1
|
Murillo Ramos AM, Wilson JY. Is there potential for estradiol receptor signaling in lophotrochozoans? Gen Comp Endocrinol 2024; 354:114519. [PMID: 38677339 DOI: 10.1016/j.ygcen.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Estrogen receptors (ERs) are thought to be the ancestor of all steroid receptors and are present in most lophotrochozoans studied to date, including molluscs, annelids, and rotifers. A number of studies have investigated the functional role of estrogen receptors in invertebrate species, although most are in molluscs, where the receptor is constitutively active. In vitro experiments provided evidence for ligand-activated estrogen receptors in annelids, raising important questions about the role of estrogen signalling in lophotrochozoan lineages. Here, we review the concordant and discordant evidence of estradiol receptor signalling in lophotrochozoans, with a focus on annelids and rotifers. We explore the de novo synthesis of estrogens, the evolution and expression of estrogen receptors, and physiological responses to activation of estrogen receptors in the lophotrochozoan phyla Annelida and Rotifera. Key data are missing to determine if de novo biosynthesis of estradiol in non-molluscan lophotrochozoans is likely. For example, an ortholog for the CYP11 gene is present, but confirmation of substrate conversion and measured tissue products is lacking. Orthologs CYP17 and CYP19 are lacking, yet intermediates or products (e.g. estradiol) in tissues have been measured. Estrogen receptors are present in multiple species, and for a limited number, in vitro data show agonist binding of estradiol and/or transcriptional activation. The expression patterns of the lophotrochozoan ERs suggest developmental, reproductive, and digestive roles but are highly species dependent. E2 exposures suggest that lophotrochozoan ERs may play a role in reproduction, but no strong dose-response relationship has been established. Therefore, we expect most lophotrochozoan species, outside of perhaps platyhelminths, to have an ER but their physiological role remains elusive. Mining genomes for orthologs gene families responsible for steroidogenesis, coupled with in vitro and in vivo studies of the steroid pathway are needed to better assess whether lophotrochozoans are capable of estradiol biosynthesis. One major challenge is that much of the data are divided across a diversity of species. We propose that the polychaetes Capitella teleta or Platyneris dumerilii, and rotifer Brachionus manjavacas may be strong species choices for studies of estrogen receptor signalling, because of available genomic data, established laboratory culture techniques, and gene knockout potential.
Collapse
Affiliation(s)
- A M Murillo Ramos
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Y Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
2
|
Spinelli S, Bruschi M, Passalacqua M, Guida L, Magnone M, Sturla L, Zocchi E. Estrogen-Related Receptor α: A Key Transcription Factor in the Regulation of Energy Metabolism at an Organismic Level and a Target of the ABA/LANCL Hormone Receptor System. Int J Mol Sci 2024; 25:4796. [PMID: 38732013 PMCID: PMC11084903 DOI: 10.3390/ijms25094796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
The orphan nuclear receptor ERRα is the most extensively researched member of the estrogen-related receptor family and holds a pivotal role in various functions associated with energy metabolism, especially in tissues characterized by high energy requirements, such as the heart, skeletal muscle, adipose tissue, kidney, and brain. Abscisic acid (ABA), traditionally acknowledged as a plant stress hormone, is detected and actively functions in organisms beyond the land plant kingdom, encompassing cyanobacteria, fungi, algae, protozoan parasites, lower Metazoa, and mammals. Its ancient, cross-kingdom role enables ABA and its signaling pathway to regulate cell responses to environmental stimuli in various organisms, such as marine sponges, higher plants, and humans. Recent advancements in understanding the physiological function of ABA and its mammalian receptors in governing energy metabolism and mitochondrial function in myocytes, adipocytes, and neuronal cells suggest potential therapeutic applications for ABA in pre-diabetes, diabetes, and cardio-/neuroprotection. The ABA/LANCL1-2 hormone/receptor system emerges as a novel regulator of ERRα expression levels and transcriptional activity, mediated through the AMPK/SIRT1/PGC-1α axis. There exists a reciprocal feed-forward transcriptional relationship between the LANCL proteins and transcriptional coactivators ERRα/PGC-1α, which may be leveraged using natural or synthetic LANCL agonists to enhance mitochondrial function across various clinical contexts.
Collapse
Affiliation(s)
- Sonia Spinelli
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
| | - Maurizio Bruschi
- Laboratory of Molecular Nephrology, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini 5, 16147 Genova, Italy
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mario Passalacqua
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Lucrezia Guida
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Mirko Magnone
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Laura Sturla
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| | - Elena Zocchi
- Section Biochemistry, Department of Experimental Medicine (DIMES), University of Genova, Viale Benedetto XV, 1, 16132 Genova, Italy; (M.P.); (L.G.); (M.M.); (L.S.)
| |
Collapse
|
3
|
Papadogiannis V, Hockman D, Mercurio S, Ramsay C, Hintze M, Patthey C, Streit A, Shimeld SM. Evolution of the expression and regulation of the nuclear hormone receptor ERR gene family in the chordate lineage. Dev Biol 2023; 504:12-24. [PMID: 37696353 DOI: 10.1016/j.ydbio.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/01/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
The Estrogen Related Receptor (ERR) nuclear hormone receptor genes have a wide diversity of roles in vertebrate development. In embryos, ERR genes are expressed in several tissues, including the central and peripheral nervous systems. Here we seek to establish the evolutionary history of chordate ERR genes, their expression and their regulation. We examine ERR expression in mollusc, amphioxus and sea squirt embryos, finding the single ERR orthologue is expressed in the nervous system in all three, with muscle expression also found in the two chordates. We show that most jawed vertebrates and lampreys have four ERR paralogues, and that vertebrate ERR genes were ancestrally linked to Estrogen Receptor genes. One of the lamprey paralogues shares conserved expression domains with jawed vertebrate ERRγ in the embryonic vestibuloacoustic ganglion, eye, brain and spinal cord. Hypothesising that conserved expression derives from conserved regulation, we identify a suite of pan-vertebrate conserved non-coding sequences in ERR introns. We use transgenesis in lamprey and chicken embryos to show that these sequences are regulatory and drive reporter gene expression in the nervous system. Our data suggest an ancient association between ERR and the nervous system, including expression in cells associated with photosensation and mechanosensation. This includes the origin in the vertebrate common ancestor of a suite of regulatory elements in the 3' introns that drove nervous system expression and have been conserved from this point onwards.
