1
|
Jalili S, Panji M, Mahdavimehr M, Mohseni Ahangar A, Shirzad H, Mousavi Nezhad SA, Palhano FL. Enhancing anti-amyloidogenic properties and antioxidant effects of Scutellaria baicalensis polyphenols through novel nanoparticle formation. Int J Biol Macromol 2024; 262:130003. [PMID: 38325696 DOI: 10.1016/j.ijbiomac.2024.130003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/27/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Protein aggregation and oxidative stress have gained significant research attention due to their association with a group of diseases known as amyloidosis. Among the strategies developed to prevent amyloidosis, utilization of polyphenols stands out as one of the most commonly employed approaches. Scutellaria baicalensis is renowned as one of the foremost herbal sources of polyphenols. In this study, we employed a direct oxidative pyrolysis method for polymerizing S. baicalensis's polyphenols (SBPPs) after their extraction, resulting in the formation of novel SBPPs nanoparticles. Upon polymerization, SBPPs nanoparticles showed remarkable properties including heightened water solubility, increased surface area, modified surface functional groups, and enhanced stability. As a result of these diverse factors, there was a considerable enhancement in the anti-amyloidogenic properties and antioxidant effects of SBPPs nanoparticles compared to its bulk form. The fibrillation kinetics, AFM images, and cytotoxicity assays strongly indicate that SBPPs nanoparticles are more effective than SBPPs at preventing amyloid fibril formation and associated cell toxicity. Additionally, SBPPs nanoparticles demonstrated more effective prevention of reactive oxygen species (ROS) production. In conclusion, the use of SBPPs in nanoparticle form presents a promising strategy to enhance anti-amyloidogenic properties, mitigate oxidative stress, and offer potential therapeutic benefits for amyloidosis-related diseases.
Collapse
Affiliation(s)
- Shirin Jalili
- Research Center for Life and Health Sciences and Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran 1417944661, Iran; Institute of Police Equipment and Technologies, Policing Sciences and Social Studies Research Institute, Tehran 1417944661, Iran
| | - Mohammad Panji
- Research Center for Life and Health Sciences and Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran 1417944661, Iran
| | - Mohsen Mahdavimehr
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran.
| | - Ali Mohseni Ahangar
- School of Metallurgy & Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Hadi Shirzad
- Research Center for Life and Health Sciences and Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran 1417944661, Iran
| | - Seyed Amin Mousavi Nezhad
- Research Center for Life and Health Sciences and Biotechnology of the Police, Directorate of Health, Rescue & Treatment, Police Headquarter, Tehran 1417944661, Iran
| | - Fernando L Palhano
- Instituto de Bioquímica Médica, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil.
| |
Collapse
|
2
|
An D, Ban Q, Du H, Wang Q, Teng F, Li L, Xiao H. Nanofibrils of food-grade proteins: Formation mechanism, delivery systems, and application evaluation. Compr Rev Food Sci Food Saf 2022; 21:4847-4871. [PMID: 36201382 DOI: 10.1111/1541-4337.13028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Due to the high aspect ratio, appealing mechanical characteristics, and various adjustable functional groups on the surface proteins, food-grade protein nanofibrils have attracted great research interest in the field of food science. Fibrillation, known as a process of peptide self-assembly, is recognized as a common attribute for food-grade proteins. Converting food-grade proteins into nanofibrils is a promising strategy to broaden their functionality and applications, such as improvement of the properties of gelling and emulsifying, especially for constructing various delivery systems for bioactive compounds. Protein source and processing conditions have a great impact on the size, structure, and morphology of nanofibrils, resulting in extreme differences in functionality. With this feature, it is possible to engineer nanofibrils into four different delivery systems, including gels, microcapsules, emulsions, and complexes. Construction of nanofibril-based gels via multiple cross-linking methods can endow gels with special network structures to efficiently capture bioactive compounds and extra mechanical behavior. The adsorption behavior of nanofibrils at the interface is highly complex due to the influence of several intrinsic factors, which makes it challenging to form stabilized nanofibril-based emulsion systems. Based on electrostatic interactions, microcapsules and complexes prepared using nanofibrils and polysaccharides have combined functional properties, resulting in adjustable release behavior and higher encapsulation efficiency. The bioactive compounds delivery system based on nanofibrils is a potential solution to enhance their absorption in the gastrointestinal tract, improve their bioavailability, and deliver them to target organs. Although food-grade protein nanofibrils show unknown toxicity to humans, further research can contribute to broadening the application of nanofibrils in delivery systems.
Collapse
Affiliation(s)
- Di An
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, China.,Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Fei Teng
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Hansen J, Uthayakumar R, Pedersen JS, Egelhaaf SU, Platten F. Interactions in protein solutions close to liquid-liquid phase separation: ethanol reduces attractions via changes of the dielectric solution properties. Phys Chem Chem Phys 2021; 23:22384-22394. [PMID: 34608908 DOI: 10.1039/d1cp03210k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ethanol is a common protein crystallization agent, precipitant, and denaturant, but also alters the dielectric properties of solutions. While ethanol-induced unfolding is largely ascribed to its hydrophobic parts, its effect on protein phase separation and inter-protein interactions remains poorly understood. Here, the effects of ethanol and NaCl on the phase behavior and interactions of protein solutions are studied in terms of the metastable liquid-liquid phase separation (LLPS) and the second virial coefficient B2 using lysozyme solutions. Determination of the phase diagrams shows that the cloud-point temperatures are reduced and raised by the addition of ethanol and salt, respectively. The observed trends can be explained using the extended law of corresponding states as changes of B2. The results for B2 agree quantitatively with those of static light scattering and small-angle X-ray scattering experiments. Furthermore, B2 values calculated based on inter-protein interactions described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential and considering the dielectric solution properties and electrostatic screening due to the ethanol and salt content quantitatively agree with the experimentally observed B2 values.
