1
|
Dai M, Hong W, Ouyang Y. Identification and Validation of Hub Genes and Construction of miRNA-Gene and Transcription Factor-Gene Networks in Adipogenesis of Mesenchymal Stem Cells. Stem Cells Int 2024; 2024:5789593. [PMID: 39238829 PMCID: PMC11377116 DOI: 10.1155/2024/5789593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/13/2024] [Accepted: 07/26/2024] [Indexed: 09/07/2024] Open
Abstract
Background Adipogenic differentiation stands as a crucial pathway in the range of differentiation options for mesenchymal stem cells (MSCs), carrying significant importance in the fields of regenerative medicine and the treatment of conditions such as obesity and osteoporosis. However, the exact mechanisms that control the adipogenic differentiation of MSCs are not yet fully understood. Materials and Methods We procured datasets, namely GSE36923, GSE80614, GSE107789, and GSE113253, from the Gene Expression Omnibus database. These datasets enabled us to perform a systematic analysis, including the identification of differentially expressed genes (DEGs) pre- and postadipogenic differentiation in MSCs. Subsequently, we conducted an exhaustive analysis of DEGs common to all four datasets. To gain further insights, we subjected these overlapped DEGs to comprehensive gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses. Following the construction of protein-protein interaction (PPI) networks, we meticulously identified a cohort of hub genes pivotal to the adipogenic differentiation process and validated them using real-time quantitative polymerase chain reaction. Subsequently, we ventured into the construction of miRNA-gene and TF-gene interaction networks. Results Our rigorous analysis revealed a total of 18 upregulated DEGs and 12 downregulated DEGs that consistently appeared across all four datasets. Notably, the peroxisome proliferator-activated receptor signaling pathway, regulation of lipolysis in adipocytes, and the adipocytokine signaling pathway emerged as the top-ranking pathways significantly implicated in the regulation of these DEGs. Subsequent to the construction of the PPI network, we identified and validated 10 key node genes, namely IL6, FABP4, ADIPOQ, LPL, PLIN1, RBP4, ACACB, NT5E, KRT19, and G0S2. Our endeavor to construct miRNA-gene interaction networks led to the discovery of the top 10 pivotal miRNAs, including hsa-mir-27a-3p, hsa-let-7b-5p, hsa-mir-1-3p, hsa-mir-124-3p, hsa-mir-155-5p, hsa-mir-16-5p, hsa-mir-101-3p, hsa-mir-21-3p, hsa-mir-146a-5p, and hsa-mir-148b-3p. Furthermore, the construction of TF-gene interaction networks revealed the top 10 critical TFs: ZNF501, ZNF512, YY1, EZH2, ZFP37, ZNF2, SOX13, MXD3, ELF3, and TFDP1. Conclusions In summary, our comprehensive study has successfully unraveled the pivotal hub genes that govern the adipogenesis of MSCs. Moreover, the meticulously constructed miRNA-gene and TF-gene interaction networks are poised to significantly augment our comprehension of the intricacies underlying MSC adipogenic differentiation, thus providing a robust foundation for future advances in regenerative biology.