Collapse
Affiliation(s)
| | - Dorit Hockman
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Silvia Mercurio
- Department of Environmental Science and Policy, Università Degli Studi di Milano, Via Celoria 2, 20133, Milano, Italy
| | - Claire Ramsay
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Mark Hintze
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Cedric Patthey
- Department of Radiosciences, Umeå University, 901 85, Umeå, Sweden
| | - Andrea Streit
- Centre for Craniofacial & Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Sebastian M Shimeld
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK.
| |
Collapse
|
4
|
Aguilar-Díaz H, Quiroz-Castañeda RE, Díaz-Esquivel IG, Cossío-Bayúgar R, Miranda-Miranda E. A Novel Rhipicephalus microplus Estrogen Related Receptor (RmERR), a Molecular and In Silico Characterization of a Potential Protein Binding Estrogen. Microorganisms 2023; 11:2294. [PMID: 37764138 PMCID: PMC10536290 DOI: 10.3390/microorganisms11092294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
The search for targets to control ticks and tick-borne diseases has been an ongoing problem, and so far, we still need efficient, non-chemical alternatives for this purpose. This search must consider new alternatives. For example genomics analysis is a widely applied tool in veterinary health studies to control pathogens. On the other hand, we propose that regulation of endocrine mechanisms represents a feasible alternative to biologically controlling tick infestations. Thus, we performed the molecular identification of an estrogen-related receptor gene of Rhipicephalus microplus called RmERR by RT-PCR in tick ovaries, embryonic cells, and hemolymph, which allowed us to analyze its expression and propose potential functions in endocrine mechanisms and developmental stages. In addition, we performed an in silico characterization to explore the molecular interactions of RmERR with different estrogens, estrogenic antagonists, and endocrine disruptor Bisphenol A (BPA), finding potential interactions predicted by docking analysis and supported by negative values of ΔG (which suggests the potential interaction of RmERR with the molecules evaluated). Additionally, phylogenetic reconstruction revealed that RmERR is grouped with other tick species but is phylogenetically distant from host vertebrates' ERRs. In summary, this study allowed for the identification of an ERR in cattle tick R. microplus for the first time and suggested its interaction with different estrogens, supporting the idea of a probable transregulation process in ticks. The elucidation of this interaction and its mechanisms unveiled its potential as a target to develop tick control strategies.
Collapse
|
5
|
Patel AK, Vilela P, Shaik TB, McEwen A, Hazemann I, Brillet K, Ennifar E, Hamiche A, Markov G, Laudet V, Moras D, Klaholz B, Billas IL. Asymmetric dimerization in a transcription factor superfamily is promoted by allosteric interactions with DNA. Nucleic Acids Res 2023; 51:8864-8879. [PMID: 37503845 PMCID: PMC10484738 DOI: 10.1093/nar/gkad632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023] Open
Abstract
Transcription factors, such as nuclear receptors achieve precise transcriptional regulation by means of a tight and reciprocal communication with DNA, where cooperativity gained by receptor dimerization is added to binding site sequence specificity to expand the range of DNA target gene sequences. To unravel the evolutionary steps in the emergence of DNA selection by steroid receptors (SRs) from monomeric to dimeric palindromic binding sites, we carried out crystallographic, biophysical and phylogenetic studies, focusing on the estrogen-related receptors (ERRs, NR3B) that represent closest relatives of SRs. Our results, showing the structure of the ERR DNA-binding domain bound to a palindromic response element (RE), unveil the molecular mechanisms of ERR dimerization which are imprinted in the protein itself with DNA acting as an allosteric driver by allowing the formation of a novel extended asymmetric dimerization region (KR-box). Phylogenetic analyses suggest that this dimerization asymmetry is an ancestral feature necessary for establishing a strong overall dimerization interface, which was progressively modified in other SRs in the course of evolution.
Collapse
Affiliation(s)
- Abdul Kareem Mohideen Patel
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Pierre Vilela
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Tajith Baba Shaik
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Alastair G McEwen
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle Hazemann
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Karl Brillet
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Eric Ennifar
- Architecture et Réactivité de L’ARN, CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 67000, Strasbourg, France
| | - Ali Hamiche
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models, (LBI2M, UMR8227), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Vincent Laudet
- Marine Eco-Evo-Devo Unit. Okinawa Institute of Science and Technology. 1919-1 Tancha, Onna-son, 904-0495 Okinawa, Japan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10, Dah-Uen Rd, Jiau Shi, I-Lan 262, Taiwan
| | - Dino Moras
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Bruno P Klaholz
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| | - Isabelle M L Billas
- IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Centre for Integrative Biology (CBI), Illkirch, France
- Université de Strasbourg (Unistra), Strasbourg, France
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1258, Illkirch, France
- Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France
| |
Collapse
|
6
|
Maiti S, Nazmeen A, Banerjee A. Significant impact of redox regulation of estrogen-metabolizing proteins on cellular stress responses. Cell Biochem Funct 2023. [PMID: 37139830 DOI: 10.1002/cbf.3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
The ultimate driving force, stress, promotes adaptability/evolution in proliferating organisms, transforming tumorigenic growth. Estradiol (E2) regulates both phenomena. In this study, bioinformatics-tools, site-directed-mutagenesis (human estrogen-sulfotransferase/hSULT1E1), HepG2 cells tested with N-acetyl-cysteine (NAC/thiol-inducer) or buthionine-sulfoxamine (BSO/thiol-depletory) were evaluated for hSULT1E1 (estradiol-sulphating/inactivating) functions. Reciprocal redox regulation of steroid sulfatase (STS, E2-desulfating/activating) results in the Cys-formylglycine transition by the formylglycine-forming enzyme (FGE). The enzyme sequences and structures were examined across the phylogeny. Motif/domain and the catalytic conserve sequences and protein-surface-topography (CASTp) were investigated. The E2 binding to SULT1E1 suggests that the conserved-catalytic-domain in this enzyme has critical Cysteine 83 at position. This is strongly supported by site-directed mutagenesis/HepG2-cell research. Molecular-docking and superimposition studies of E2 with the SULT1E1 of representative species and to STS reinforce this hypothesis. SULT1E1-STS are reciprocally activated in response to the cellular-redox-environment by the critical Cys of these two enzymes. The importance of E2 in organism/species proliferation and tissue tumorigenesis is highlighted.
Collapse
Affiliation(s)
- Smarajit Maiti
- Department of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, India
| | - Aarifa Nazmeen
- Department of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, India
| | - Amrita Banerjee
- Department of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, India
| |
Collapse
|
7
|
Houston DR, Hanna JG, Lathe JC, Hillier SG, Lathe R. Evidence that nuclear receptors are related to terpene synthases. J Mol Endocrinol 2022; 68:153-166. [PMID: 35112668 PMCID: PMC8942334 DOI: 10.1530/jme-21-0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/08/2022]
Abstract
Ligand-activated nuclear receptors (NRs) orchestrate development, growth, and reproduction across all animal lifeforms - the Metazoa - but how NRs evolved remains mysterious. Given the NR ligands including steroids and retinoids are predominantly terpenoids, we asked whether NRs might have evolved from enzymes that catalyze terpene synthesis and metabolism. We provide evidence suggesting that NRs may be related to the terpene synthase (TS) enzyme superfamily. Based on over 10,000 3D structural comparisons, we report that the NR ligand-binding domain and TS enzymes share a conserved core of seven α-helical segments. In addition, the 3D locations of the major ligand-contacting residues are also conserved between the two protein classes. Primary sequence comparisons reveal suggestive similarities specifically between NRs and the subfamily of cis-isoprene transferases, notably with dehydrodolichyl pyrophosphate synthase and its obligate partner, NUS1/NOGOB receptor. Pharmacological overlaps between NRs and TS enzymes add weight to the contention that they share a distant evolutionary origin, and the combined data raise the possibility that a ligand-gated receptor may have arisen from an enzyme antecedent. However, our findings do not formally exclude other interpretations such as convergent evolution, and further analysis will be necessary to confirm the inferred relationship between the two protein classes.