Collapse
Affiliation(s)
- Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Rajeevann Uthayakumar
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Jan Skov Pedersen
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany. .,Institute of Biological Information Processing (IBI-4: Biomacromolecular Systems and Processes), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
4
|
On the Protein Fibrillation Pathway: Oligomer Intermediates Detection Using ATR-FTIR Spectroscopy. Molecules 2021; 26:molecules26040970. [PMID: 33673072 PMCID: PMC7918411 DOI: 10.3390/molecules26040970] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/17/2023] Open
Abstract
Oligomeric intermediates on the pathway of amyloid fibrillation are suspected as the main cytotoxins responsible for amyloid-related pathogenicity. As they appear to be a part of the lag phase of amyloid fibrillation when analyzed using standard methods such as Thioflavin T (ThT) fluorescence, a more sensitive method is needed for their detection. Here we apply Fourier transform infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode for fast and cheap analysis of destabilized hen-egg-white lysozyme solution and detection of oligomer intermediates of amyloid fibrillation. Standard methods of protein aggregation analysis— Thioflavin T (ThT) fluorescence, atomic force microscopy (AFM), and 8-anilinonaphthalene-1-sulphonic acid (ANS) fluorescence were applied and compared to FTIR spectroscopy data. Results show the great potential of FTIR for both, qualitative and quantitative monitoring of oligomer formation based on the secondary structure changes. While oligomer intermediates do not induce significant changes in ThT fluorescence, their secondary structure changes were very prominent. Normalization of specific Amide I region peak intensities by using Amide II peak intensity as an internal standard provides an opportunity to use FTIR spectroscopy for both qualitative and quantitative analysis of biological samples and detection of potentially toxic oligomers, as well as for screening of efficiency of fibrillation procedures.
Collapse
|
5
|
Polovyi IO, Gnatyuk OP, Pyrshev KO, Hanulia TO, Doroshenko TP, Karakhim SA, Posudievsky OY, Kondratyuk AS, Koshechko VG, Dovbeshko GI. Dual effect of 2D WS 2 nanoparticles on the lysozyme conformation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140556. [PMID: 33075478 DOI: 10.1016/j.bbapap.2020.140556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/17/2020] [Accepted: 10/15/2020] [Indexed: 02/08/2023]
Abstract
In the present work we studied the effect of 2D WS2 nanoparticles on the conformational changes in lysozyme protein at different pH values (2.0-11.5). The contributions of various structural conformations (α-helix, β-sheets parallel and antiparallel, unordered structure and side groups) were determined by decomposition of Amid I absorbance bands. The 2D WS2 were shown to have different impact on secondary structure depending on pH of the solution and protein concentration. The amyloid fibril presence was confirmed with confocal microscopy enhanced by gold support, and fluorescent spectroscopy with amyloid-sensitive dye Thioflavin T. Our data show that WS2 can both inhibit and stimulate amyloid formation. Additionally, we have also reported an unusual spectroscopic behavior displayed by lysozyme, indicated by narrowing of Amide I and Amide II bands at pH 2.5 and 3.5 when incubated with 2D WS2 nanoparticles.
Collapse
Affiliation(s)
- I O Polovyi
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine.
| | - O P Gnatyuk
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine
| | - K O Pyrshev
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine; O.V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovycha street, 9, Kyiv 01054, Ukraine
| | - T O Hanulia
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine; Institute of Low Temperature and Structure Research of the Polish Academy of Sciences, Okolna street, 2, Wroclaw 50-422, Poland
| | - T P Doroshenko
- V. Lashkaryov Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 41, Kyiv 03028, Ukraine
| | - S A Karakhim
- O.V. Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine, Leontovycha street, 9, Kyiv 01054, Ukraine
| | - O Yu Posudievsky
- L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Nauky avenue, 31, Kyiv 03028, Ukraine
| | - A S Kondratyuk
- L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Nauky avenue, 31, Kyiv 03028, Ukraine
| | - V G Koshechko
- L.V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Nauky avenue, 31, Kyiv 03028, Ukraine
| | - G I Dovbeshko
- Institute of Physics of the National Academy of Sciences of Ukraine, Nauky avenue, 46, Kyiv 03028, Ukraine
| |
Collapse
|
6
|
Cao Y, Mezzenga R. Food protein amyloid fibrils: Origin, structure, formation, characterization, applications and health implications. Adv Colloid Interface Sci 2019; 269:334-356. [PMID: 31128463 DOI: 10.1016/j.cis.2019.05.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 01/27/2023]
Abstract
Amyloid fibrils have traditionally been considered only as pathological aggregates in human neurodegenerative diseases, but it is increasingly becoming clear that the propensity to form amyloid fibrils is a generic property for all proteins, including food proteins. Differently from the pathological amyloid fibrils, those derived from food proteins can be used as advanced materials in biomedicine, tissue engineering, environmental science, nanotechnology, material science as well as in food science, owing to a combination of highly desirable feature such as extreme aspect ratios, outstanding stiffness and a broad availability of functional groups on their surfaces. In food science, protein fibrillization is progressively recognized as an appealing strategy to broaden and improve food protein functionality. This review article discusses the various classes of reported food protein amyloid fibrils and their formation conditions. It furthermore considers amyloid fibrils in a broad context, from their structural characterization to their forming mechanisms and ensued physical properties, emphasizing their applications in food-related fields. Finally, the biological fate and the potential toxicity mechanisms of food amyloid fibrils are discussed, and an experimental protocol for their health safety validation is proposed in the concluding part of the review.