Collapse
Affiliation(s)
- Miaomiao Dai
- Department of Ophthalmology Shunde Hospital Southern Medical University (The First People's Hospital of Shunde, Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province, China
| | - Weisheng Hong
- Department of Joint Surgery Shunde Hospital Southern Medical University (The First People's Hospital of Shunde, Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province, China
| | - Yi Ouyang
- Department of Joint Surgery Shunde Hospital Southern Medical University (The First People's Hospital of Shunde, Foshan), No. 1 Jiazi Road, Lunjiao, Shunde District, Foshan City, Guangdong Province, China
| |
Collapse
|
2
|
Erdos E, Sandor K, Young-Erdos CL, Halasz L, Smith SR, Osborne TF, Divoux A. Transcriptional Control of Subcutaneous Adipose Tissue by the Transcription Factor CTCF Modulates Heterogeneity in Fat Distribution in Women. Cells 2023; 13:86. [PMID: 38201289 PMCID: PMC10778492 DOI: 10.3390/cells13010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Determining the mechanism driving body fat distribution will provide insights into obesity-related health risks. We used functional genomics tools to profile the epigenomic landscape to help infer the differential transcriptional potential of apple- and pear-shaped women's subcutaneous adipose-derived stem cells (ADSCs). We found that CCCTC-binding factor (CTCF) expression and its chromatin binding were increased in ADSCs from pear donors compared to those from apple donors. Interestingly, the pear enriched CTCF binding sites were located predominantly at the active transcription start sites (TSSs) of genes with active histone marks and YY1 motifs and were also associated with pear enriched RNAPII binding. In contrast, apple enriched CTCF binding sites were mainly found at intergenic regions and when identified at TSS, they were enriched with the bivalent chromatin signatures. Altogether, we provide evidence that CTCF plays an important role in differential regulation of subcutaneous ADSCs gene expression and may influence the development of apple vs. pear body shape.
Collapse
Affiliation(s)
- Edina Erdos
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Katalin Sandor
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | | | - Laszlo Halasz
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Steven R. Smith
- Translational Research Institute, Adventhealth, Orlando, FL 32804, USA
| | - Timothy F. Osborne
- Division of Diabetes Endocrinology and Metabolism, Departments of Medicine, Biological Chemistry and Pediatrics, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, FL 33701, USA
| | - Adeline Divoux
- Translational Research Institute, Adventhealth, Orlando, FL 32804, USA
| |
Collapse
|
3
|
Cui J, Li C, Cui X, Liu X, Meng C, Zhou G. Shortening of HO1 3'UTRs by Alternative Polyadenylation Suppresses Adipogenesis in 3T3-L1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8038-8049. [PMID: 34236846 DOI: 10.1021/acs.jafc.1c01822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Appropriately increasing intramuscular fat content can help improve meat quality, so it is necessary to explore the internal molecular mechanism of preadipocyte differentiation. The role of heme oxygenase 1 (HO1) in cell oxidative stress, energy metabolism, cell proliferation, and differentiation has gradually been revealed. Here, we used 3'RACE to identify the full-length 3' untranslated region (3'UTR) of HO1 and found that a very short 3'UTR variant was produced by alternative polyadenylation (APA). HO1 with a long 3'UTR variant was identified as a direct target of miR155-5P and miR377-3P. Our experimental results verified the inhibitory effect of HO1 on preadipocyte differentiation. In addition, our research confirms that by escaping microRNA inhibitory effects, the HO1 3'UTR short variant produced by APA has a higher level of expression. Thus, the HO1 3'UTR short variant has a stronger inhibitory effect on the preadipocyte differentiation than the HO1 3'UTR long variants in 3T3-L1.
Collapse
Affiliation(s)
- Jianwei Cui
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Chengping Li
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xiao Cui
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Xueyan Liu
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Chaoqun Meng
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| | - Guoli Zhou
- College of Life Science, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
4
|
Song D, Yang Q, Jiang X, Shan A, Nan J, Lei Y, Ji H, Di W, Yang T, Wang T, Wang W, Ning G, Cao Y. YY1 deficiency in β-cells leads to mitochondrial dysfunction and diabetes in mice. Metabolism 2020; 112:154353. [PMID: 32916152 DOI: 10.1016/j.metabol.2020.154353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/06/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND The transcription factor YY1 is an important regulator for metabolic homeostasis. Activating mutations in YY1 lead to tumorigenesis of pancreatic β-cells, however, the physiological functions of YY1 in β-cells are still unknown. Here, we investigated the effects of YY1 ablation on insulin secretion and glucose metabolism. METHODS We established two models of β-cell-specific YY1 knockout mice. The glucose metabolic phenotypes, β-cell mass and β-cell functions were analyzed in the mouse models. Transmission electron microscopy was used to detect the ultrastructure of β-cells. The flow cytometry analysis, measurement of OCR and ROS were performed to investigate the mitochondrial function. Histological analysis, quantitative PCR and ChIP were performed to analyze the target genes of YY1 in β-cells. RESULTS Our results showed that loss of YY1 resulted in reduction of insulin production, β-cell mass and glucose tolerance in mice. Ablation of YY1 led to defective ATP production and mitochondrial ROS accumulation in pancreatic β-cells. The inactivation of YY1 impaired the activity of mitochondrial oxidative phosphorylation, induced mitochondrial dysfunction and diabetes in mouse models. CONCLUSION Our findings demonstrate that the transcriptional activity of YY1 is essential for the maintenance of mitochondrial functions and insulin secretion in β-cells.
