they mediate multidrug resistance in cancer. At least 13 ABC transporters were shown to be involved in drug resistance in vitro. In the past decade, efforts have been made to elucidate their roles in tumor biology. Herein, we explore their involvement in tumorigenesis, focusing on the hallmarks of cells as they make their way from normalcy to neoplastic growth states.
Collapse
Affiliation(s)
- Laurent Duvivier
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Louise Gerard
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Adriana Diaz
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium
| | - Jean-Pierre Gillet
- Laboratory of Molecular Cancer Biology, URPhyM, NARILIS, University of Namur, Namur, Belgium.
| |
Collapse
|
2
|
Xie YY, Lu YW, Yu GR. The protective effects of hyperoside on Ang II-mediated apoptosis of bEnd.3 cells and injury of blood-brain barrier model in vitro. BMC Complement Med Ther 2022; 22:157. [PMID: 35698113 PMCID: PMC9195266 DOI: 10.1186/s12906-022-03635-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hypertension and its associated dysfunction of the blood-brain barrier (BBB) are considered to contribute to cerebral small vessel disease (cSVD). Angiotensin II (Ang II), as an important vasoactive peptide of the renin-angiotensin system (RAS), is not only a pivotal molecular signal in hypertension, but also causes BBB leakage, cSVD and its related cognitive impair. Hyperoside (Hyp), a flavone glycoside, has antioxidant, antiphlogistic and anti-apoptosis effects. In this study, we investigate the protection of Hyp on apoptosis of bEnd.3 cells and BBB disruption in vitro induced by Ang II.
Methods
We used bEnd.3 cells to imitate a BBB monolayer model and explored the protection of Hyp on Ang II-induced BBB leakage. The apoptotic activity was assessed by TUNEL staining and flow cytometry. The expression of apoptosis pathway related proteins, tight junction proteins and transcytosis related proteins were detected by western blot assay. The BBB model permeability was detected through measuring the flux of sodium fluorescein (Na-F).
Results
We found that Hyp can not only effectively inhibit the apoptosis of bEnd.3 induced by Ang II, but also protect the structural soundness and functional integrity of BBB model by affecting the expression levels of junctional adhesion molecule A (JAM-A), Claudin-5, zonula occludens-1 (ZO-1), Caveolin-1 (Cav-1) and major facilitator superfamily domain-containing protein 2a (Mfsd2a).
Conclusion
Hyp might be a potent compound for preventing Ang II-induced BBB disruption.
Collapse
|
3
|
Nicolicht-Amorim P, Delgado-Garcia LM, Nakamura TKE, Courbassier NR, Mosini AC, Porcionatto MA. Simple and efficient protocol to isolate and culture brain microvascular endothelial cells from newborn mice. Front Cell Neurosci 2022; 16:949412. [PMID: 36313615 PMCID: PMC9606660 DOI: 10.3389/fncel.2022.949412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/06/2022] [Indexed: 10/09/2023] Open
Abstract
The neurovascular unit (NVU) is a multicellular structure comprising of neurons, glial cells, and non-neural cells, and it is supported by a specialized extracellular matrix, the basal lamina. Astrocytes, brain microvascular endothelial cells (BMECs), pericytes, and smooth muscle cells constitute the blood-brain barrier (BBB). BMECs have a mesodermal origin and invade the nervous system early in neural tube development, forming the BBB anatomical core. BMECs are connected by adherent junction complexes composed of integral membrane and cytoplasmic proteins. In vivo and in vitro studies have shown that, given the proximity and relationship with neural cells, BMECs acquire a unique gene expression profile, proteome, and specific mechanical and physical properties compared to endothelial cells from the general vasculature. BMECs are fundamental in maintaining brain homeostasis by regulating transcellular and paracellular transport of fluids, molecules, and cells. Therefore, it is essential to gain in-depth knowledge of the dynamic cellular structure of the cells in the NVU and their interactions with health and disease. Here we describe a significantly improved and simplified protocol using C57BL/6 newborn mice at postnatal day 1 (PND1) to isolate, purify, and culture BMECs monolayers in two different substrates (glass coverslips and transwell culture inserts). In vitro characterization and validation of the BMEC primary culture monolayers seeded on glass or insert included light microscopy, immunolabeling, and gene expression profile. Transendothelial electrical resistance (TEER) measurement and diffusion test were used as functional assays for adherent junction complexes and integrity and permeability of BMECs monolayers. The protocol presented here for the isolation and culture of BMECs is more straightforward than previously published protocols and yields a high number of purified cells. Finally, we tested BMECs function using the oxygen-glucose deprivation (OGD) model of hypoxia. This protocol may be suitable as a bioscaffold for secondary cell seeding allowing the study and better understanding of the NVU.