Collapse
Affiliation(s)
- Douglas R Houston
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Jane G Hanna
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Stephen G Hillier
- Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
- Correspondence should be addressed to S G Hillier or R Lathe: or
| | - Richard Lathe
- Division of Infection Medicine, University of Edinburgh, Edinburgh, UK
- Correspondence should be addressed to S G Hillier or R Lathe: or
| |
Collapse
|
8
|
Subcellular dynamics of estrogen-related receptors involved in transrepression through interactions with scaffold attachment factor B1. Histochem Cell Biol 2021; 156:239-251. [PMID: 34129097 DOI: 10.1007/s00418-021-01998-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Estrogen-related receptor (ERR), a member of the nuclear receptor superfamily, consists of three subtypes (α, β, γ) and has strong homology with estrogen receptor. No endogenous ligands have been identified for ERRs, but they play key roles in metabolic, hormonal, and developmental processes as transcription factors without ligand binding. Although subnuclear dynamics are essential for nuclear events including nuclear receptor-mediated transcriptional regulation, the dynamics of ERRs are poorly understood. Here, we report that ERRs show subcellular kinetic changes in response to diethylstilbestrol (DES), a synthetic estrogen that represses the transactivity of all three ERR subtypes, using live-cell imaging with fluorescent protein labeling. Upon DES treatment, all ERR subtypes formed discrete clusters in the nucleus, with ERRγ also displaying nuclear export. Fluorescence recovery after photobleaching analyses revealed significant reductions in the intranuclear mobility of DES-bound ERRα and ERRβ, and a slight reduction in the intranuclear mobility of DES-bound ERRγ. After DES treatment, colocalization of all ERR subtypes with scaffold attachment factor B1 (SAFB1), a nuclear matrix-associated protein, was observed in dot-like subnuclear clusters, suggesting interactions of the ERRs with the nuclear matrix. Consistently, co-immunoprecipitation analyses confirmed enhanced interactions between ERRs and SAFB1 in the presence of DES. SAFB1 was clarified to repress the transactivity of all ERR subtypes through the ERR-response element. These results demonstrate ligand-dependent cluster formation of ERRs in the nucleus that is closely associated with SAFB1-mediated transrepression. Taken together, the present findings provide a new understanding of the pathophysiology regulated by ERR/SAFB1 signaling pathways and their subcellular dynamics.
Collapse
|
9
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
10
|
Miglioli A, Canesi L, Gomes IDL, Schubert M, Dumollard R. Nuclear Receptors and Development of Marine Invertebrates. Genes (Basel) 2021; 12:genes12010083. [PMID: 33440651 PMCID: PMC7827873 DOI: 10.3390/genes12010083] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear Receptors (NRs) are a superfamily of transcription factors specific to metazoans that have the unique ability to directly translate the message of a signaling molecule into a transcriptional response. In vertebrates, NRs are pivotal players in countless processes of both embryonic and adult physiology, with embryonic development being one of the most dynamic periods of NR activity. Accumulating evidence suggests that NR signaling is also a major regulator of development in marine invertebrates, although ligands and transactivation dynamics are not necessarily conserved with respect to vertebrates. The explosion of genome sequencing projects and the interpretation of the resulting data in a phylogenetic context allowed significant progress toward an understanding of NR superfamily evolution, both in terms of molecular activities and developmental functions. In this context, marine invertebrates have been crucial for characterizing the ancestral states of NR-ligand interactions, further strengthening the importance of these organisms in the field of evolutionary developmental biology.
Collapse
Affiliation(s)
- Angelica Miglioli
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Laura Canesi
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Isa D. L. Gomes
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
| | - Rémi Dumollard
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Sorbonne Université, CNRS, 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France; (A.M.); (I.D.L.G.); (M.S.)
- Correspondence:
| |
Collapse
|
11
|
Knigge T, LeBlanc GA, Ford AT. A Crab Is Not a Fish: Unique Aspects of the Crustacean Endocrine System and Considerations for Endocrine Toxicology. Front Endocrinol (Lausanne) 2021; 12:587608. [PMID: 33737907 PMCID: PMC7961072 DOI: 10.3389/fendo.2021.587608] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Crustaceans-and arthropods in general-exhibit many unique aspects to their physiology. These include the requirement to moult (ecdysis) in order to grow and reproduce, the ability to change color, and multiple strategies for sexual differentiation. Accordingly, the endocrine regulation of these processes involves hormones, receptors, and enzymes that differ from those utilized by vertebrates and other non-arthropod invertebrates. As a result, environmental chemicals known to disrupt endocrine processes in vertebrates are often not endocrine disruptors in crustaceans; while, chemicals that disrupt endocrine processes in crustaceans are often not endocrine disruptors in vertebrates. In this review, we present an overview of the evolution of the endocrine system of crustaceans, highlight endocrine endpoints known to be a target of disruption by chemicals, and identify other components of endocrine signaling that may prove to be targets of disruption. This review highlights that crustaceans need to be evaluated for endocrine disruption with consideration of their unique endocrine system and not with consideration of the endocrine system of vertebrates.
Collapse
Affiliation(s)
- Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, Le Havre, France
- *Correspondence: Thomas Knigge,
| | - Gerald A. LeBlanc
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, United States
| | - Alex T. Ford
- School of Biological Sciences, Institute of Marine Sciences, University of Portsmouth, Portsmouth, United Kingdom
| |
Collapse
|
12
|
Kidd KA, Graves SD, McKee GI, Dyszy K, Podemski CL. Effects of Whole-Lake Additions of Ethynylestradiol on Leech Populations. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1608-1619. [PMID: 32692460 DOI: 10.1002/etc.4789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/03/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Leeches are widespread, found in many freshwater habitats, and have diverse dietary habits. Despite their close phylogenetic relationships to Mollusca, a phylum with species affected by exogenous estrogens, it is unclear whether Hirudinea may also be impacted. A whole-lake experiment was done at the Experimental Lakes Area in Ontario, Canada, to assess whether 17α-ethynylestradiol (EE2) affected fishes and other species. Herein, we examined whether EE2 impacted leech community composition, species abundance, growth rates, gonad size, and cocoon production, when compared with reference lakes using a before-after-control-impact design. Each month baited leech traps were set overnight in the littoral zone at 10 sites around experimental Lake 260 and 2 reference lakes, and individuals were identified, weighed, and measured. Male and female organs of common species Haemopis marmorata were measured. Across all lakes, 9 species representing 3 families were collected. There were no apparent effects of EE2 on numbers, species richness, or community composition; however, condition in 1 of 5 species increased significantly after EE2 exposures. Total gonadosomatic index (GSI) and the GSI for all male or all female organs combined for H. marmorata were not affected by EE2 additions. However, some individual reproductive organs including relative sperm sac length (+), relative epididymis weight (-), relative vaginal bulb length (+), and relative ovisac + albumen gland length (+) changed after EE2 additions. Finally, whereas overall cocoon production was similar, it occurred earlier in the EE2-amended lake. In summary, few individual through community measures of leeches responded to low ng/L concentrations of EE2, suggesting that Hirudinea are less sensitive to this endocrine disruptor than other invertebrates and vertebrates. Environ Toxicol Chem 2020;39:1608-1619. © 2020 SETAC.