Collapse
Affiliation(s)
- Dalong Song
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuli Jiang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aijing Shan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingminjie Nan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Lei
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - He Ji
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Di
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianxiao Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tiange Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Cao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, National Clinical Research Centre for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai Key Laboratory for Endocrine Tumors, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Research Center for Translational Medicine, National Key Scientific Infrastructure for Translational Medicine (Shanghai), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Knock-down Sox5 suppresses porcine adipogenesis through BMP R-Smads signal pathway. Biochem Biophys Res Commun 2020; 527:574-580. [PMID: 32423805 DOI: 10.1016/j.bbrc.2020.04.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/23/2020] [Indexed: 12/27/2022]
|
6
|
Li Y, Kasim V, Yan X, Li L, Meliala ITS, Huang C, Li Z, Lei K, Song G, Zheng X, Wu S. Yin Yang 1 facilitates hepatocellular carcinoma cell lipid metabolism and tumor progression by inhibiting PGC-1β-induced fatty acid oxidation. Theranostics 2019; 9:7599-7615. [PMID: 31695789 PMCID: PMC6831470 DOI: 10.7150/thno.34931] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 09/08/2019] [Indexed: 12/11/2022] Open
Abstract
Lipid accumulation is a driving force in tumor development, as it provides tumor cells with both energy and the building blocks of phospholipids for construction of cell membranes. Aberrant homeostasis of lipid metabolism has been observed in various tumors; however, the molecular mechanism has not been fully elucidated. Methods: Yin yang 1 (YY1) expression in hepatocellular carcinoma (HCC) was analyzed using clinical specimens, and its roles in HCC in lipid metabolism were examined using gain- and loss-of function experiments. The mechanism of YY1 regulation on peroxisome proliferator-activated receptor gamma coactivator-1β (PGC-1β) and its downstream genes medium-chain acyl-CoA dehydrogenase (MCAD) and long-chain acyl-CoA dehydrogenase (LCAD) were investigated using molecular biology and biochemical methods. The role of YY1/ PGC-1β axis in hepatocarcinogenesis was studied using xenograft experiment. Results: This study showed that YY1 suppresses fatty acid β-oxidation, leading to increase of cellular triglyceride level and lipid accumulation in HCC cells, and subsequently induction of the tumorigenesis potential of HCC cells. Molecular mechanistic study revealed that YY1 blocks the expression of PGC-1β, an activator of fatty acid β-oxidation, by directly binding to its promoter; and thus downregulates PGC-1β/MCAD and PGC1-β/LCAD axis. Importantly, we revealed that YY1 inhibition on PGC-1β occurs irrespective of the expression of hypoxia-inducible factor-1α (HIF1-α), enabling it to promote lipid accumulation under both normoxic and hypoxic conditions. Conclusion: Our study reveals the critical role of YY1/PGC-1β axis in HCC cell lipid metabolism, providing novel insight into the molecular mechanisms associated with tumor cell lipid metabolism, and a new perspective regarding the function of YY1 in tumor progression. Thus, our study provides evidences regarding the potential of YY1 as a target for lipid metabolism-based anti-tumor therapy.