Collapse
Affiliation(s)
- Yiping Cao
- Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland.
| |
Collapse
|
7
|
Jansens KJA, Lambrecht MA, Rombouts I, Monge Morera M, Brijs K, Rousseau F, Schymkowitz J, Delcour JA. Conditions Governing Food Protein Amyloid Fibril Formation-Part I: Egg and Cereal Proteins. Compr Rev Food Sci Food Saf 2019; 18:1256-1276. [PMID: 33336994 DOI: 10.1111/1541-4337.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/26/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022]
Abstract
Conditions including heating mode, time, temperature, pH, moisture and protein concentration, shear, and the presence of alcohols, chaotropic/reducing agents, enzymes, and/or salt influence amyloid fibril (AF) formation as they can affect the accessibility of amino acid sequences prone to aggregate. As some conditions applied on model protein resemble conditions in food processing unit operations, we here hypothesize that food processing can lead to formation of protein AFs with a compact cross β-sheet structure. This paper reviews conditions and food constituents that affect amyloid fibrillation of egg and cereal proteins. While egg and cereal proteins often coexist in food products, their impact on each other's fibrillation remains unknown. Hen egg ovalbumin and lysozyme form AFs when subjected to moderate heating at acidic pH separately. AFs can also be formed at higher pH, especially in the presence of alcohols or chaotropic/reducing agents. Tryptic wheat gluten digests can form fibrillar structures at neutral pH and maize and rice proteins do so in aqueous ethanol or at acidic pH, respectively.
Collapse
Affiliation(s)
- Koen J A Jansens
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,Nutrex NV, Achterstenhoek 5, B-2275, Lille, Belgium
| | - Marlies A Lambrecht
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Ine Rombouts
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium.,KU Leuven, ECOVO, Kasteelpark Arenberg 21, B-3001, Leuven, Belgium
| | - Margarita Monge Morera
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Kristof Brijs
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| | - Frederic Rousseau
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Joost Schymkowitz
- Switch Laboratory, VIB, and Dept. of Cellular and Molecular Medicine, KU Leuven, B-3000, Leuven, Belgium
| | - Jan A Delcour
- KU Leuven, Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), Kasteelpark Arenberg 20, B-3001, Leuven, Belgium
| |
Collapse
|
8
|
|
9
|
Tuning lysozyme nanofibers dimensions using deep eutectic solvents for improved reinforcement ability. Int J Biol Macromol 2018; 115:518-527. [DOI: 10.1016/j.ijbiomac.2018.03.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 11/18/2022]
|
10
|
Pullulan-based nanocomposite films for functional food packaging: Exploiting lysozyme nanofibers as antibacterial and antioxidant reinforcing additives. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.11.039] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
|
12
|
Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme. Int J Biol Macromol 2017; 98:717-722. [DOI: 10.1016/j.ijbiomac.2017.01.128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/17/2017] [Accepted: 01/30/2017] [Indexed: 12/27/2022]
|
13
|
ASAMOTO H, NAGASHIMA K, NAKAGAMA T, SAITOH K, MINAMISAWA H. Separation Analysis of Amyloid Fibrils Utilizing a PTFE Tube as a Separation Field. BUNSEKI KAGAKU 2017. [DOI: 10.2116/bunsekikagaku.66.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiromichi ASAMOTO
- Department of Liberal Arts and Basic Science, College of Industrial Technology, Nihon University
| | - Kyosuke NAGASHIMA
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Tatsuro NAKAGAMA
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Kazunori SAITOH
- Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University
| | - Hiroaki MINAMISAWA
- Department of Liberal Arts and Basic Science, College of Industrial Technology, Nihon University
| |
Collapse
|
14
|
A comparative study of fibrillation kinetics of two homologous proteins under identical solution condition. Biochimie 2017; 132:75-84. [DOI: 10.1016/j.biochi.2016.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/03/2016] [Indexed: 02/08/2023]
|
15
|
Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme. Int J Pharm 2016; 513:175-182. [DOI: 10.1016/j.ijpharm.2016.09.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/03/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023]
|
16
|
An B, Wu X, Li M, Chen Y, Li F, Yan X, Wang J, Li C, Brennan C. Hydrophobicity-modulating self-assembled morphologies of α-zein in aqueous ethanol. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13248] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Baozhen An
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
- Bioengineering Department; College of Chemical Engineering; Qingdao University of Science & Technology; Zhengzhou Road 53 Qingdao 266042 China
| | - Xiaochen Wu
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Mingjie Li
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Yijun Chen
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
- College of Textiles and Fashion; Qingdao University; Ningxia Road 308 Qingdao 266071 China
| | - Fei Li
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Xiaofei Yan
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Jialin Wang
- Bioengineering Department; College of Chemical Engineering; Qingdao University of Science & Technology; Zhengzhou Road 53 Qingdao 266042 China
| | - Chaoxu Li
- CAS Key Laboratory of Bio-based Materials; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Songling Road 189 Qingdao 266101 China
| | - Charles Brennan
- Department of Wine, Food and Molecular Biosciences; Lincoln University; Lincoln 7647 New Zealand
| |
Collapse
|
17
|
Vus K, Sood R, Gorbenko G, Kinnunen P. Fluorescence monitoring of the effect of oxidized lipids on the process of protein fibrillization. Methods Appl Fluoresc 2016; 4:034008. [PMID: 28355154 DOI: 10.1088/2050-6120/4/3/034008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The kinetics of lysozyme and insulin amyloid formation in the presence of the oxidized phospholipids (oxPLs) was investigated using Thioflavin T fluorescence assay. The kinetic parameters of fibrillization process (lag time and apparent rate constant) have been determined upon varying the following experimental parameters: the type of lipid assemblies (premicellar aggregates and lipid bilayer vesicles), pH, temperature and lipid-to-protein molar ratio. It was found that oxPLs premicellar aggregates induced the more pronounced increase of the maximum Thioflavin T fluorescence, which is proportional to the extent of fibril formation, compared to the vesicles composed of the oxidized and unoxidized lipids. In contrast, the oxPLs, used as dispersions or included into vesicles, inhibited fibril nucleation and elongation under near-physiological conditions in vitro compared to liposomes containing unoxidized lipids. The results obtained provide deeper insight into the molecular mechanisms of the oxidative stress-modulated conformational diseases, and could be employed for the anti-amyloid drug development.