Collapse
Affiliation(s)
- Karen A Kidd
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, New Brunswick, Canada
- Department of Biology and School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | - Stephanie D Graves
- Canadian Rivers Institute and Biology Department, University of New Brunswick, Saint John, New Brunswick, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Graydon I McKee
- Department of Biology and School of Earth, Environment and Society, McMaster University, Hamilton, Ontario, Canada
| | | | - Cheryl L Podemski
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| |
Collapse
|
13
|
Cuvillier-Hot V, Lenoir A. Invertebrates facing environmental contamination by endocrine disruptors: Novel evidences and recent insights. Mol Cell Endocrinol 2020; 504:110712. [PMID: 31962147 DOI: 10.1016/j.mce.2020.110712] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
The crisis of biodiversity we currently experience raises the question of the impact of anthropogenic chemicals on wild life health. Endocrine disruptors are notably incriminated because of their possible effects on development and reproduction, including at very low doses. As commonly recorded in the field, the burden they impose on wild species also concerns invertebrates, with possible specificities linked with the specific physiology of these animals. A better understanding of chemically-mediated endocrine disruption in these species has clearly gained from knowledge accumulated on vertebrate models. But the molecular pathways specific to invertebrates also need to be reckoned, which implies dedicated research efforts to decipher their basic functioning in order to be able to assess its possible disruption. The recent rising of omics technologies opens the way to an intensification of these efforts on both aspects, even in species almost uninvestigated so far.
Collapse
Affiliation(s)
| | - Alain Lenoir
- IRBI, Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS, Faculté des Sciences, Parc de Grandmont, Université de Tours, Tours, France
| |
Collapse
|
14
|
Baker ME. Steroid receptors and vertebrate evolution. Mol Cell Endocrinol 2019; 496:110526. [PMID: 31376417 DOI: 10.1016/j.mce.2019.110526] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/23/2019] [Accepted: 07/26/2019] [Indexed: 12/22/2022]
Abstract
Considering that life on earth evolved about 3.7 billion years ago, vertebrates are young, appearing in the fossil record during the Cambrian explosion about 542 to 515 million years ago. Results from sequence analyses of genomes from bacteria, yeast, plants, invertebrates and vertebrates indicate that receptors for adrenal steroids (aldosterone, cortisol), and sex steroids (estrogen, progesterone, testosterone) also are young, with an estrogen receptor and a 3-ketosteroid receptor first appearing in basal chordates (cephalochordates: amphioxus), which are close ancestors of vertebrates. Duplication and divergence of the 3-ketosteroid receptor yielded an ancestral progesterone receptor and an ancestral corticoid receptor, the common ancestor of the glucocorticoid and mineralocorticoid receptors, in jawless vertebrates (cyclostomes: lampreys, hagfish). This was followed by evolution of an androgen receptor, distinct glucocorticoid and mineralocorticoid receptors and estrogen receptor-α and -β in cartilaginous fishes (Chondrichthyes: sharks). Further evolution of mineralocorticoid signaling occurred with the evolution of aldosterone synthase in lungfish, a forerunner of terrestrial vertebrates. Adrenal and sex steroid receptors are not found in echinoderms and hemichordates, which are ancestors in the lineage of cephalochordates and vertebrates. The evolution of steroid receptors at key nodes in the evolution of vertebrates, in which steroid receptors act as master switches to regulate differentiation, development, reproduction, immune responses, electrolyte homeostasis and stress responses, suggests an important role for steroid receptors in the evolutionary success of vertebrates, considering that the human genome contains about 22,000 genes, which is not much larger than genomes of invertebrates, such as Caenorhabditis elegans (~18,000 genes) and Drosophila (~14,000 genes).
Collapse
Affiliation(s)
- Michael E Baker
- Division of Nephrology-Hypertension, Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0693, USA.
| |
Collapse
|
15
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
16
|
Khalturin K, Billas IML, Chebaro Y, Reitzel AM, Tarrant AM, Laudet V, Markov GV. NR3E receptors in cnidarians: A new family of steroid receptor relatives extends the possible mechanisms for ligand binding. J Steroid Biochem Mol Biol 2018; 184:11-19. [PMID: 29940311 PMCID: PMC6240368 DOI: 10.1016/j.jsbmb.2018.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 01/21/2023]
Abstract
Steroid hormone receptors are important regulators of development and physiology in bilaterian animals, but the role of steroid signaling in cnidarians has been contentious. Cnidarians produce steroids, including A-ring aromatic steroids with a side-chain, but these are probably made through pathways different than the one used by vertebrates to make their A-ring aromatic steroids. Here we present comparative genomic analyses indicating the presence of a previously undescribed nuclear receptor family within medusozoan cnidarians, that we propose to call NR3E. This family predates the diversification of ERR/ER/SR in bilaterians, indicating that the first NR3 evolved in the common ancestor of the placozoan and cnidarian-bilaterian with lineage-specific loss in the anthozoans, even though multiple species in this lineage have been shown to produce aromatic steroids, whose function remain unclear. We discovered serendipitously that a cytoplasmic factor within epidermal cells of transgenic Hydra vulgaris can trigger the nuclear translocation of heterologously expressed human ERα. This led us to hypothesize that aromatic steroids may also be present in the medusozoan cnidarian lineage, which includes Hydra, and may explain the translocation of human ERα. Docking experiments with paraestrol A, a cnidarian A-ring aromatic steroid, into the ligand-binding pocket of Hydra NR3E indicates that, if an aromatic steroid is indeed the true ligand, which remains to be demonstrated, it would bind to the pocket through a partially distinct mechanism from the manner in which estradiol binds to vertebrate ER.
Collapse
Affiliation(s)
- Konstantin Khalturin
- Marine Genomics Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Isabelle M L Billas
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Yassmine Chebaro
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina, Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
| | - Vincent Laudet
- Sorbonne Université, CNRS, Observatoire océanologique de Banyuls-sur-mer, Avenue de Fontaule, 66650 Banyuls-sur-mer, France
| | - Gabriel V Markov
- Sorbonne Université, CNRS, UMR 8227 Integrative Biology of Marine Models, Station Biologique de Roscoff, Place Georges Teissier, CS 90074, 29688 Roscoff Cedex, France.
| |
Collapse
|
17
|
Lathe R, Houston DR. Fatty-acylation target sequence in the ligand-binding domain of vertebrate steroid receptors demarcates evolution from estrogen-related receptors. J Steroid Biochem Mol Biol 2018; 184:20-28. [PMID: 30026064 DOI: 10.1016/j.jsbmb.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022]
Abstract
Present-day nuclear receptors (NRs) responding to adrenal and sex steroids are key regulators of reproduction and growth in mammals, and are thought to have evolved from an ancestral NR most closely related to extant estrogen-related receptors (ERRs). The molecular events (and ligands) that distinguish steroid-activated NRs (SRs) from their inferred ancestor, that gave rise to both the ERRs and SRs, remain unknown. We report that target sequences for fatty-acylation (palmitoylation) at a key cysteine residue (corresponding to Cys447 in human estrogen receptor ERα) in helix 8 of the ligand-binding domain accurately demarcate SRs from ERRs. Docking studies are consistent with the hypothesis that palmitate embeds into a key groove in the receptor surface. The implications of lipidation, and of potential alternative ligands for the key cysteine residue, for receptor function and the evolution of SRs are discussed.