Collapse
|
7
|
Hepatic expression of Yin Yang 1 (YY1) is associated with the non-alcoholic fatty liver disease (NAFLD) progression in patients undergoing bariatric surgery. BMC Gastroenterol 2018; 18:147. [PMID: 30285651 PMCID: PMC6171305 DOI: 10.1186/s12876-018-0871-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/25/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND This study is to investigate the association between the hepatic expression of Yin Yang 1 (YY1) and the progression of non-alcoholic fatty liver disease (NAFLD) in patients undergoing bariatric surgery. METHODS Obese patients undergoing bariatric surgery were included. Liver tissues were subjected to the quantitative real-time PCR, Western blot analysis, and immunohistochemical assay, to determine the expression levels of YY1. RESULTS Totally 88 patients were included. According to the NAFLD activity score (NAS), these patients were divided into the control (n = 12), steatosis (n = 20), non-defining NASH (n = 38), and NASH (n = 18) groups. Significant differences in the serum glucose, insulin, ALT, AST, and HOMA-IR levels were observed among these different NAFLD groups. Hepatic YY1 expression had correlation with serum glucose, insulin, HOMA-IR, ALT, AST, triglycerides, HDL, and GGT. Immunohistochemical analysis showed that, compared with the control group, the expression levels of YY1 were significantly higher in the non-defining NASH and NASH groups. In addition, multivariate regression model showed that the serum ALT and YY1 levels were strongly associated with the NAFLD activity. CONCLUSIONS Several factors are associated with NAFLD progression, including the expression of YY1. Our findings contribute to understanding of the pathogenesis of NAFLD. TRIAL REGISTRATION NCT03296605 , registered on September 28, 2017.
Collapse
|
8
|
Lee H, Qian K, von Toerne C, Hoerburger L, Claussnitzer M, Hoffmann C, Glunk V, Wahl S, Breier M, Eck F, Jafari L, Molnos S, Grallert H, Dahlman I, Arner P, Brunner C, Hauner H, Hauck SM, Laumen H. Allele-specific quantitative proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus variation. Nucleic Acids Res 2017; 45:3266-3279. [PMID: 28334807 PMCID: PMC5389726 DOI: 10.1093/nar/gkx105] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/07/2017] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies identified numerous disease risk loci. Delineating molecular mechanisms influenced by cis-regulatory variants is essential to understand gene regulation and ultimately disease pathophysiology. Combining bioinformatics and public domain chromatin information with quantitative proteomics supports prediction of cis-regulatory variants and enabled identification of allele-dependent binding of both, transcription factors and coregulators at the type 2 diabetes associated PPARG locus. We found rs7647481A nonrisk allele binding of Yin Yang 1 (YY1), confirmed by allele-specific chromatin immunoprecipitation in primary adipocytes. Quantitative proteomics also found the coregulator RING1 and YY1 binding protein (RYBP) whose mRNA levels correlate with improved insulin sensitivity in primary adipose cells carrying the rs7647481A nonrisk allele. Our findings support a concept with diverse cis-regulatory variants contributing to disease pathophysiology at one locus. Proteome-wide identification of both, transcription factors and coregulators, can profoundly improve understanding of mechanisms underlying genetic associations.