Collapse
Affiliation(s)
- Priscila Nicolicht-Amorim
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Lina M. Delgado-Garcia
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Natália Rodrigues Courbassier
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Amanda Cristina Mosini
- Laboratory of Neurobiology, Department of Physiology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Marimelia A. Porcionatto
- Laboratory of Molecular Neurobiology, Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Lye P, Bloise E, Imperio GE, Chitayat D, Matthews SG. Functional Expression of Multidrug-Resistance (MDR) Transporters in Developing Human Fetal Brain Endothelial Cells. Cells 2022; 11:2259. [PMID: 35883702 PMCID: PMC9323234 DOI: 10.3390/cells11142259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/20/2022] Open
Abstract
There is little information about the functional expression of the multidrug resistance (MDR) transporters P-glycoprotein (P-gp, encoded by ABCB1) and breast cancer resistance protein (BCRP/ABCG2) in the developing blood−brain barrier (BBB). We isolated and cultured primary human fetal brain endothelial cells (hfBECs) from early and mid-gestation brains and assessed P-gp/ABCB1 and BCRP/ABCG2 expression and function, as well as tube formation capability. Immunolocalization of the von Willebrand factor (marker of endothelial cells), zonula occludens-1 and claudin-5 (tight junctions) was detected in early and mid-gestation-derived hfBECs, which also formed capillary-like tube structures, confirming their BEC phenotype. P-gp and BCRP immunostaining was detected in capillary-like tubes and in the cytoplasm and nucleus of hfBECs. P-gp protein levels in the plasma membrane and nuclear protein fractions, as well as P-gp protein/ABCB1 mRNA and BCRP protein levels decreased (p < 0.05) in hfBECs, from early to mid-gestation. No differences in P-gp or BCRP activity in hfBECs were observed between the two age groups. The hfBECs from early and mid-gestation express functionally competent P-gp and BCRP drug transporters and may thus contribute to the BBB protective phenotype in the conceptus from early stages of pregnancy.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism
- ATP-Binding Cassette Transporters/metabolism
- Brain/metabolism
- Drug Resistance, Multiple
- Endothelial Cells/metabolism
- Female
- Humans
- Neoplasm Proteins/metabolism
- Pregnancy
Collapse
Affiliation(s)
- Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Morphology, Federal University of Minas Gerais, Belo Horizonte 31270-910, MG, Brazil
| | - Guinever E. Imperio
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
| | - David Chitayat
- The Prenatal Diagnosis and Medical Genetics Program, Department of Obstetrics and Gynecology, Mount Sinai Hospital, University of Toronto, Toronto, ON M5S 1A8, Canada;
- Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for SickKids, University Toronto, Toronto, ON M5G 1X8, Canada
| | - Stephen G. Matthews
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; (P.L.); (E.B.)
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON M5G 1X5, Canada;
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 3H2, Canada
| |
Collapse
|
5
|
Branca JJV, Carrino D, Paternostro F, Morucci G, Fiorillo C, Nicoletti C, Gulisano M, Ghelardini C, Di Cesare Mannelli L, Becatti M, Pacini A. The Protection of Zinc against Acute Cadmium Exposure: A Morphological and Molecular Study on a BBB In Vitro Model. Cells 2022; 11:cells11101646. [PMID: 35626683 PMCID: PMC9140137 DOI: 10.3390/cells11101646] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Cadmium (Cd) is a well-known occupational and environmental pollutant worldwide, and its toxicity is widely recognised. Cd is reported to increase the permeability of the blood–brain barrier (BBB) and to penetrate and accumulate in the brain. Although many lines of evidence show that Cd toxicity is induced by different mechanisms, one of the best known is the Cd-dependent production of reactive oxygen species (ROS). Zinc is a trace element known as coenzyme and cofactor for many antioxidant proteins, such as metallothioneins and superoxide dismutase enzymes. To date, very little is known about the role of Zn in preventing Cd-induced blood–brain barrier (BBB) alterations. The goal of this study was to test the Zn antioxidant capacity against Cd-dependent alterations in a rat brain endothelial cell line (RBE4), as an in vitro model for BBB. In order to mimic acute Cd poisoning, RBE4 cells were treated with CdCl2 30 µM for 24 h. The protective role of ZnCl2 (50 µM) was revealed by evaluating the cell viability, reactive oxygen species (ROS) quantification, cytochrome C distribution, and the superoxide dismutase (SOD) protein activity. Additionally, the effectiveness of Zn in counteracting the Cd-induced damage was investigated by evaluating the expression levels of proteins already known to be involved in the Cd signalling pathway, such as GRP78 (an endoplasmic reticulum (ER) stress protein), caspase3 pro- and cleaved forms, and BAX. Finally, we evaluated if Zn was able to attenuate the alterations of zonula occludens-1 (ZO-1), one of the tight-junction (TJ) proteins involved in the formation of the BBB. Our data clearly demonstrate that Zn, by protecting from the SOD activity impairment induced by Cd, is able to prevent the triggering of the Cd-dependent signalling pathway that leads to ZO-1 dislocation and downregulation, and BBB damage.
Collapse
Affiliation(s)
- Jacopo J. V. Branca
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (J.J.V.B.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Donatello Carrino
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (J.J.V.B.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Ferdinando Paternostro
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (J.J.V.B.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Gabriele Morucci
- Department of Translational Research and New Technology in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy;
| | - Claudia Fiorillo
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, University of Firenze, 50134 Firenze, Italy; (C.F.); (M.B.)
| | - Claudio Nicoletti
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (J.J.V.B.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Massimo Gulisano
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (J.J.V.B.); (D.C.); (F.P.); (C.N.); (M.G.)
| | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, 50139 Firenze, Italy; (C.G.); (L.D.C.M.)
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Pharmacology and Toxicology Section, University of Firenze, 50139 Firenze, Italy; (C.G.); (L.D.C.M.)
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, University of Firenze, 50134 Firenze, Italy; (C.F.); (M.B.)
| | - Alessandra Pacini
- Department of Experimental and Clinical Medicine, Histology and Anatomy Section, University of Firenze, 50134 Firenze, Italy; (J.J.V.B.); (D.C.); (F.P.); (C.N.); (M.G.)