Collapse
Affiliation(s)
- Kateryna Vus
- Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University, 4 Svobody Sq., Kharkiv 61022, Ukraine. Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University, 12-38 Aeroflotska Str., Kharkiv 61031, Ukraine
| | | | | | | |
Collapse
|
18
|
Production of lysozyme nanofibers using deep eutectic solvent aqueous solutions. Colloids Surf B Biointerfaces 2016; 147:36-44. [PMID: 27478961 DOI: 10.1016/j.colsurfb.2016.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/23/2016] [Accepted: 07/03/2016] [Indexed: 12/30/2022]
Abstract
Amyloid fibrils have recently gained a lot of attention due to their morphology, functionality and mechanical strength, allowing for their application in nanofiber-based materials, biosensors, bioactive membranes and tissue engineering scaffolds. The in vitro production of amyloid fibrils is still a slow process, thus hampering the massive production of nanofibers and its consequent use. This work presents a new and faster (2-3h) fibrillation method for hen egg white lysozyme (HEWL) using a deep eutectic solvent based on cholinium chloride and acetic acid. Nanofibers with dimensions of 0.5-1μm in length and 0.02-0.1μm in thickness were obtained. Experimental variables such as temperature and pH were also studied, unveiling their influence in fibrillation time and nanofibers morphology. These results open a new scope for protein fibrillation into nanofibers with applications ranging from medicine to soft matter and nanotechnology.
Collapse
|
19
|
Smolira A, Hałas S. Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometric analysis of lysozyme contained in hen egg white. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2016; 22:9-17. [PMID: 26863071 DOI: 10.1255/ejms.1403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
As a natural antibacterial peptide, lysozyme (LZ) is widely used in medicine and the food industry. Despite many years of research on this compound, its new antibacterial properties are still to be determined. The primary aim of this work is to demonstrate the application of the matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometric analysis of LZ directly in hen egg white samples without extraction thereof. The egg white samples were kept over 10 weeks at room temperature and measured every week. The resulting positive and negative ion mass spectra were then compared to determine the intensity of the LZ mass peak. Storage of the egg white for over 10 weeks did not influence the LZ mass peak intensity (both positive and negative). It can be concluded that the LZ concentration in the egg white samples did not vary with time. The effect of the matrix/sample ratio on LZ detection was also examined, and it was found to be different in the case of positive and negative ionization. The mass peaks of LZ oligomeric forms were observed in all mass spectra, so the MALDI method could be used in subsequent studies.
Collapse
Affiliation(s)
- Anna Smolira
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland..
| | - Stanisław Hałas
- Mass Spectrometry Laboratory, Institute of Physics, Maria Curie Sklodowska University, Pl. M. Curie- Skłodowskiej 1, 20-031 Lublin, Poland..
| |
Collapse
|
20
|
Wu S, Ding Y, Zhang G. Mechanic Insight into Aggregation of Lysozyme by Ultrasensitive Differential Scanning Calorimetry and Sedimentation Velocity. J Phys Chem B 2015; 119:15789-95. [PMID: 26633732 DOI: 10.1021/acs.jpcb.5b08190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Folding and aggregation of proteins profoundly influence their functions. We have investigated the effects of thermal history, concentration and pH on the denaturation and refolding of lysozyme by using ultrasensitive differential scanning calorimetry (US-DSC) and sedimentation velocity (SV) via analytical ultracentrifugation (AUC). The former is sensitive to small energy change whereas the latter can differentiate the oligomers such as dimer and trimer from individual protein molecules. Our studies reveal that the degree of denaturation irreversibility increases as heating times increases. The denaturation temperature (Td) and enthalpy change (ΔH) are influenced by heating rate since the denaturation is not in equilibrium during the heating. We can obtain Td and ΔH in equilibrium by extrapolation of heating rate to zero. In a dilute solution, no aggregation but unfolding happens in the denaturation. However, when the concentration is above a critical value (∼15.0 mg/mL), lysozyme molecules readily form trimers or other oligomers. Lysozyme molecules unfold into stretched chains at pH > 6.0, which would further forms large aggregates. The formation of aggregates makes the refolding of lysozyme impossible.