Collapse
Affiliation(s)
- Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Little France, Edinburgh EH16 4SB, UK.
| | - Douglas R Houston
- School of Biological Sciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3BF, UK.
| |
Collapse
|
18
|
Reitzel AM, Macrander J, Mane-Padros D, Fang B, Sladek FM, Tarrant AM. Conservation of DNA and ligand binding properties of retinoid X receptor from the placozoan Trichoplax adhaerens to human. J Steroid Biochem Mol Biol 2018; 184:3-10. [PMID: 29510228 PMCID: PMC6120813 DOI: 10.1016/j.jsbmb.2018.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors are a superfamily of transcription factors restricted to animals. These transcription factors regulate a wide variety of genes with diverse roles in cellular homeostasis, development, and physiology. The origin and specificity of ligand binding within lineages of nuclear receptors (e.g., subfamilies) continues to be a focus of investigation geared toward understanding how the functions of these proteins were shaped over evolutionary history. Among early-diverging animal lineages, the retinoid X receptor (RXR) is first detected in the placozoan, Trichoplax adhaerens. To gain insight into RXR evolution, we characterized ligand- and DNA-binding activity of the RXR from T. adhaerens (TaRXR). Like bilaterian RXRs, TaRXR specifically bound 9-cis-retinoic acid, which is consistent with a recently published result and supports a conclusion that the ancestral RXR bound ligand. DNA binding site specificity of TaRXR was determined through protein binding microarrays (PBMs) and compared with human RXRɑ. The binding sites for these two RXR proteins were broadly conserved (∼85% shared high-affinity sequences within a targeted array), suggesting evolutionary constraint for the regulation of downstream genes. We searched for predicted binding motifs of the T. adhaerens genome within 1000 bases of annotated genes to identify potential regulatory targets. We identified 648 unique protein coding regions with predicted TaRXR binding sites that had diverse predicted functions, with enriched processes related to intracellular signal transduction and protein transport. Together, our data support hypotheses that the original RXR protein in animals bound a ligand with structural similarity to 9-cis-retinoic acid; the DNA motif recognized by RXR has changed little in more than 1 billion years of evolution; and the suite of processes regulated by this transcription factor diversified early in animal evolution.
Collapse
Affiliation(s)
- Adam M Reitzel
- Department of Biological Sciences, University of North Carolina, Charlotte, Charlotte, NC 28223 USA
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina, Charlotte, Charlotte, NC 28223 USA
| | - Daniel Mane-Padros
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 95251, USA
| | - Bin Fang
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 95251, USA
| | - Frances M Sladek
- Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 95251, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, 45 Water Street, Mailstop 33, Woods Hole, MA 02543 USA.
| |
Collapse
|
19
|
Baker ME, Lathe R. The promiscuous estrogen receptor: Evolution of physiological estrogens and response to phytochemicals and endocrine disruptors. J Steroid Biochem Mol Biol 2018; 184:29-37. [PMID: 30009950 DOI: 10.1016/j.jsbmb.2018.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/25/2018] [Accepted: 07/03/2018] [Indexed: 01/03/2023]
Abstract
Many actions of estradiol (E2), the principal physiological estrogen in vertebrates, are mediated by estrogen receptor-α (ERα) and ERβ. An important physiological feature of vertebrate ERs is their promiscuous response to several physiological steroids, including estradiol (E2), Δ5-androstenediol, 5α-androstanediol, and 27-hydroxycholesterol. A novel structural characteristic of Δ5-androstenediol, 5α-androstanediol, and 27-hydroxycholesterol is the presence of a C19 methyl group, which precludes the presence of an aromatic A ring with a C3 phenolic group that is a defining property of E2. The structural diversity of these estrogens can explain the response of the ER to synthetic chemicals such as bisphenol A and DDT, which disrupt estrogen physiology in vertebrates, and the estrogenic activity of a variety of plant-derived chemicals such as genistein, coumestrol, and resveratrol. Diversity in the A ring of physiological estrogens also expands potential structures of industrial chemicals that can act as endocrine disruptors. Compared to E2, synthesis of 27-hydroxycholesterol and Δ5-androstenediol is simpler, leading us, based on parsimony, to propose that one or both of these steroids or a related metabolite was a physiological estrogen early in the evolution of the ER, with E2 assuming this role later as the canonical estrogen. In addition to the well-studied role of the ER in reproductive physiology, the ER also is an important transcription factor in non-reproductive tissues such as the cardiovascular system, kidney, bone, and brain. Some of these ER actions in non-reproductive tissues appeared early in vertebrate evolution, long before the emergence of mammals.
Collapse
Affiliation(s)
- Michael E Baker
- Division of Nephrology-Hypertension, Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA.
| | - Richard Lathe
- Division of Infection and Pathway Medicine, University of Edinburgh, Little France, Edinburgh, UK.
| |
Collapse
|
20
|
Genomic integration and ligand-dependent activation of the human estrogen receptor α in the crustacean Daphnia magna. PLoS One 2018; 13:e0198023. [PMID: 29883470 PMCID: PMC5993276 DOI: 10.1371/journal.pone.0198023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 05/12/2018] [Indexed: 02/06/2023] Open
Abstract
The freshwater crustacean Daphnia have a long history in water quality assessments and now lend themselves to detection of targeted chemicals using genetically encoded reporter gene due to recent progress in the development of genome editing tools. By introducing human genes into Daphnia, we may be able to detect chemicals that affect the human system, or even apply it to screening potentially useful chemicals. Here, we aimed to develop a transgenic line of Daphnia magna that contains the human estrogen receptor alpha (hERα) and shows a fluorescence response to exposure of estrogens. We designed plasmids to express hERα in Daphnia (EF1α1:esr1) and to report estrogenic activity via red fluorescence (ERE:mcherry) under the control of estrogen response element (ERE). After confirmation of functionality of the plasmids by microinjection into embryos, the two plasmids were joined, a TALE site was added and integrated into the D. magna genome using TALEN. When the resulting transgenic Daphnia named the ES line was exposed to Diethylstilbestrol (DES) or 17β-Estradiol (E2), the ES line could reliably expressed red fluorescence derived from mCherry in a ligand-dependent manner, indicating that an estrogen-responsive line of D. magna was established. This is the first time a human gene was expressed in Daphnia, showcasing potential for further research.