Collapse
Affiliation(s)
- Heekyoung Lee
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Kun Qian
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christine von Toerne
- German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Lena Hoerburger
- ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Paediatric Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Melina Claussnitzer
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Hebrew SeniorLife Institute for Aging Research, Harvard Medical School, Boston, MA 02131, USA
| | - Christoph Hoffmann
- ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Molecular Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany
| | - Viktoria Glunk
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany
| | - Simone Wahl
- German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michaela Breier
- German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Franziska Eck
- Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Leili Jafari
- Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Sophie Molnos
- German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Harald Grallert
- Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany
| | - Ingrid Dahlman
- Department of Medicine, Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Peter Arner
- Department of Medicine, Huddinge, Karolinska Institutet, SE-141 86 Stockholm, Sweden
| | - Cornelia Brunner
- Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsklinik Ulm, 89075 Ulm, Germany
| | - Hans Hauner
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Helmut Laumen
- Else Kroener-Fresenius-Center for Nutritional Medicine, Chair of Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,ZIEL - Institute for Food & Health, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Clinical Cooperation Group Nutrigenomics and Type 2 Diabetes, Helmholtz Zentrum München and Technische Universität München, 85354 Freising-Weihenstephan, Germany.,German Center for Diabetes Research (DZD), Germany.,Research Unit Protein Science, Helmholtz Zentrum München, 85764 Neuherberg, Germany.,Else Kroener-Fresenius-Center for Nutritional Medicine, Paediatric Nutritional Medicine, Technische Universität München, 85354 Freising-Weihenstephan, Germany.,Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
9
|
Beezhold K, Klei LR, Barchowsky A. Regulation of cyclin D1 by arsenic and microRNA inhibits adipogenesis. Toxicol Lett 2016; 265:147-155. [PMID: 27932253 DOI: 10.1016/j.toxlet.2016.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 12/19/2022]
Abstract
Low-dose chronic exposure to arsenic in drinking water represents a global public health concern with established risks for metabolic and cardiovascular disease, as well as cancer. While the linkage between arsenic and disease is strong, further understanding of the molecular mechanisms of its pathogenicity is required. Previous reports demonstrated the ability of arsenic to interfere with adipogenesis, which may mediate its effects in promoting metabolic disease. We hypothesized that microRNA are important regulators of most if not all mesenchymal stem cell processes that are dysregulated by arsenic exposure to impair lipogenesis. Arsenic increased the expression of miR-29b in white adipose tissue, as well as human mesenchymal stem cells (hMSCs) isolated from adipose tissue. Exposing hMSCs to arsenic increased abundance of miR-29b and cyclin D1 to promote proliferation over differentiation. Paradoxically, inhibition of miR-29b enhanced the inhibitory effect of arsenic on differentiation. This paradox was attributed to a requirement for miR-29 in regulating cyclin D1 expression as stable inhibition of miR-29b eliminated the cyclic pattern of cyclin D1 expression. Temporal regulation of cyclin D1 is critical for adipogenic differentiation, and the data suggest a paradigm where arsenic disruption of miR-29b regulatory pathways impairs adipogenic differentiation and ultimately adipose metabolic homeostasis.
Collapse
Affiliation(s)
- Kevin Beezhold
- Department of Environmental and Occupational Health, Graduate School of Public Health, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Linda R Klei
- Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Aaron Barchowsky
- Department of Environmental and Occupational Health, Graduate School of Public Health, Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
10
|
Luchetti F, Canonico B, Bartolini D, Arcangeletti M, Ciffolilli S, Murdolo G, Piroddi M, Papa S, Reiter RJ, Galli F. Melatonin regulates mesenchymal stem cell differentiation: a review. J Pineal Res 2014; 56:382-97. [PMID: 24650016 DOI: 10.1111/jpi.12133] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/14/2014] [Indexed: 12/12/2022]
Abstract
Among the numerous functions of melatonin, the control of survival and differentiation of mesenchymal stem cells (MSCs) has been recently proposed. MSCs are a heterogeneous population of multipotent elements resident in tissues such as bone marrow, muscle, and adipose tissue, which are primarily involved in developmental and regeneration processes, gaining thus increasing interest for tissue repair and restoration therapeutic protocols. Receptor-dependent and receptor-independent responses to melatonin are suggested to occur in these cells. These involve antioxidant or redox-dependent functions of this indolamine as well as secondary effects resulting from autocrine and paracrine responses. Inflammatory cytokines and adipokines, proangiogenic/mitogenic stimuli, and other mediators that influence the differentiation processes may affect the survival and functional integrity of these mesenchymal precursor cells. In this scenario, melatonin seems to regulate signaling pathways that drive commitment and differentiation of MSC into osteogenic, chondrogenic, adipogenic, or myogenic lineages. Common pathways suggested to be involved as master regulators of these processes are the Wnt/β-catenin pathway, the MAPKs and the, TGF-β signaling. In this respect melatonin emerges a novel and potential modulator of MSC lineage commitment and adipogenic differentiation. These and other aspects of the physiological and pharmacological effects of melatonin as regulator of MSC are discussed in this review.