Collapse
Affiliation(s)
- Sha Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China , Hefei, 230026, China
| | - Yanwei Ding
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China , Hefei, 230026, China
| | - Guangzhao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China , Hefei, 230026, China.,Faculty of Materials Science and Engineering, South China University of Technology , Guangzhou, P. R. China 510640
| |
Collapse
|
21
|
Chaari A, Fahy C, Chevillot-Biraud A, Rholam M. Insights into Kinetics of Agitation-Induced Aggregation of Hen Lysozyme under Heat and Acidic Conditions from Various Spectroscopic Methods. PLoS One 2015; 10:e0142095. [PMID: 26571264 PMCID: PMC4646502 DOI: 10.1371/journal.pone.0142095] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/16/2015] [Indexed: 01/28/2023] Open
Abstract
Protein misfolding and amyloid formation are an underlying pathological hallmark in a number of prevalent diseases of protein aggregation ranging from Alzheimer’s and Parkinson’s diseases to systemic lysozyme amyloidosis. In this context, we have used complementary spectroscopic methods to undertake a systematic study of the self-assembly of hen egg-white lysozyme under agitation during a prolonged heating in acidic pH. The kinetics of lysozyme aggregation, monitored by Thioflavin T fluorescence, dynamic light scattering and the quenching of tryptophan fluorescence by acrylamide, is described by a sigmoid curve typical of a nucleation-dependent polymerization process. Nevertheless, we observe significant differences between the values deduced for the kinetic parameters (lag time and aggregation rate). The fibrillation process of lysozyme, as assessed by the attenuated total reflection-Fourier transform infrared spectroscopy, is accompanied by an increase in the β-sheet conformation at the expense of the α-helical conformation but the time-dependent variation of the content of these secondary structures does not evolve as a gradual transition. Moreover, the tryptophan fluorescence-monitored kinetics of lysozyme aggregation is described by three phases in which the temporal decrease of the tryptophan fluorescence quantum yield is of quasilinear nature. Finally, the generated lysozyme fibrils exhibit a typical amyloid morphology with various lengths (observed by atomic force microscopy) and contain exclusively the full-length protein (analyzed by highly performance liquid chromatography). Compared to the data obtained by other groups for the formation of lysozyme fibrils in acidic pH without agitation, this work provides new insights into the structural changes (local, secondary, oligomeric/fibrillar structures) undergone by the lysozyme during the agitation-induced formation of fibrils.
Collapse
Affiliation(s)
- Ali Chaari
- ITODYS, UMR CNRS 7086, Univ. Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
- Laboratoire de Génétique et Biologie Cellulaire, Université de Versailles Saint-Quentin-en-Yvelines, 78035, Versailles, France
| | - Christine Fahy
- ITODYS, UMR CNRS 7086, Univ. Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
| | | | - Mohamed Rholam
- ITODYS, UMR CNRS 7086, Univ. Paris Diderot, Sorbonne Paris Cité, 75205, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Protein Misfolding in Lipid-Mimetic Environments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:33-66. [PMID: 26149925 DOI: 10.1007/978-3-319-17344-3_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Among various cellular factors contributing to protein misfolding and subsequent aggregation, membranes occupy a special position due to the two-way relations between the aggregating proteins and cell membranes. On one hand, the unstable, toxic pre-fibrillar aggregates may interact with cell membranes, impairing their functions, altering ion distribution across the membranes, and possibly forming non-specific membrane pores. On the other hand, membranes, too, can modify structures of many proteins and affect the misfolding and aggregation of amyloidogenic proteins. The effects of membranes on protein structure and aggregation can be described in terms of the "membrane field" that takes into account both the negative electrostatic potential of the membrane surface and the local decrease in the dielectric constant. Water-alcohol (or other organic solvent) mixtures at moderately low pH are used as model systems to study the joint action of the local decrease of pH and dielectric constant near the membrane surface on the structure and aggregation of proteins. This chapter describes general mechanisms of structural changes of proteins in such model environments and provides examples of various proteins aggregating in the "membrane field" or in lipid-mimetic environments.
Collapse
|
23
|
Takai E, Uda K, Yoshida T, Zako T, Maeda M, Shiraki K. Cysteine inhibits the fibrillisation and cytotoxicity of amyloid-β 40 and 42: implications for the contribution of the thiophilic interaction. Phys Chem Chem Phys 2014; 16:3566-72. [PMID: 24413447 DOI: 10.1039/c3cp54245a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inhibitors of amyloid fibril formation have been at the centre of intense research efforts for the prevention of amyloidosis. Here, we hypothesise that a specific non-covalent interaction, the thiophilic interaction between the side chain of an aromatic residue in a polypeptide and a sulphur atom of the compound, effectively inhibits amyloid fibril formation. Fluorescence spectroscopy and transmission electron microscopy revealed that sulphur compounds, particularly Cys, inhibit the fibrillisation of amyloid-β 1-40 (Aβ40) and 1-42 (Aβ42). Interestingly, aggregates of Aβ40 and Aβ42 induced by Cys were less cytotoxic than those induced by catechin, which is the most typical inhibitor of amyloid fibril formation. Because the essential amino acid, Cys, is an abundant molecule in the blood and cytosol, our data provide a new basis for the prevention of amyloid-related diseases and the elucidation of the mechanism of these diseases.