- Correspondence: ; Tel.: +39-055-2758067
| |
Collapse
|
6
|
Pishas KI, Cowley KJ, Pandey A, Hoang T, Beach JA, Luu J, Vary R, Smith LK, Shembrey CE, Rashoo N, White MO, Simpson KJ, Bild A, Griffiths JI, Cheasley D, Campbell I, Bowtell DDL, Christie EL. Phenotypic Consequences of SLC25A40-ABCB1 Fusions beyond Drug Resistance in High-Grade Serous Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13225644. [PMID: 34830797 PMCID: PMC8616176 DOI: 10.3390/cancers13225644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/05/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Among the plethora of malignancies affecting the female reproductive tract, those concerning the ovary are the most frequently fatal. In particular, chemotherapy-resistant High-Grade Serous Ovarian Cancer (HGSOC) remains a clinically intractable disease with a high rate of mortality. We previously identified SLC25A40-ABCB1 transcriptional fusions as the driving force behind drug resistance in HGSOC. As success in the clinical arena will only be achieved by enhancing our fundamental understanding of the drivers that mediate cellular drug resistance, this report sought to elucidate the phenotypic, metabolomic and transcriptional consequences of SLC25A40-ABCB1 fusions beyond drug resistance. High-throughput FDA drug screening was also undertaken to identify new therapeutic avenues against drug-resistant cellular populations. Abstract Despite high response rates to initial chemotherapy, the majority of women diagnosed with High-Grade Serous Ovarian Cancer (HGSOC) ultimately develop drug resistance within 1–2 years of treatment. We previously identified the most common mechanism of acquired resistance in HGSOC to date, transcriptional fusions involving the ATP-binding cassette (ABC) transporter ABCB1, which has well established roles in multidrug resistance. However, the underlying biology of fusion-positive cells, as well as how clonal interactions between fusion-negative and positive populations influences proliferative fitness and therapeutic response remains unknown. Using a panel of fusion-negative and positive HGSOC single-cell clones, we demonstrate that in addition to mediating drug resistance, ABCB1 fusion-positive cells display impaired proliferative capacity, elevated oxidative metabolism, altered actin cellular morphology and an extracellular matrix/inflammatory enriched transcriptional profile. The co-culture of fusion-negative and positive populations had no effect on cellular proliferation but markedly altered drug sensitivity to doxorubicin, paclitaxel and cisplatin. Finally, high-throughput screening of 2907 FDA-approved compounds revealed 36 agents that induce equal cytotoxicity in both pure and mixed ABCB1 fusion populations. Collectively, our findings have unraveled the underlying biology of ABCB1 fusion-positive cells beyond drug resistance and identified novel therapeutic agents that may significantly improve the prognosis of relapsed HGSOC patients.
Collapse
Affiliation(s)
- Kathleen I. Pishas
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Karla J. Cowley
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.J.C.); (J.L.); (R.V.)
| | - Ahwan Pandey
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Therese Hoang
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Jessica A. Beach
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Jennii Luu
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.J.C.); (J.L.); (R.V.)
| | - Robert Vary
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.J.C.); (J.L.); (R.V.)
| | - Lorey K. Smith
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Carolyn E. Shembrey
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- Department of Clinical Pathology, Faculty of Medicine, Dentistry, and Health Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Nineveh Rashoo
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Madelynne O. White
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
| | - Kaylene J. Simpson
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.J.C.); (J.L.); (R.V.)
| | - Andrea Bild
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.B.); (J.I.G.)
| | - Jason I. Griffiths
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA; (A.B.); (J.I.G.)
| | - Dane Cheasley
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Ian Campbell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Elizabeth L. Christie
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (K.I.P.); (A.P.); (T.H.); (J.A.B.); (L.K.S.); (C.E.S.); (N.R.); (M.O.W.); (D.C.); (I.C.); (D.D.L.B.)
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence:
| |
Collapse
|
7
|
Gericke B, Borsdorf S, Wienböker I, Noack A, Noack S, Löscher W. Similarities and differences in the localization, trafficking, and function of P-glycoprotein in MDR1-EGFP-transduced rat versus human brain capillary endothelial cell lines. Fluids Barriers CNS 2021; 18:36. [PMID: 34344390 PMCID: PMC8330100 DOI: 10.1186/s12987-021-00266-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/28/2021] [Indexed: 12/24/2022] Open
Abstract
Background In vitro models based on brain capillary endothelial cells (BCECs) are among the most versatile tools in blood–brain barrier research for testing drug penetration into the brain and how this is affected by efflux transporters such as P-glycoprotein (Pgp). However, compared to freshly isolated brain capillaries or primary BCECs, the expression of Pgp in immortalized BCEC lines is markedly lower, which prompted us previously to transduce the widely used human BCEC line hCMEC/D3 with a doxycycline-inducible MDR1-EGFP fusion plasmid. The EGFP-labeled Pgp in these cells allows studying the localization and trafficking of the transporter and how these processes are affected by drug exposure. Here we used this strategy for the rat BCEC line RBE4 and performed a face-to-face comparison of RBE4 and hCMEC/D3 wild-type (WT) and MDR1-EGFP transduced cells. Methods MDR1-EGFP-transduced variants were derived from WT cells by lentiviral transduction, using an MDR1-linker-EGFP vector. Localization, trafficking, and function of Pgp were compared in WT and MDR1-EGFP transduced cell lines. Primary cultures of rat BCECs and freshly isolated rat brain capillaries were used for comparison. Results All cells exhibited typical BCEC morphology. However, significant differences were observed in the localization of Pgp in that RBE4-MDR1-EGFP cells expressed Pgp primarily at the plasma membrane, whereas in hCMEC/D3 cells, the Pgp-EGFP fusion protein was visible both at the plasma membrane and in endolysosomal vesicles. Exposure to doxorubicin increased the number of Pgp-EGFP-positive endolysosomes, indicating a lysosomotropic effect. Furthermore, lysosomal trapping of doxorubicin was observed, likely contributing to the protection of the cell nucleus from damage. In cocultures of WT and MDR1-EGFP transduced cells, intercellular Pgp-EGFP trafficking was observed in RBE4 cells as previously reported for hCMEC/D3 cells. Compared to WT cells, the MDR1-EGFP transduced cells exhibited a significantly higher expression and function of Pgp. However, the junctional tightness of WT and MDR1-EGFP transduced RBE4 and hCMEC/D3 cells was markedly lower than that of primary BCECs, excluding the use of the cell lines for studying vectorial drug transport. Conclusions The present data indicate that MDR1-EGFP transduced RBE4 cells are an interesting tool to study the biogenesis of lysosomes and Pgp-mediated lysosomal drug trapping in response to chemotherapeutic agents and other compounds at the level of the blood–brain barrier. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-021-00266-z.