Collapse
Affiliation(s)
- Francesca Luchetti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Lu Y, Ma Z, Zhang Z, Xiong X, Wang X, Zhang H, Shi G, Xia X, Ning G, Li X. Yin Yang 1 promotes hepatic steatosis through repression of farnesoid X receptor in obese mice. Gut 2014; 63:170-8. [PMID: 23348961 DOI: 10.1136/gutjnl-2012-303150] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is characterised by accumulation of excessive triglycerides in the liver. Obesity is usually associated with NAFLD through an unknown mechanism. OBJECTIVE To investigate the roles of Yin Yang 1 (YY1) in the progression of obesity-associated hepatosteatosis. METHODS Expression levels of hepatic YY1 were identified by microarray analysis in high-fat-diet (HFD)-induced obese mice. Liver triglyceride metabolism was analysed in mice with YY1 overexpression and suppression. RESULTS YY1 expression was markedly upregulated in HFD-induced obese mice and NAFLD patients. Overexpression of YY1 in healthy mice promoted hepatosteatosis under high-fat dietary conditions, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated triglyceride accumulation in obese mice. At the molecular level, YY1 suppressed farnesoid X receptor (FXR) expression through binding to the YY1 responsive element at intron 1 of the FXR gene. CONCLUSIONS These findings indicate that YY1 plays a crucial role in obesity-associated hepatosteatosis, through repression of FXR expression.
Collapse
Affiliation(s)
- Yan Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, , Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wei S, Zhang L, Zhou X, Du M, Jiang Z, Hausman GJ, Bergen WG, Zan L, Dodson MV. Emerging roles of zinc finger proteins in regulating adipogenesis. Cell Mol Life Sci 2013; 70:4569-84. [PMID: 23760207 PMCID: PMC4100687 DOI: 10.1007/s00018-013-1395-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/22/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Proteins containing the zinc finger domain(s) are named zinc finger proteins (ZFPs), one of the largest classes of transcription factors in eukaryotic genomes. A large number of ZFPs have been studied and many of them were found to be involved in regulating normal growth and development of cells and tissues through diverse signal transduction pathways. Recent studies revealed that a small but increasing number of ZFPs could function as key transcriptional regulators involved in adipogenesis. Due to the prevalence of obesity and metabolic disorders, the investigation of molecular regulatory mechanisms of adipocyte development must be more completely understood in order to develop novel and long-term impact strategies for ameliorating obesity. In this review, we discuss recent work that has documented that ZFPs are important functional contributors to the regulation of adipogenesis. Taken together, these data lead to the conclusion that ZFPs may become promising targets to combat human obesity.