Collapse
|
21
|
Novotný JP, Chughtai AA, Kostrouchová M, Kostrouchová V, Kostrouch D, Kaššák F, Kaňa R, Schierwater B, Kostrouchová M, Kostrouch Z. Trichoplax adhaerens reveals a network of nuclear receptors sensitive to 9- cis-retinoic acid at the base of metazoan evolution. PeerJ 2017; 5:e3789. [PMID: 28975052 PMCID: PMC5624297 DOI: 10.7717/peerj.3789] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
Trichoplax adhaerens, the only known species of Placozoa is likely to be closely related to an early metazoan that preceded branching of Cnidaria and Bilateria. This animal species is surprisingly well adapted to free life in the World Ocean inhabiting tidal costal zones of oceans and seas with warm to moderate temperatures and shallow waters. The genome of T. adhaerens (sp. Grell) includes four nuclear receptors, namely orthologue of RXR (NR2B), HNF4 (NR2A), COUP-TF (NR2F) and ERR (NR3B) that show a high degree of similarity with human orthologues. In the case of RXR, the sequence identity to human RXR alpha reaches 81% in the DNA binding domain and 70% in the ligand binding domain. We show that T. adhaerens RXR (TaRXR) binds 9-cis retinoic acid (9-cis-RA) with high affinity, as well as high specificity and that exposure of T. adhaerens to 9-cis-RA regulates the expression of the putative T. adhaerens orthologue of vertebrate L-malate-NADP+ oxidoreductase (EC 1.1.1.40) which in vertebrates is regulated by a heterodimer of RXR and thyroid hormone receptor. Treatment by 9-cis-RA alters the relative expression profile of T. adhaerens nuclear receptors, suggesting the existence of natural ligands. Keeping with this, algal food composition has a profound effect on T. adhaerens growth and appearance. We show that nanomolar concentrations of 9-cis-RA interfere with T. adhaerens growth response to specific algal food and causes growth arrest. Our results uncover an endocrine-like network of nuclear receptors sensitive to 9-cis-RA in T. adhaerens and support the existence of a ligand-sensitive network of nuclear receptors at the base of metazoan evolution.
Collapse
Affiliation(s)
- Jan Philipp Novotný
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Medicine V., University of Heidelberg, Heidelberg, Germany
| | - Ahmed Ali Chughtai
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Markéta Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic.,Department of Pathology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - David Kostrouch
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Filip Kaššák
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Radek Kaňa
- Institute of Microbiology, Laboratory of Photosynthesis, Czech Academy of Sciences, Třeboň, Czech Republic
| | - Bernd Schierwater
- Institute for Animal Ecology and Cell Biology, University of Veterinary Medicine, Hannover, Germany.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Marta Kostrouchová
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Zdenek Kostrouch
- Biocev, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
22
|
Babonis LS, Martindale MQ. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150477. [PMID: 27994120 PMCID: PMC5182411 DOI: 10.1098/rstb.2015.0477] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
23
|
Holzer G, Markov GV, Laudet V. Evolution of Nuclear Receptors and Ligand Signaling. Curr Top Dev Biol 2017; 125:1-38. [DOI: 10.1016/bs.ctdb.2017.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Bodofsky S, Koitz F, Wightman B. CONSERVED AND EXAPTED FUNCTIONS OF NUCLEAR RECEPTORS IN ANIMAL DEVELOPMENT. NUCLEAR RECEPTOR RESEARCH 2017; 4:101305. [PMID: 29333434 PMCID: PMC5761748 DOI: 10.11131/2017/101305] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor gene family includes 18 members that are broadly conserved among multiple disparate animal phyla, indicating that they trace their evolutionary origins to the time at which animal life arose. Typical nuclear receptors contain two major domains: a DNA-binding domain and a C-terminal domain that may bind a lipophilic hormone. Many of these nuclear receptors play varied roles in animal development, including coordination of life cycle events and cellular differentiation. The well-studied genetic model systems of Drosophila, C. elegans, and mouse permit an evaluation of the extent to which nuclear receptor function in development is conserved or exapted (repurposed) over animal evolution. While there are some specific examples of conserved functions and pathways, there are many clear examples of exaptation. Overall, the evolutionary theme of exaptation appears to be favored over strict functional conservation. Despite strong conservation of DNA-binding domain sequences and activity, the nuclear receptors prove to be highly-flexible regulators of animal development.
Collapse
Affiliation(s)
- Shari Bodofsky
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Francine Koitz
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| | - Bruce Wightman
- Biology Department, Muhlenberg College, 2400 Chew St., Allentown, PA 18104
| |
Collapse
|
25
|
|
26
|
Baker ME, Nelson DR, Studer RA. Origin of the response to adrenal and sex steroids: Roles of promiscuity and co-evolution of enzymes and steroid receptors. J Steroid Biochem Mol Biol 2015; 151:12-24. [PMID: 25445914 DOI: 10.1016/j.jsbmb.2014.10.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/13/2014] [Accepted: 10/26/2014] [Indexed: 01/14/2023]
Abstract
Many responses to adrenal and sex steroids are mediated by receptors that belong to the nuclear receptor family of transcription factors. We investigated the co-evolution of these vertebrate steroid receptors and the enzymes that synthesize adrenal and sex steroids through data mining of genomes from cephalochordates [amphioxus], cyclostomes [lampreys, hagfish], chondrichthyes [sharks, rays, skates], actinopterygii [ray-finned fish], sarcopterygii [coelacanths, lungfishes and terrestrial vertebrates]. An ancestor of the estrogen receptor and 3-ketosteroid receptors evolved in amphioxus. A corticoid receptor and a progesterone receptor evolved in cyclostomes, and an androgen receptor evolved in gnathostomes. Amphioxus contains CYP11, CYP17, CYP19, 3β/Δ5-4-HSD and 17β-HSD14, which suffice for the synthesis of estradiol and Δ5-androstenediol. Amphioxus also contains CYP27, which catalyzes the synthesis of 27-hydroxy-cholesterol, another estrogen. Lamprey contains, in addition, CYP21, which catalyzes the synthesis of 11-deoxycortisol. Chondrichthyes contain, in addition, CYP11A, CYP11C, CYP17A1, CYP17A2. Coelacanth also contains CYP11C1, the current descendent from a common ancestor with modern land vertebrate CYP11B genes, which catalyze the synthesis of cortisol, corticosterone and aldosterone. Interestingly, CYP11B2, aldosterone synthase, evolved from separate gene duplications in at least old world monkeys and two suborders of rodents. Sciurognathi (including mice and rats) and Hystricomorpha (including guinea pigs). Thus, steroid receptors and steroidogenic enzymes co-evolved at key transitions in the evolution of vertebrates. Together, this suite of receptors and enzymes through their roles in transcriptional regulation of reproduction, development, homeostasis and the response to stress contributed to the evolutionary diversification of vertebrates. This article is part of a Special Issue entitled 'Steroid/Sterol signaling'.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, United States.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, 858 Madison Ave., Suite G01, University of Tennessee, Memphis, TN 38163, United States.