Collapse
Affiliation(s)
- Birthe Gericke
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Saskia Borsdorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Inka Wienböker
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany.,Center for Systems Neuroscience, Hannover, Germany
| | - Andreas Noack
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany
| | - Sandra Noack
- Department of Trauma Surgery, Hannover Medical School, Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Bünteweg 17, 30559, Hannover, Germany. .,Center for Systems Neuroscience, Hannover, Germany.
| |
Collapse
|
8
|
Marrone J, Danielli M, Gaspari CI, Capiglioni AM, Marinelli RA. Aquaporin gene transfer for hepatocellular cholestasis. Biochimie 2021; 188:12-15. [PMID: 33811938 DOI: 10.1016/j.biochi.2021.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 10/21/2022]
Abstract
Bile secretion by hepatocytes is an osmotic process. The output of bile salts and other organic anions (e.g. glutathione), through the bile salt transporter BSEP/ABCB11 and the organic anion transporter MRP2/ABCC2, respectively, are considered to be the major osmotic driving forces for water secretion into bile canaliculi mainly via aquaporin-8 (AQP8) channels. The down-regulated canalicular expression of these key solute transporters and AQP8 would be a primary event in the establishment of hepatocellular cholestasis. Recent studies in animal models of hepatocellular cholestasis show that the hepatic delivery of AdhAQP1, an adenovector encoding for the archetypical water channel human aquaporin-1 (hAQP1), improves bile secretion and restores to normal the elevated serum bile salt levels. AdhAQP1-transduced hepatocytes show that the canalicularly-expressed hAQP1 not only enhances osmotic membrane water permeability but also induces the transport activities of BSEP/ABCB11 and MRP2/ABCC2 by redistribution in canalicular cholesterol-rich microdomains likely through interactions with the cholesterol-binding protein caveolin-1. Thus, the hepatic gene transfer of hAQP1 improves the bile secretory failure in hepatocellular cholestasis by increasing both biliary output and choleretic efficiency of key osmotic solutes, such as, bile salts and glutathione. The study of hepatocyte aquaporins has provided new insights into the mechanisms of bile formation and cholestasis, and may lead to innovative treatments for cholestatic liver diseases.
Collapse
Affiliation(s)
- Julieta Marrone
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Mauro Danielli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina
| | - César I Gaspari
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Alejo M Capiglioni
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina
| | - Raúl A Marinelli
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, 2000, Rosario, Santa Fe, Argentina.
| |
Collapse
|
9
|
Fan Y, Tao X, Pan W, Fang W, Huang Y, Jia M. CSN1201, a subunit of the COP9 signalosome, regulates the virulence in Cryptococcus neoformans infection. Fungal Genet Biol 2016:S1087-1845(16)30144-X. [PMID: 27915049 DOI: 10.1016/j.fgb.2016.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/12/2016] [Accepted: 11/29/2016] [Indexed: 10/20/2022]
Abstract
The COP9 signalosome (CSN) is a multisubunit protein complex, and it now has been found to participate in diverse cellular and developmental processes in various eukaryotic organisms. Cryptococcus neoformans (C. neoformans) is an important basidiomycete pathogen that causes life-threatening meningoencephalitis primarily in the immune compromised population. Here, we generated CSN deletion mutants to investigate the role in Cryptococcus infection. Compared to other CSN mutants, we identified a CSN1201 mutant exhibited severely attenuated virulence. Deletion of CSN1201 made cryptococcal cells more susceptible to nearly all in vitro stresses. Furthermore, deletion of CSN1201 obviously impaired survival of C. neoformans. At the same time, in vivo virulence assay of mouse infection models demonstrated that CSN1201 significantly enhanced the virulence of C. neoformans compared with the other CSN subunit strains, while ELISA analysis of C. neoformans infection in innate or adaptive immune response showed that deletion of CSN1201 significantly impaired cytokines and interferon expression. In vitro model of the blood-brain barrier (BBB) analysis indicated that deletion of CSN1201 reduced the invasion efficacy of Cryptococcusto cross BBB. Taken together, our findings reveal a novel mechanism of CSN1201, which plays a critical role for the virulence composite of C. neoformans, and also provides an additional yeast survival and propagation advantage in the host.
Collapse
Affiliation(s)
- Yibin Fan
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China.
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Weili Pan
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Wei Fang
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Youming Huang
- Department of Dermatology, Zhejiang Provincial People's Hospital, No. 158 Shangtang Road, Hangzhou 310014, Zhejiang, PR China
| | - Mingyan Jia
- Department of Dermatology, Cixi People's Hospital, No. 999 South East Road, Cixi 315300 Zhejiang, PR China
| |
Collapse
|
10
|
Yang Y, Wu N, Wang Z, Zhang F, Tian R, Ji W, Ren X, Niu R. Rack1 Mediates the Interaction of P-Glycoprotein with Anxa2 and Regulates Migration and Invasion of Multidrug-Resistant Breast Cancer Cells. Int J Mol Sci 2016; 17:ijms17101718. [PMID: 27754360 PMCID: PMC5085749 DOI: 10.3390/ijms17101718] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/18/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022] Open
Abstract
The emergence of multidrug resistance is always associated with more rapid tumor recurrence and metastasis. P-glycoprotein (P-gp), which is a well-known multidrug-efflux transporter, confers enhanced invasion ability in drug-resistant cells. Previous studies have shown that P-gp probably exerts its tumor-promoting function via protein-protein interaction. These interactions were implicated in the activation of intracellular signal transduction. We previously showed that P-gp binds to Anxa2 and promotes the invasiveness of multidrug-resistant (MDR) breast cancer cells through regulation of Anxa2 phosphorylation. However, the accurate mechanism remains unclear. In the present study, a co-immunoprecipitation coupled with liquid chromatography tandem mass spectrometry-based interactomic approach was performed to screen P-gp binding proteins. We identified Rack1 as a novel P-gp binding protein. Knockdown of Rack1 significantly inhibited proliferation and invasion of MDR cancer cells. Mechanistic studies demonstrated that Rack1 functioned as a scaffold protein that mediated the binding of P-gp to Anxa2 and Src. We showed that Rack1 regulated P-gp activity, which was necessary for adriamycin-induced P-gp-mediated phosphorylation of Anxa2 and Erk1/2. Overall, the findings in this study augment novel insights to the understanding of the mechanism employed by P-gp for promoting migration and invasion of MDR cancer cells.