Collapse
Affiliation(s)
- Shengjuan Wei
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Lifan Zhang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China
| | - Xiang Zhou
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| | - Gary J. Hausman
- Animal Science Department, University of Georgia, Athens, GA 30602-2771 USA
| | - Werner G. Bergen
- Program in Cellular and Molecular Biosciences, Department of Animal Sciences, Auburn University, Auburn, AL 36849 USA
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Michael V. Dodson
- Department of Animal Sciences, Washington State University, Pullman, WA 99164 USA
| |
Collapse
|
13
|
Moisá SJ, Shike DW, Meteer WT, Keisler D, Faulkner DB, Loor JJ. Yin yang 1 and adipogenic gene network expression in longissimus muscle of beef cattle in response to nutritional management. GENE REGULATION AND SYSTEMS BIOLOGY 2013; 7:71-83. [PMID: 23700364 PMCID: PMC3653888 DOI: 10.4137/grsb.s11783] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among 36 differentially-expressed genes during growth in longissimus muscle (LM) of Angus steers, Yin Yang 1 (YY1) had the most relationships with other genes including some associated with adipocyte differentiation. The objective of this study was to examine the effect of nutritional management on mRNA expression of YY1 along with its targets genes PPARG, GTF2B, KAT2B, IGFBP5 and STAT5B. Longissimus from Angus and Angus × Simmental steers (7 total/treatment) on early weaning plus high-starch (EWS), normal weaning plus starch creep feeding (NWS), or normal weaning without starch creep feeding (NWN) was biopsied at 0, 96, and 240 days on treatments. Results suggest that YY1 does not exert control of adipogenesis in LM, and its expression is not sensitive to weaning age. Among the YY1-related genes, EWS led to greater IGFBP5 during growing and finishing phases. Pro-adipogenic transcriptional regulation was detected in EWS due to greater PPARG and VDR at 96 and 240 d vs. 0 d. GTF2B and KAT2B expression was lower in response to NWS and EWS than NWN, and was most pronounced at 240 d. The increase in PPARG and GTF2B expression between 96 and 240 d underscored the existence of a molecular programming mechanism that was sensitive to age and dietary starch. Such response partly explains the greater carcass fat deposition observed in response to NWS.
Collapse
Affiliation(s)
- Sonia J Moisá
- Mammalian NutriPhysioGenomics, University of Illinois, Urbana, USA. ; Department of Animal Sciences, University of Illinois, Urbana, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lu Y, Xiong X, Wang X, Zhang Z, Li J, Shi G, Yang J, Zhang H, Ning G, Li X. Yin Yang 1 promotes hepatic gluconeogenesis through upregulation of glucocorticoid receptor. Diabetes 2013; 62. [PMID: 23193188 PMCID: PMC3609554 DOI: 10.2337/db12-0744] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gluconeogenesis is critical in maintaining blood glucose levels in a normal range during fasting. In this study, we investigated the role of Yin Yang 1 (YY1), a key transcription factor involved in cell proliferation and differentiation, in the regulation of hepatic gluconeogenesis. Our data showed that hepatic YY1 expression levels were induced in mice during fasting conditions and in a state of insulin resistance. Overexpression of YY1 in livers augmented gluconeogenesis, raising fasting blood glucose levels in C57BL/6 mice, whereas liver-specific ablation of YY1 using adenoviral shRNA ameliorated hyperglycemia in wild-type and diabetic db/db mice. At the molecular level, we further demonstrated that the major mechanism of YY1 in the regulation of hepatic glucose production is to modulate the expression of glucocorticoid receptor. Therefore, our study uncovered for the first time that YY1 participates in the regulation of hepatic gluconeogenesis, which implies that YY1 might serve as a potential therapeutic target for hyperglycemia in diabetes.
Collapse
Affiliation(s)
- Yan Lu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuelian Xiong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijian Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guojun Shi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijie Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Endocrine Tumors and the Division of Endocrine and Metabolic Diseases, E-Institute of Shanghai Universities, Shanghai, China
- Corresponding author: Guang Ning, , or Xiaoying Li,
| | - Xiaoying Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrinology and Metabolism, Shanghai Clinical Center for Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Endocrine Tumors and the Division of Endocrine and Metabolic Diseases, E-Institute of Shanghai Universities, Shanghai, China
- Chinese-French Laboratory of Genomics and Life Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Corresponding author: Guang Ning, , or Xiaoying Li,
| |
Collapse
|
15
|
Abstract
The rise in the incidence of obesity has led to a major interest in the biology of white adipose tissue. The tissue is a major endocrine and signaling organ, with adipocytes, the characteristic cell type, secreting a multiplicity of protein factors, the adipokines. Increases in the secretion of a number of adipokines occur in obesity, underpinning inflammation in white adipose tissue and the development of obesity-associated diseases. There is substantial evidence, particularly from animal studies, that hypoxia develops in adipose tissue as the tissue mass expands, and the reduction in Po(2) is considered to underlie the inflammatory response. Exposure of white adipocytes to hypoxic conditions in culture induces changes in the expression of >1,000 genes. The secretion of a number of inflammation-related adipokines is upregulated by hypoxia, and there is a switch from oxidative metabolism to anaerobic glycolysis. Glucose utilization is increased in hypoxic adipocytes with corresponding increases in lactate production. Importantly, hypoxia induces insulin resistance in fat cells and leads to the development of adipose tissue fibrosis. Many of the responses of adipocytes to hypoxia are initiated at Po(2) levels above the normal physiological range for adipose tissue. The other cell types within the tissue also respond to hypoxia, with the differentiation of preadipocytes to adipocytes being inhibited and preadipocytes being transformed into leptin-secreting cells. Overall, hypoxia has pervasive effects on the function of adipocytes and appears to be a key factor in adipose tissue dysfunction in obesity.