Collapse
Affiliation(s)
- Eisuke Takai
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Rzeźnicka II, Pandey R, Schleeger M, Bonn M, Weidner T. Formation of lysozyme oligomers at model cell membranes monitored with sum frequency generation spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7736-7744. [PMID: 24941083 DOI: 10.1021/la5010227] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A growing number of studies suggest that the formation of toxic oligomers, precursors of amyloid fibrils, is initiated at the cell membrane and not in the cytosolic compartments of the cell. Studies of membrane-induced protein oligomerization are challenging due to the difficulties of probing small numbers of proteins present at membrane surfaces. Here, we employ surface-sensitive vibrational sum frequency generation (VSFG) to investigate the secondary structure of lysozyme at the surface of lipid monolayers. We investigate lysozyme aggregation at negatively charged 1,2-dipalmitoyl-sn-glycero-3-(phospho-rac-1-glycerol) (DPPG) lipid monolayers under different pH conditions. The changes in the molecular vibrations of lipids, proteins, and water as a function of pH and surface pressure allow us to simultaneously monitor details of the conformation state of lysozyme, the organization of lipids, and the state of lipid-bound water. At pH = 6 lysozyme induces significant disordering of the lipid layer, and it exists in two states: a monomeric state with a predominantly α-helix content and an oligomeric (za-mer) state. At pH ≤ 3, all membrane-bound lysozyme self-associates into oligomers characterized by an antiparallel β-sheet structure. This is different from the situation in bulk solution, for which circular dichroism (CD) shows that the protein maintains an α-helix conformation, under both neutral and acidic pH conditions. The transition from monomers to oligomers is also associated with a decreased hydration of the lipid monolayer resulting in an increase of the lipid acyl chains ordering. The results indicate that oligomerization requires cooperative action between lysozyme incorporated into the lipid membrane and peripherally adsorbed lysozyme and is associated with the membrane dehydration and lipid reorganization. Membrane-bound oligomers with antiparallel β-sheet structure are found to destabilize lipid membranes.
Collapse
Affiliation(s)
- I I Rzeźnicka
- Department of Chemistry, Graduate School of Science, 6-3 Aramaki Aza-Aoba, Aoba-ku, Tohoku University , Sendai, Japan
| | | | | | | | | |
Collapse
|
25
|
Khan JM, Chaturvedi SK, Rahman SK, Ishtikhar M, Qadeer A, Ahmad E, Khan RH. Protonation favors aggregation of lysozyme with SDS. SOFT MATTER 2014; 10:2591-2599. [PMID: 24647567 DOI: 10.1039/c3sm52435c] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Different proteins have different amino acid sequences as well as conformations, and therefore different propensities to aggregate. Electrostatic interactions have an important role in the aggregation of proteins as revealed by our previous report (J. M. Khan et al., PLoS One, 2012, 7, e29694). In this study, we designed and executed experiments to gain knowledge of the role of charge variations on proteins during the events of protein aggregation with lysozyme as a model protein. To impart positive and negative charges to proteins, we incubated lysozyme at different pH values of below and above the pI (∼11). Negatively charged SDS was used to 'antagonize' positive charges on lysozyme. We examined the effects of pH variations on SDS-induced amyloid fibril formation by lysozyme using methods such as far-UV circular dichroism, Rayleigh scattering, turbidity measurements, dye binding assays and dynamic light scattering. We found that sub-micellar concentrations of SDS (0.1 to 0.6 mM) induced amyloid fibril formation by lysozyme in the pH range of 10.0-1.0 and maximum aggregation was observed at pH 1.0. The morphology of aggregates was fibrillar in structure, as visualized by transmission electron microscopy. Isothermal titration calorimetry studies demonstrated that fibril formation is exothermic. To the best of our current understanding of the mechanism of aggregation, this study demonstrates the crucial role of electrostatic interactions during amyloid fibril formation. The model proposed here will help in designing molecules that can prevent or reverse the amyloid fibril formation or the aggregation.
Collapse
Affiliation(s)
- Javed M Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ma B, You X, Lu F. Inhibitory effects of β-ionone on amyloid fibril formation of β-lactoglobulin. Int J Biol Macromol 2014; 64:162-7. [DOI: 10.1016/j.ijbiomac.2013.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/09/2013] [Accepted: 12/02/2013] [Indexed: 10/25/2022]
|
27
|
Lin Y, Lee YH, Yoshimura Y, Yagi H, Goto Y. Solubility and supersaturation-dependent protein misfolding revealed by ultrasonication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:1845-1854. [PMID: 24059752 DOI: 10.1021/la403100h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although alcohols are useful cosolvents for producing amyloid fibrils, the underlying mechanism of alcohol-dependent fibrillation is unclear. We studied the alcohol-induced fibrillation of hen egg-white lysozyme at various concentrations of ethanol, 2,2,2-trifluoroethanol (TFE), and 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP). Under the conditions where the alcohol-denatured lysozyme retained metastability, ultrasonication effectively triggered fibrillation. The optimal alcohol concentration depended on the alcohol species. HFIP showed a sharp maximum at 12-16%. For TFE, a broad maximum at 40-80% was observed. Ethanol exhibited only an increase in fibrillation above 60%. These profiles were opposite to the equilibrium solubility of lysozyme in water/alcohol mixtures. The results indicate that although fibrillation is determined by solubility, supersaturation prevents conformational transitions and ultrasonication is highly effective in minimizing an effect of supersaturation. We propose an alcohol-dependent protein misfolding funnel useful for examining amyloidogenicity. This misfolding funnel will apply to fibrillation under physiological conditions where biological environments play important roles in decreasing the solubility.