Collapse
Affiliation(s)
- Yi Yang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Na Wu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Ran Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Wei Ji
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Xiubao Ren
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Department of Immunology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China.
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| |
Collapse
|
11
|
Lee CY, Lai TY, Tsai MK, Ou-Yang P, Tsai CY, Wu SW, Hsu LC, Chen JS. The influence of a caveolin-1 mutant on the function of P-glycoprotein. Sci Rep 2016; 6:20486. [PMID: 26843476 PMCID: PMC4740904 DOI: 10.1038/srep20486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 01/05/2016] [Indexed: 12/02/2022] Open
Abstract
The genetic heterogeneity in cancer cells has an increased chance in the acquisition of new mutant such as drug-resistant phenotype in cancer cells. The phenotype of drug resistance in cancer cells could be evaluated by the number or function of drug transporters on cell membranes, which would lead to decreased intracellular anti-cancer drugs concentration. Caveolae are flask-shaped invaginations on cell membrane that function in membrane trafficking, endocytosis, and as a compartment where receptors and signaling proteins are concentrated. Caveolin-1 (CAV1) is the principal structural protein of caveolae and closely correlates with multidrug resistance in cancer cells. In a systematic study of the ubiquitin-modified proteome, lysine 176 of CAV1 was identified as a potential post-translational modification site for ubiquitination. In this article, we identified a mutation at lysine 176 to arginine (K176R) on CAV1 would interfere with the biogenesis of caveolae and broke the interaction of CAV1 with P-glycoprotein. Functional assays further revealed that K176R mutant of CAV1 in cancer cells increased the transport activity of P-glycoprotein and decreased the killing ability of anti-cancer drugs in non-small-cell lung cancer cell lines.
Collapse
Affiliation(s)
- Chih-Yuan Lee
- Department of Surgery, No. 7 Chung San South Road, Taipei 10002, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road, Sec. 1, Taipei 10002, Taiwan
| | - Ting-Yu Lai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road, Sec. 1, Taipei 10002, Taiwan
| | - Meng-Kun Tsai
- Department of Surgery, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Pu Ou-Yang
- Department of Medical Research, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Ching-Yi Tsai
- Department of Medical Research, National Taiwan University Hospital, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Shu-Wei Wu
- Department of Surgery, No. 7 Chung San South Road, Taipei 10002, Taiwan
| | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, No. 1 Jen-Ai Road, Sec. 1, Taipei 10002, Taiwan
| | - Jin-Shing Chen
- Department of Surgery, No. 7 Chung San South Road, Taipei 10002, Taiwan
| |
Collapse
|
12
|
Deng L, Li Q, Lin G, Huang D, Zeng X, Wang X, Li P, Jin X, Zhang H, Li C, Chen L, Wang L, Huang S, Shao H, Xu B, Mao J. P-glycoprotein Mediates Postoperative Peritoneal Adhesion Formation by Enhancing Phosphorylation of the Chloride Channel-3. Theranostics 2016; 6:204-18. [PMID: 26877779 PMCID: PMC4729769 DOI: 10.7150/thno.13907] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/16/2015] [Indexed: 01/28/2023] Open
Abstract
P-glycoprotein (P-gp) is encoded by the multidrug resistance (MDR1) gene and is well studied as a multi-drug resistance transporter. Peritoneal adhesion formation following abdominal surgery remains an important clinical problem. Here, we found that P-gp was highly expressed in human adhesion fibroblasts and promoted peritoneal adhesion formation in a rodent model. Knockdown of P-gp expression by intraperitoneal injection of MDR1-targeted siRNA significantly reduced both the peritoneal adhesion development rate and adhesion grades. Additionally, we found that operative injury up-regulated P-gp expression in peritoneal fibroblasts through the TGF-β1/Smad signaling pathway and histone H3 acetylation. The overexpression of P-gp accelerated migration and proliferation of fibroblasts via volume-activated Cl(-) current and cell volume regulation by enhancing phosphorylation of the chloride channel-3. Therefore, P-gp plays a critical role in postoperative peritoneal adhesion formation and may be a valuable therapeutic target for preventing the formation of peritoneal adhesions.
Collapse
Affiliation(s)
- Lulu Deng
- 1. Guangdong Provincial Key Laboratory of pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qin Li
- 1. Guangdong Provincial Key Laboratory of pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 7. The People's Hospital of Liupanshui City, Liupanshui 553001, China
| | - Guixian Lin
- 1. Guangdong Provincial Key Laboratory of pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dan Huang
- 1. Guangdong Provincial Key Laboratory of pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xuxin Zeng
- 5. School of Medicine, Foshan University, Foshan 528000, China
| | - Xinwei Wang
- 1. Guangdong Provincial Key Laboratory of pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ping Li
- 3. The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510000, China
| | - Xiaobao Jin
- 1. Guangdong Provincial Key Laboratory of pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haifeng Zhang
- 6. Department of Pathology, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, China
| | - Chunmei Li
- 1. Guangdong Provincial Key Laboratory of pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lixin Chen
- 4. Department of Pharmacology and Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| | - Liwei Wang
- 4. Department of Pharmacology and Department of Physiology, Medical College, Jinan University, Guangzhou 510632, China
| | - Shulin Huang
- 2. Guangdong Province Key Laboratory for Biotechnology Drug Candidates and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hongwei Shao
- 2. Guangdong Province Key Laboratory for Biotechnology Drug Candidates and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bin Xu
- 1. Guangdong Provincial Key Laboratory of pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
- 2. Guangdong Province Key Laboratory for Biotechnology Drug Candidates and School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianwen Mao
- 1. Guangdong Provincial Key Laboratory of pharmaceutical Bioactive Substances and School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
13
|
Evidence for P-Glycoprotein Involvement in Cell Volume Regulation Using Coulter Sizing in Flow Cytometry. Int J Mol Sci 2015; 16:14318-37. [PMID: 26114386 PMCID: PMC4519844 DOI: 10.3390/ijms160714318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Accepted: 05/14/2015] [Indexed: 12/13/2022] Open
Abstract
The regulation of cell volume is an essential function that is coupled to a variety of physiological processes such as receptor recycling, excitability and contraction, cell proliferation, migration, and programmed cell death. Under stress, cells undergo emergency swelling and respond to such a phenomenon with a regulatory volume decrease (RVD) where they release cellular ions, and other osmolytes as well as a concomitant loss of water. The link between P-glycoprotein, a transmembrane transporter, and cell volume regulation is controversial, and changes in cells volume are measured using microscopy or electrophysiology. For instance, by using the patch-clamp method, our team demonstrated that chloride currents activated in the RVD were more intense and rapid in a breast cancer cell line overexpressing the P-glycoprotein (P-gp). The Cell Lab Quanta SC is a flow cytometry system that simultaneously measures electronic volume, side scatter and three fluorescent colors; altogether this provides unsurpassed population resolution and accurate cell counting. Therefore, here we propose a novel method to follow cellular volume. By using the Coulter-type channel of the cytometer Cell Lab Quanta SC MPL (multi-platform loading), we demonstrated a role for the P-gp during different osmotic treatments, but also a differential activity of the P-gp through the cell cycle. Altogether, our data strongly suggests a role of P-gp in cell volume regulation.