| | - Romain A Studer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
27
|
Huang W, Xu F, Li J, Li L, Que H, Zhang G. Evolution of a novel nuclear receptor subfamily with emphasis on the member from the Pacific oyster Crassostrea gigas. Gene 2015; 567:164-72. [PMID: 25956376 DOI: 10.1016/j.gene.2015.04.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/16/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
Nuclear receptors (NRs) belong to the transcription factor superfamily that regulates development, homeostasis, differentiation, and reproduction in metazoans via control of gene expression. Recently, rapid advances in genome projects on various metazoans have provided new opportunities for studying the evolution and function of NRs. Typically structured NRs are divided into six subfamilies. Here, the gene for a typically structured NR (CgNR8A1) was cloned from the Pacific oyster Crassostrea gigas. However, this novel receptor could not be assigned to a known NR subfamily. By data mining, nine other CgNR8A1 gene homologs were identified in metazoans such as cnidarians, mollusks, annelids, echinoderms, hemichordates, and cephalochordates. Phylogenetic analysis showed that these receptors belonged to a novel NR subfamily, hereafter designated as NR8. Evolutionary analysis revealed that the NR8 subfamily was phylogenetically the third-oldest NR subfamily, and it originated from a common ancestor of Eumetazoa; several gene loss events occurred independently in ancestors of vertebrates, ecdysozoans, and platyhelminths, which do not have NR8 members. Furthermore, the function of CgNR8A1 was investigated to provide an insight into the functions of this novel NR subfamily. A nuclear localization signal peptide, GKHRNKKPRLD, was identified in CgNR8A1, and a recombinant full-length protein of CgNR8A1 was localized in the nuclei of HeLa cells. The mRNA expression profile of CgNR8A1 suggested that it might be involved in the embryogenesis of C. gigas. The electrophoretic mobility shift assay showed that CgNR8A1 binds strongly to conserved DNA core motifs DR0, DR2, and DR4 and weakly to DR1, DR3, DR5, Half, and Pal0. In summary, the novel NR8 subfamily identified in this study improves our understanding of NR evolution, and the functional analysis of CgNR8A1 provided further insights into the functions of NR8A1s.
Collapse
Affiliation(s)
- Wen Huang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Xu
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Juan Li
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Li Li
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Huayong Que
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Guofan Zhang
- National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
28
|
Nagasawa K, Treen N, Kondo R, Otoki Y, Itoh N, Rotchell JM, Osada M. Molecular characterization of an estrogen receptor and estrogen-related receptor and their autoregulatory capabilities in two Mytilus species. Gene 2015; 564:153-9. [PMID: 25862924 DOI: 10.1016/j.gene.2015.03.073] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/27/2015] [Accepted: 03/03/2015] [Indexed: 12/23/2022]
Abstract
Vertebrate-like sex steroid hormones have been widely detected in mollusks, and numerous experiments have shown the importance of steroids in gonad development. Nevertheless, their signaling pathways in invertebrates have not been uncovered yet. Steroid receptors are an ancient class of transcription factors with multiple roles in not only vertebrates but also invertebrates. Estrogen signaling is thought to have major roles in mollusk physiology, but the full repertoire of estrogen receptors is unknown. We presented the successful cloning of two novel forms of estrogen receptor-like genes. These receptors are present in two closely related species of Mytilus: Mytilus edulis and Mytilus galloprovincialis, commonly known and widely distributed sentinel species. Our phylogenetic analysis revealed that one of these receptors is an estrogen receptor (ER) and the other one is an estrogen-related receptor (ERR). Studies of expression analysis showed that both receptor mRNAs were localized in the oocytes and follicle cells in contact with developing oocytes in the ovary and Sertoli cells in the testis, and in the ciliated cells of the gill. In addition, we have evidence that one (ER) of these may have a capacity to autoregulate its own expression in the gonadal cells by estrogen (E2) and that this gene is responsive to estrogenic compounds.
Collapse
Affiliation(s)
- Kazue Nagasawa
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Nicholas Treen
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka 415-0025, Japan
| | - Reki Kondo
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Yurika Otoki
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Naoki Itoh
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan
| | - Jeanette M Rotchell
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Cottingham Rd, Hull HU6 7RX, UK
| | - Makoto Osada
- Laboratory of Aquacultural Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-amamiyamachi, Sendai 981-8555, Japan.
| |
Collapse
|
29
|
Kaur S, Jobling S, Jones CS, Noble LR, Routledge EJ, Lockyer AE. The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: implications for developing new model organisms. PLoS One 2015; 10:e0121259. [PMID: 25849443 PMCID: PMC4388693 DOI: 10.1371/journal.pone.0121259] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/29/2015] [Indexed: 02/01/2023] Open
Abstract
Nuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.
Collapse
Affiliation(s)
- Satwant Kaur
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Susan Jobling
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Catherine S. Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Leslie R. Noble
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Edwin J. Routledge
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
| | - Anne E. Lockyer
- Institute of Environment, Health and Societies, Brunel University London, Uxbridge, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Vogeler S, Galloway TS, Lyons BP, Bean TP. The nuclear receptor gene family in the Pacific oyster, Crassostrea gigas, contains a novel subfamily group. BMC Genomics 2014; 15:369. [PMID: 24885009 PMCID: PMC4070562 DOI: 10.1186/1471-2164-15-369] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/30/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear receptors are a superfamily of transcription factors important in key biological, developmental and reproductive processes. Several of these receptors are ligand- activated and through their ability to bind endogenous and exogenous ligands, are potentially vulnerable to xenobiotics. Molluscs are key ecological species in defining aquatic and terrestrial habitats and are sensitive to xenobiotic compounds in the environment. However, the understanding of nuclear receptor presence, function and xenobiotic disruption in the phylum Mollusca is limited. RESULTS Here, forty-three nuclear receptor sequences were mined from the genome of the Pacific oyster, Crassostrea gigas. They include members of NR0-NR5 subfamilies, notably lacking any NR6 members. Phylogenetic analyses of the oyster nuclear receptors have been conducted showing the presence of a large novel subfamily group not previously reported, which is named NR1P. Homologues to all previous identified nuclear receptors in other mollusc species have also been determined including the putative heterodimer partner retinoid X receptor, estrogen receptor and estrogen related receptor. CONCLUSION C. gigas contains a highly diverse set of nuclear receptors including a novel NR1 group, which provides important information on presence and evolution of this transcription factor superfamily in invertebrates. The Pacific oyster possesses two members of NR3, the sex steroid hormone receptor analogues, of which there are 9 in humans. This provides increasing evidence that steroid ligand specific expansion of this family is deuterostome specific. This new knowledge on divergence and emergence of nuclear receptors in C. gigas provides essential information for studying regulation of molluscan gene expression and the potential effects of xenobiotics.