Collapse
Affiliation(s)
- Yuxi Lin
- Institute for Protein Research, Osaka University , 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
28
|
Fluorescence Investigation of Interactions Between Novel Benzanthrone Dyes and Lysozyme Amyloid Fibrils. J Fluoresc 2013; 24:493-504. [DOI: 10.1007/s10895-013-1318-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 11/07/2013] [Indexed: 10/25/2022]
|
29
|
Ow SY, Dunstan DE. The effect of concentration, temperature and stirring on hen egg white lysozyme amyloid formation. SOFT MATTER 2013; 9:9692-701. [PMID: 26029778 DOI: 10.1039/c3sm51671g] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lysozyme is associated with hereditary systemic amyloidosis in humans. Hen egg white lysozyme (HEWL) has been extensively studied as an amyloid forming protein. In this study, we investigated HEWL amyloid formation over a range of temperatures at two stirring speeds and at low concentrations to avoid gel formation. The amyloid fibril formation was found to follow first order kinetics with the rate determining step being the unfolding of the lysozyme. Both the rate of formation and final amount of amyloid formed show maxima with temperature at approximately at 65 °C. CD measurements show that the lysozyme is unfolded by 55 °C. The decrease in amyloid formation at temperatures above 65 °C is attributed to competing amorphous aggregation. The majority of the non-fibrillar aggregates are small and uniform in size with a few larger amorphous aggregates observed in the AFM images.
Collapse
Affiliation(s)
- Sian-Yang Ow
- Department of chemical and biomolecular engineering, The University of Melbourne, Vic. 3010, Australia
| | | |
Collapse
|
30
|
Fluorescence Study of the Membrane Effects of Aggregated Lysozyme. J Fluoresc 2013; 23:1229-37. [DOI: 10.1007/s10895-013-1254-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/17/2013] [Indexed: 11/27/2022]
|
31
|
Trusova VM, Gorbenko GP. Fluorescence study on aggregated lysozyme and lipid bilayer interactions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2012; 113:51-5. [PMID: 22652331 DOI: 10.1016/j.jphotobiol.2012.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 04/20/2012] [Accepted: 05/01/2012] [Indexed: 11/25/2022]
Abstract
Fluorescent probes 1,6-diphenyl-1,3,5-hexatriene (DPH), pyrene, 4-dimethylaminochalcone (DMC) and 4-p-(dimethylaminostyryl)-1-dodecylpyridinium (DSP-12) have been utilized to monitor the impact of lysozyme (Lz) oligomers on physicochemical properties of phosphatidylcholine/cardiolipin (PC/CL) membranes. Analysis of spectral responses of the employed probes revealed the reduction of membrane free volume and dehydration of lipid bilayer surface upon incorporation of Lz self-assemblies. Hydrophobic interactions were found to control the binding of Lz oligomers to the lipid bilayer. Comparison of the effects of Lz monomers, oligomers and fibrils showed that soluble oligomeric intermediates exert the most destructive influence on membrane properties.
Collapse
Affiliation(s)
- Valeriya M Trusova
- Department of Biological and Medical Physics, V.N. Karazin Kharkov National University, 4 Svobody Sq., Kharkov 61022, Ukraine.
| | | |
Collapse
|
32
|
Khodarahmi R, Hossein-pour Z, Ghobadi S, Mansouri K, Mostafaie A, Yari K, Ghadami SA. Non-specific peroxidase activity and catalase-inhibitory behavior of fibrillar aggregates after interaction with heme: relevance to the etiology of amyloid-related neurodegenerative disorders using the experimental-based evidences. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2012. [DOI: 10.1007/s13738-012-0111-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
33
|
Modulation of physiological and pathological activities of lysozyme by biological membranes. Cell Mol Biol Lett 2012; 17:349-75. [PMID: 22544762 PMCID: PMC6275811 DOI: 10.2478/s11658-012-0015-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 04/18/2012] [Indexed: 11/21/2022] Open
Abstract
The molecular details of interactions between lipid membranes and lysozyme (Lz), a small polycationic protein with a wide range of biological activities, have long been the focus of numerous studies. The biological consequences of this process are considered to embrace at least two aspects: i) correlation between antimicrobial and membranotropic properties of this protein, and ii) lipid-mediated Lz amyloidogenesis. The mechanisms underlying the lipid-assisted protein fibrillogenesis and membrane disruption exerted by Lz in bacterial cells are believed to be similar. The present investigation was undertaken to gain further insight into Lz-lipid interactions and explore the routes by which Lz exerts its antimicrobial and amyloidogenic actions. Binding and Förster resonance energy transfer studies revealed that upon increasing the content of anionic lipids in lipid vesicles, Lz forms aggregates in a membrane environment. Total internal reflection fluorescence microscopy and pyrene excimerization reaction were employed to study the effect of Lz on the structural and dynamic properties of lipid bilayers. It was found that Lz induces lipid demixing and reduction of bilayer free volume, the magnitude of this effect being much more pronounced for oligomeric protein.