Collapse
|
14
|
Zhang Y, Qu X, Teng Y, Li Z, Xu L, Liu J, Ma Y, Fan Y, Li C, Liu S, Wang Z, Hu X, Zhang J, Liu Y. Cbl-b inhibits P-gp transporter function by preventing its translocation into caveolae in multiple drug-resistant gastric and breast cancers. Oncotarget 2015; 6:6737-48. [PMID: 25788263 PMCID: PMC4466646 DOI: 10.18632/oncotarget.3253] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 01/29/2015] [Indexed: 12/25/2022] Open
Abstract
The transport function of P-glycoprotein (P-gp) requires its efficient localization to caveolae, a subset of lipid rafts, and disruption of caveolae suppresses P-gp transport function. However, the regulatory molecules involved in the translocation of P-gp into caveolae remain unknown. In the present study, we showed that c-Src dependent Caveolin-1 phosphorylation promoted the translocation of P-gp into caveolae, resulting in multidrug resistance in adriamycin resistant gastric cancer SGC7901/Adr and breast cancer MCF-7/Adr cells. In a negative feedback loop, the translocation of Cbl-b from the nucleus to the cytoplasm prevented the localization of P-gp to caveolae resulting in the reversal of MDR through the ubiquitination and degradation of c-Src. Clinical data showed a significant positive relationship between Cbl-b expression and survival in P-gp positive breast cancer patients who received anthracycline-based chemotherapy. Our findings identified a new regulatory mechanism of P-gp transport function in multiple drug-resistant gastric and breast cancers.
Collapse
Affiliation(s)
- Ye Zhang
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yuee Teng
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Zhi Li
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Ling Xu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jing Liu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yanju Ma
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yibo Fan
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Ce Li
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Shizhou Liu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Zhenning Wang
- 2 Department of Surgical Oncology and General Surgery, the First Hospital of China Medical University, Shenyang 110001, China
| | - Xuejun Hu
- 3 Department of Medical Respiratory, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jingdong Zhang
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Yunpeng Liu
- 1 Department of Medical Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
15
|
Miller DS. Regulation of ABC transporters blood-brain barrier: the good, the bad, and the ugly. Adv Cancer Res 2015; 125:43-70. [PMID: 25640266 DOI: 10.1016/bs.acr.2014.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain capillary endothelial cells that constitute the blood-brain barrier express multiple ABC transport proteins on the luminal, blood-facing, plasma membrane. These transporters function as ATP-driven efflux pumps for xenobiotics and endogenous metabolites. High expression of these ABC transporters at the barrier is a major obstacle to the delivery of therapeutics, including chemotherapeutics, to the CNS. Here, I review the signals that alter ABC transporter expression and transport function with an emphasis on P-glycoprotein, Mrp2, and breast cancer resistance protein (BCRP), the efflux transporters for which we have the most detailed picture of regulation. Recent work shows that transporter protein expression can be upregulated in response to inflammatory and oxidative stress, therapeutic drugs, diet, and persistent environmental pollutants; as a consequence, drug delivery to the brain is reduced (potentially bad and ugly). In contrast, basal transport activity of P-glycoprotein and BCRP can be reduced through complex signaling pathways that involve events in and on the brain capillary endothelial cells. Targeting these signaling events provides opportunities to rapidly and reversibly increase brain accumulation of drugs that are substrates for the transporters (potentially good). The clinical usefulness of targeting signaling to reduce efflux transporter activity and improve drug delivery to the CNS remains to be established.
Collapse
Affiliation(s)
- David S Miller
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, USA.