Collapse
Affiliation(s)
- Paul Trayhurn
- Obesity Biology Research Unit, Institute of Ageing and Chronic Diseases, University of Liverpool, Liverpool, UK
| |
Collapse
|
16
|
Her GM, Pai WY, Lai CY, Hsieh YW, Pang HW. Ubiquitous transcription factor YY1 promotes zebrafish liver steatosis and lipotoxicity by inhibiting CHOP-10 expression. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1037-51. [PMID: 23416188 DOI: 10.1016/j.bbalip.2013.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 02/06/2023]
Abstract
The ubiquitous transcription factor Yin Yang 1 (YY1) is known to have diverse and complex cellular functions. Although relevant literature has reported that YY1 expression can induce the down-regulation of C/EBP homologous protein 10 (CHOP-10) and then allow the transactivation of certain transcription factors required for lipogenesis, similar properties of YY1 are poorly understood in animal model systems. In this study, we demonstrate hepatic lipid accumulation in YY1 transgenic zebrafish (GY). Oil-red staining cells were predominantly increased in the livers of both GY larvae and adults, indicating that YY1 functionally promoted lipid accumulation in GY livers. Molecular analysis revealed that YY1 over-expression contributed to the accumulation of hepatic triglycerides (TGs) by inhibiting CHOP-10 expression in the juvenile GY and 3 other fish cell lines; the decreased CHOP-10 expression then induced the transactivation of C/EBP-α and PPAR-γ expression. CHOP-10 morpholino (MO)-injected and rosiglitazone-treated G-liver larvae showed liver steatosis by transactivating PPAR-γ. PPAR-γ MO-injected, and GW9662- and astaxanthin-treated GY larvae showed no liver steatosis by inhibiting PPAR-γ. Moreover, a fatty acid (FA) accumulation and a TG decrease were found in the liver of aged GY, leading to the induction of FA-oxidizing systems that increased hepatic oxidative stress and liver damage. This study is the first to examine YY1 as a potential stimulator for GY liver steatosis and lipotoxicity.
Collapse
Affiliation(s)
- Guor Mour Her
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Yin Yang 1 (YY1) is a transcription factor with diverse and complex biological functions. YY1 either activates or represses gene transcription, depending on the stimuli received by the cells and its association with other cellular factors. Since its discovery, a biological role for YY1 in tumor development and progression has been suggested because of its regulatory activities toward multiple cancer-related proteins and signaling pathways and its overexpression in most cancers. In this review, we primarily focus on YY1 studies in cancer research, including the regulation of YY1 as a transcription factor, its activities independent of its DNA binding ability, the functions of its associated proteins, and mechanisms regulating YY1 expression and activities. We also discuss the correlation of YY1 expression with clinical outcomes of cancer patients and its target potential in cancer therapy. Although there is not a complete consensus about the role of YY1 in cancers based on its activities of regulating oncogene and tumor suppressor expression, most of the currently available evidence supports a proliferative or oncogenic role of YY1 in tumorigenesis.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | | | | | | |
Collapse
|