Collapse
|
34
|
Kastorna A, Trusova V, Gorbenko G, Kinnunen P. Membrane effects of lysozyme amyloid fibrils. Chem Phys Lipids 2012; 165:331-7. [DOI: 10.1016/j.chemphyslip.2012.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 12/12/2022]
|
35
|
Vus K, Trusova V, Gorbenko G, Kirilova E, Kirilov G, Kalnina I, Kinnunen P. Novel aminobenzanthrone dyes for amyloid fibril detection. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.02.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
36
|
Lassé M, Gerrard JA, Pearce FG. Aggregation and fibrillogenesis of proteins not associated with disease: a few case studies. Subcell Biochem 2012; 65:253-270. [PMID: 23225007 DOI: 10.1007/978-94-007-5416-4_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
While amyloid structures have been well characterised in a medical context, there is increasing interest in studying amyloid-like aggregates in other areas, such as food science and nanomaterials. Several proteins relevant to food processing, including serum albumen, lactoglobulin, lysozyme, ovalbumin, casein, and soy protein isolate have been shown to form fibrillar structures under both physiological and non-physiological conditions. These structures are likely to contribute to the structural characteristics of the final food product. In a biotechnological context, proteins such as insulin and eye lens crystallins can be induced to form amyloid structures which can subsequently be used in biotechnology. One example of this is the use of amyloid fibrils as a scaffold for the immobilisation of enzymes. Another current interest in amyloid fibrils is as a storage form for peptide hormones, including insulin, glucagon and calcitonin. Here, we give an overview of a selection of well characterised proteins that have been studied outside the context of disease.
Collapse
Affiliation(s)
- Moritz Lassé
- Biomolecular Interaction Center and School of Biological Sciences, University of Canterbury, Private Bag 4800, 8020, Christchurch, New Zealand,
| | | | | |
Collapse
|
37
|
Gorbenko G, Trusova V. Effects of oligomeric lysozyme on structural state of model membranes. Biophys Chem 2011; 154:73-81. [DOI: 10.1016/j.bpc.2011.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 12/01/2022]
|
38
|
Swaminathan R, Ravi VK, Kumar S, Kumar MVS, Chandra N. Lysozyme: a model protein for amyloid research. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 84:63-111. [PMID: 21846563 DOI: 10.1016/b978-0-12-386483-3.00003-3] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ever since lysozyme was discovered by Fleming in 1922, this protein has emerged as a model for investigations on protein structure and function. Over the years, several high-resolution structures have yielded a wealth of structural data on this protein. Extensive studies on folding of lysozyme have shown how different regions of this protein dynamically interact with one another. Data is also available from numerous biotechnological studies wherein lysozyme has been employed as a model protein for recovering active recombinant protein from inclusion bodies using small molecules like l-arginine. A variety of conditions have been developed in vitro to induce fibrillation in hen lysozyme. They include (a) acidic pH at elevated temperature, (b) concentrated solutions of ethanol, (c) moderate concentrations of guanidinium hydrochloride at moderate temperature, and (d) alkaline pH at room temperature. This review aims to bring together similarities and differences in aggregation mechanisms, morphology of aggregates, and related issues that arise using the different conditions mentioned above to improve our understanding. The alkaline pH condition (pH 12.2), discovered and studied extensively in our lab, shall receive special attention. More than a decade ago, it was revealed that mutations in human lysozyme can cause accumulation of large quantities of amyloid in liver, kidney, and other regions of gastrointestinal tract. Understanding the mechanism of lysozyme aggregation will probably have therapeutic implications for the treatment of systemic nonneuropathic amyloidosis. Numerous studies have begun to focus attention on inhibition of lysozyme aggregation using antibody or small molecules. The enzymatic activity of lysozyme presents a convenient handle to quantify the native population of lysozyme in a sample where aggregation has been inhibited. The rich information available on lysozyme coupled with the multiple conditions that have been successful in inducing/inhibiting its aggregation in vitro makes lysozyme an ideal model protein to investigate amyloidogenesis.
Collapse
Affiliation(s)
- Rajaram Swaminathan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | | | | | | | | |
Collapse
|
39
|
Jain N, Bhattacharya M, Mukhopadhyay S. Kinetics of Surfactant-induced Aggregation of Lysozyme Studied by Fluorescence Spectroscopy. J Fluoresc 2010; 21:615-25. [DOI: 10.1007/s10895-010-0749-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/05/2010] [Indexed: 01/18/2023]
|
40
|
|
41
|
Khodarahmi R, Soori H, Amani M. Study of cosolvent-induced alpha-chymotrypsin fibrillogenesis: does protein surface hydrophobicity trigger early stages of aggregation reaction? Protein J 2010; 28:349-61. [PMID: 19768527 DOI: 10.1007/s10930-009-9200-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The misfolding of specific proteins is often associated with their assembly into fibrillar aggregates, commonly termed amyloid fibrils. Despite the many efforts expended to characterize amyloid formation in vitro, there is no deep knowledge about the environment (in which aggregation occurs) as well as mechanism of this type of protein aggregation. Alpha-chymotrypsin was recently driven toward amyloid aggregation by the addition of intermediate concentrations of trifluoroethanol. In the present study, approaches such as turbidimetric, thermodynamic, intrinsic fluorescence and quenching studies as well as chemical modification have been successfully used to elucidate the underlying role of hydrophobic interactions (involved in early stages of amyloid formation) in alpha-chymotrypsin-based experimental system.
Collapse
Affiliation(s)
- Reza Khodarahmi
- Department of Pharmacognosy and Biotechnology, Faculty of Pharmacy, Kermanshah University of Medical Sciences, P. O. Box 67145-1673, Kermanshah, Iran.
| | | | | |
Collapse
|
42
|
Heme, as a chaperone, binds to amyloid fibrils and forms peroxidase in vitro: Possible evidence on critical role of non-specific peroxidase activity in neurodegenerative disease onset/progression using the α-crystallin-based experimental system. Arch Biochem Biophys 2010; 494:205-15. [DOI: 10.1016/j.abb.2009.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 11/23/2022]
|