| |
Collapse
|
16
|
ABC Transporter Regulation by Signaling at the Blood–Brain Barrier. PHARMACOLOGY OF THE BLOOD BRAIN BARRIER: TARGETING CNS DISORDERS 2014; 71:1-24. [DOI: 10.1016/bs.apha.2014.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Zhang F, Zhang H, Wang Z, Yu M, Tian R, Ji W, Yang Y, Niu R. P-glycoprotein associates with Anxa2 and promotes invasion in multidrug resistant breast cancer cells. Biochem Pharmacol 2013; 87:292-302. [PMID: 24239898 DOI: 10.1016/j.bcp.2013.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 10/29/2013] [Accepted: 11/05/2013] [Indexed: 12/19/2022]
Abstract
Several recent studies have suggested that the acquisition of the multidrug resistance (MDR) phenotype is associated with elevated invasion and metastasis of tumor cells. P-glycoprotein (P-gp), the major determinant in the generation of the MDR phenotype, was reported to be correlated with a more aggressive phenotype and poor prognosis in many forms of malignancies. However, a clear understanding of the association is still lacking. We previously showed that Anxa2, a calcium-dependent phospholipid-binding protein, interacts with P-gp and contributes to the invasiveness of MDR breast cancer cells. In the present study, a strong positive correlation between MDR1 and Anxa2 mRNA expression in invasive breast cancer tissues during cancer progression was observed. In addition, exposure to adriamycin significantly enhanced motility in breast cancer cells and increased levels of P-gp and Anxa2. Moreover, inhibition of P-gp activity, using selective P-gp modulators, was found to significantly inhibit the invasive capacity of MCF-7/ADR cells without affecting the interaction and co-localization between P-gp and Anxa2. However, suppression of P-gp pump activity and knockdown of MDR1 expression both disrupted adriamycin-induced Anxa2 phosphorylation. Interestingly, P-gp was further demonstrated to interact with Src, a tyrosine kinase upstream of Anxa2. Taken together, our results indicate that P-gp may promote the invasion of MDR breast cancer cells by modulating the tyrosine phosphorylation of Anxa2. The interaction between Anxa2 and P-gp is possibly, at least in part, responsible for the association between MDR and invasive potential in breast cancer cells.
Collapse
Affiliation(s)
- Fei Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Haichang Zhang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China; Department of Nuclear Medicine, Tianjin First Center Hospital, Tianjin 300192, PR China
| | - Zhiyong Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Man Yu
- Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, 610 University Avenue, Toronto, Ontario, Canada M5G 2M9
| | - Ran Tian
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Wei Ji
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Yi Yang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China
| | - Ruifang Niu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, The Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, PR China.
| |
Collapse
|
18
|
McCaffrey G, Davis TP. Physiology and pathophysiology of the blood-brain barrier: P-glycoprotein and occludin trafficking as therapeutic targets to optimize central nervous system drug delivery. J Investig Med 2012; 60:1131-40. [PMID: 23138008 PMCID: PMC3851303 DOI: 10.2310/jim.0b013e318276de79] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The blood-brain barrier (BBB) is a physical and metabolic barrier that separates the central nervous system from the peripheral circulation. Central nervous system drug delivery across the BBB is challenging, primarily because of the physical restriction of paracellular diffusion between the endothelial cells that comprise the microvessels of the BBB and the activity of efflux transporters that quickly expel back into the capillary lumen a wide variety of xenobiotics. Therapeutic manipulation of protein trafficking is emerging as a novel means of modulating protein function, and in this minireview, the targeting of the trafficking of 2 key BBB proteins, P-glycoprotein and occludin, is presented as a novel, reversible means of optimizing central nervous system drug delivery.
Collapse
Affiliation(s)
- Gwen McCaffrey
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85745, USA.
| | | |
Collapse
|
19
|
McCaffrey G, Staatz WD, Sanchez-Covarrubias L, Finch JD, Demarco K, Laracuente ML, Ronaldson PT, Davis TP. P-glycoprotein trafficking at the blood-brain barrier altered by peripheral inflammatory hyperalgesia. J Neurochem 2012; 122:962-75. [PMID: 22716933 DOI: 10.1111/j.1471-4159.2012.07831.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
P-glycoprotein (ABCB1/MDR1, EC 3.6.3.44), the major efflux transporter at the blood-brain barrier (BBB), is a formidable obstacle to CNS pharmacotherapy. Understanding the mechanism(s) for increased P-glycoprotein activity at the BBB during peripheral inflammatory pain is critical in the development of novel strategies to overcome the significant decreases in CNS analgesic drug delivery. In this study, we employed the λ-carrageenan pain model (using female Sprague-Dawley rats), combined with confocal microscopy and subcellular fractionation of cerebral microvessels, to determine if increased P-glycoprotein function, following the onset of peripheral inflammatory pain, is associated with a change in P-glycoprotein trafficking which leads to pain-induced effects on analgesic drug delivery. Injection of λ-carrageenan into the rat hind paw induced a localized, inflammatory pain (hyperalgesia) and simultaneously, at the BBB, a rapid change in colocalization of P-glycoprotein with caveolin-1, a key scaffolding/trafficking protein. Subcellular fractionation of isolated cerebral microvessels revealed that the bulk of P-glycoprotein constitutively traffics to membrane domains containing high molecular weight, disulfide-bonded P-glycoprotein-containing structures that cofractionate with membrane domains enriched with monomeric and high molecular weight, disulfide-bonded, caveolin-1-containing structures. Peripheral inflammatory pain promoted a dynamic redistribution between membrane domains of P-glycoprotein and caveolin-1. Disassembly of high molecular weight P-glycoprotein-containing structures within microvascular endothelial luminal membrane domains was accompanied by an increase in ATPase activity, suggesting a potential for functionally active P-glycoprotein. These results are the first observation that peripheral inflammatory pain leads to specific structural changes in P-glycoprotein responsible for controlling analgesic drug delivery to the CNS.
Collapse
Affiliation(s)
- Gwen McCaffrey
- Department of Medical Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85745, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Herzog M, Storch CH, Gut P, Kotlyar D, Füllekrug J, Ehehalt R, Haefeli WE, Weiss J. Knockdown of caveolin-1 decreases activity of breast cancer resistance protein (BCRP/ABCG2) and increases chemotherapeutic sensitivity. Naunyn Schmiedebergs Arch Pharmacol 2010; 383:1-11. [PMID: 20936466 DOI: 10.1007/s00210-010-0568-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 09/22/2010] [Indexed: 12/18/2022]
Abstract
The ATP-binding cassette transporter breast cancer resistance protein (BCRP/ABCG2) is supposed to be a major determinant of the multidrug resistance phenotype of tumors by extruding chemically diverse cytostatic drugs out of tumor cells. BCRP physically and possibly also functionally interacts with caveolin-1 (CAV1, encoded by Cav1), an integral membrane protein of lipid rafts important for signal transduction and membrane trafficking. Moreover, Cav1 is linked to an aggressive phenotype of cancer cells in various tumors. We therefore investigated whether Cav1 plays a functional role in the regulation of BCRP transport activity and in the resistance against chemotherapeutics that are BCRP substrates. As a cell model, we used the BCRP overexpressing cell line MDCKII-BCRP and the corresponding parental cell line MDCKII as a control. Cav1 expression was down-regulated using retrovirus-mediated RNA interference technology. BCRP activity was assessed by pheophorbide A efflux assay and the resistance towards cytostatic drugs was measured by proliferation assays. Efficient knockdown of Cav1 reduced Cav1 expression by 85-95% and BCRP activity by 35%. Concurrently, it reduced resistance towards the BCRP substrate mitoxantrone but not towards vincristine, a chemotherapeutic that is not extruded by BCRP. Western blot analysis of gradient ultracentrifugation fractions and immunofluorescence demonstrates that BCRP localization within the plasma membrane was largely unaltered in Cav1-deficient cells compared to controls. The diminished BCRP function after Cav1 knockdown is, thus, likely mediated by alterations in protein-protein interactions and suggests a positive regulation of BCRP function by CAV1.
Collapse
Affiliation(s)
- Melanie Herzog
- Department of Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Tagami M, Kusuhara S, Imai H, Uemura A, Honda S, Tsukahara Y, Negi A. MRP4 knockdown enhances migration, suppresses apoptosis, and produces aggregated morphology in human retinal vascular endothelial cells. Biochem Biophys Res Commun 2010; 400:593-8. [DOI: 10.1016/j.bbrc.2010.08.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 08/25/2010] [Indexed: 01/04/2023]
|
22
|
Guo Z, Zhu J, Zhao L, Luo Q, Jin X. Expression and clinical significance of multidrug resistance proteins in brain tumors. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:122. [PMID: 20815915 PMCID: PMC2941755 DOI: 10.1186/1756-9966-29-122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 09/05/2010] [Indexed: 01/16/2023]
Abstract
Background To investigate the mechanisms of multidrug resistance of brain tumors, to identify the site of cellular expression of P-gp in human brains in situ and to morphologically determine whether an association may exist between P-gp and caveolin-1. Methods Immunohistochemistry was used to detect the expression and location of P-glycoprotein (P-gp), Multidrug resistance-associated protein (MDR), Lung resistance-related protein (LRP), Topoisomerase II (Topo II) and Glutathione-S-π (GST-π) in 30 patient tumor tissues and 5 normal brain tissues. The sections were subjected to double labeling for P-gp (TRITC labeled) and caveolin-1 (FITC labeled). The location and characteristics of expression of the two proteins in the blood brain barrier(BBB) was observed using a laser scanning microscope. Results High expression of P-gp was detected in vessel walls and the tissue surrounding the vessels. However, expression of P-gp was low in tumor cells. The expression of the other 4 multidrug resistance proteins was not observed in the vessel walls. Laser scanning microscopy showed P-gp and caveolin-1 co-expression: the two proteins co-localized either in the luminal endothelial compartment or at the border of the luminal/abluminal compartments. Conclusion Chemotherapeutics drugs are interrupted in the end-feet of neuroepithelial cells of the BBB by P-gp, which weakens the chemotherapeutic effect. P-gp marks the BBB, and the transporter is localized in the luminal endothelial compartment where it co-localizes with caveolin-1.
Collapse
Affiliation(s)
- Zhenhua Guo
- Department of Oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | | | | | | | | |
Collapse
|
23
|
Regulation of P-glycoprotein and other ABC drug transporters at the blood-brain barrier. Trends Pharmacol Sci 2010; 31:246-54. [PMID: 20417575 DOI: 10.1016/j.tips.2010.03.003] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 02/06/2023]
Abstract
ATP-binding cassette (ABC) transporters are important selective elements of the blood-brain barrier. They line the luminal plasma membrane of the brain capillary endothelium, facing the vascular space, and both protect the central nervous system from entry of neurotoxicants and limit the access of therapeutic drugs to the brain parenchyma. Recent studies highlight the multiple signaling pathways through which the expression and activity of P-glycoprotein and other ABC transporters are modulated in response to xenobiotics, stress and disease. The results show that increased transporter expression occurs in response to signals that activate specific transcription factors, including pregnane-X receptor, constitutive androstane receptor, nuclear factor-kappaB and activator protein-1, and that reduced transporter activity occurs rapidly and reversibly in response to signaling through Src kinase, protein kinase C and estrogen receptors. A detailed understanding of such regulation can provide the basis for improved neuroprotection and enhanced therapeutic drug delivery to the brain.
Collapse
|
24
|
Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer 2010; 10:147-56. [PMID: 20075923 DOI: 10.1038/nrc2789] [Citation(s) in RCA: 784] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Multidrug transporter proteins are best known for their contributions to chemoresistance through the efflux of anticancer drugs from cancer cells. However, a considerable body of evidence also points to their importance in cancer extending beyond drug transport to fundamental roles in tumour biology. Currently, much of the evidence for these additional roles is correlative and definitive studies are needed to confirm causality. We propose that delineating the precise roles of these transporters in tumorigenesis and treatment response will be important for the development of more effective targeted therapies.
Collapse
Affiliation(s)
- Jamie I Fletcher
- Children's Cancer Institute Australia for Medical Research, Lowry Cancer Research Centre, University of New South Wales, P.O. BOX 151, Randwick NSW 2031, Australia
| | | | | | | |
Collapse
|
25
|
Tagami M, Kusuhara S, Honda S, Tsukahara Y, Negi A. Expression of ATP-binding cassette transporters at the inner blood–retinal barrier in a neonatal mouse model of oxygen-induced retinopathy. Brain Res 2009; 1283:186-93. [DOI: 10.1016/j.brainres.2009.05.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/20/2009] [Accepted: 05/24/2009] [Indexed: 12/31/2022]
|