Collapse
Affiliation(s)
- Susanne Vogeler
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tamara S Galloway
- />School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD UK
| | - Brett P Lyons
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| | - Tim P Bean
- />Centre for Environment, Fisheries and Aquaculture Science, Cefas Weymouth Laboratory, Barrack Road, Weymouth, DT4 8UB UK
| |
Collapse
|
31
|
Kattoula SR, Baker ME. Structural and evolutionary analysis of the co-activator binding domain in vertebrate progesterone receptors. J Steroid Biochem Mol Biol 2014; 141:7-15. [PMID: 24388949 DOI: 10.1016/j.jsbmb.2013.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 11/19/2022]
Abstract
Biochemical studies show that binding of co-activators to the progesterone receptor [PR] is an important mechanism for regulating of PR-mediated gene transcription. Unfortunately, unlike other steroid receptors, the PR has not been crystalized with a co-activator. Fortunately, the PR has strong structural similarity to the mineralocorticoid receptor [MR] and glucocorticoid receptor [GR], which have been crystalized with co-activators. This similarity allowed us to construct 3D models of the PR with steroid co-activator 1-Box 4 [SRC1-4] and transcriptional intermediary factor 2-Box 3 [TIF2-3], which were extracted from the crystal structures of human MR and GR, respectively. Comparisons of 3D models of human PR with SRC1-4 and TIF2-3 and human MR with SRC1-4 and GR with TIF2-3 identified some unique interactions between the PR and SRC1-4 and TIF2-3. An evolutionary analysis of the sequence of the co-activator binding groove in human PR found strong conservation in terrestrial vertebrates. However, there are some differences between human PR and the PRs in lamprey, shark and fishes. These differences among the PRs and between the PR, MR and GR may have contributed to the evolution of specificity for progestins, mineralocorticoids and glucocorticoids in vertebrates.
Collapse
Affiliation(s)
- Stephanie R Kattoula
- Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, United States
| | - Michael E Baker
- Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, United States.
| |
Collapse
|
32
|
Abstract
Nuclear receptors (NRs) are a family of highly conserved transcription factors that regulate transcription in response to small lipophilic compounds. They play a role in every aspect of development, physiology and disease in humans. They are also ubiquitous in and unique to the animal kingdom suggesting that they may have played an important role in their evolution. In contrast to the classical endocrine receptors that originally defined the family, recent studies suggest that the first NRs might have been sensors of their environment, binding ligands that were external to the host organism. The purpose of this review is to provide a broad perspective on NR ligands and address the issue of exactly what constitutes a NR ligand from historical, biological and evolutionary perspectives. This discussion will lay the foundation for subsequent reviews in this issue as well as pose new questions for future investigation.
Collapse
Affiliation(s)
- Frances M Sladek
- Department of Cell Biology and Neuroscience, University of California, 2115 Biological Sciences Building, Riverside, CA 92521, United States.
| |
Collapse
|
33
|
Reitzel AM, Pang K, Ryan JF, Mullikin JC, Martindale MQ, Baxevanis AD, Tarrant AM. Nuclear receptors from the ctenophore Mnemiopsis leidyi lack a zinc-finger DNA-binding domain: lineage-specific loss or ancestral condition in the emergence of the nuclear receptor superfamily? EvoDevo 2011; 2:3. [PMID: 21291545 PMCID: PMC3038971 DOI: 10.1186/2041-9139-2-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 02/03/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Nuclear receptors (NRs) are an ancient superfamily of metazoan transcription factors that play critical roles in regulation of reproduction, development, and energetic homeostasis. Although the evolutionary relationships among NRs are well-described in two prominent clades of animals (deuterostomes and protostomes), comparatively little information has been reported on the diversity of NRs in early diverging metazoans. Here, we identified NRs from the phylum Ctenophora and used a phylogenomic approach to explore the emergence of the NR superfamily in the animal kingdom. In addition, to gain insight into conserved or novel functions, we examined NR expression during ctenophore development. RESULTS We report the first described NRs from the phylum Ctenophora: two from Mnemiopsis leidyi and one from Pleurobrachia pileus. All ctenophore NRs contained a ligand-binding domain and grouped with NRs from the subfamily NR2A (HNF4). Surprisingly, all the ctenophore NRs lacked the highly conserved DNA-binding domain (DBD). NRs from Mnemiopsis were expressed in different regions of developing ctenophores. One was broadly expressed in the endoderm during gastrulation. The second was initially expressed in the ectoderm during gastrulation, in regions corresponding to the future tentacles; subsequent expression was restricted to the apical organ. Phylogenetic analyses of NRs from ctenophores, sponges, cnidarians, and a placozoan support the hypothesis that expansion of the superfamily occurred in a step-wise fashion, with initial radiations in NR family 2, followed by representatives of NR families 3, 6, and 1/4 originating prior to the appearance of the bilaterian ancestor. CONCLUSIONS Our study provides the first description of NRs from ctenophores, including the full complement from Mnemiopsis. Ctenophores have the least diverse NR complement of any animal phylum with representatives that cluster with only one subfamily (NR2A). Ctenophores and sponges have a similarly restricted NR complement supporting the hypothesis that the original NR was HNF4-like and that these lineages are the first two branches from the animal tree. The absence of a zinc-finger DNA-binding domain in the two ctenophore species suggests two hypotheses: this domain may have been secondarily lost within the ctenophore lineage or, if ctenophores are the first branch off the animal tree, the original NR may have lacked the canonical DBD. Phylogenomic analyses and categorization of NRs from all four early diverging animal phyla compared with the complement from bilaterians suggest the rate of NR diversification prior to the cnidarian-bilaterian split was relatively modest, with independent radiations of several NR subfamilies within the cnidarian lineage.
Collapse
Affiliation(s)
- Adam M Reitzel
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Kevin Pang
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI, USA
| | - Joseph F Ryan
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - James C Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark Q Martindale
- Kewalo Marine Laboratory, Pacific Bioscience Research Center, University of Hawaii, Honolulu, HI, USA
| | - Andreas D Baxevanis
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ann M Tarrant
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
34
|
Hannas BR, Wang YH, Thomson S, Kwon G, Li H, LeBlanc GA. Regulation and dysregulation of vitellogenin mRNA accumulation in daphnids (Daphnia magna). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 101:351-7. [PMID: 21216345 PMCID: PMC3691678 DOI: 10.1016/j.aquatox.2010.11.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/29/2010] [Accepted: 11/14/2010] [Indexed: 05/07/2023]
Abstract
The induction of vitellogenin in oviparous vertebrates has become the gold standard biomarker of exposure to estrogenic chemicals in the environment. This biomarker of estrogen exposure also has been used in arthropods, however, little is known of the factors that regulate the expression of vitellogenin in these organisms. We investigated changes in accumulation of mRNA products of the vitellogenin gene Vtg2 in daphnids (Daphnia magna) exposed to a diverse array of chemicals. We further evaluated the involvement of hormonal factors in the regulation of vitellogenin expression that may be targets of xenobiotic chemicals. Expression of the Vtg2 gene was highly responsive to exposure to various chemicals with an expression range spanning approximately four orders of magnitude. Chemicals causing the greatest induction were piperonyl butoxide, chlordane, 4-nonylphenol, cadmium, and chloroform. Among these, only 4-nonylphenol is recognized to be estrogenic. Exposure to several chemicals also suppressed Vtg2 mRNA levels, as much as 100-fold. Suppressive chemicals included cyproterone acetate, acetone, triclosan, and atrazine. Exposure to the estrogens diethylstilbestrol and bisphenol A had little effect on vitellogenin mRNA levels further substantiating that these genes are not induced by estrogen exposure. Exposure to the potent ecdysteroids 20-hydroxyecdysone and ponasterone A revealed that Vtg2 was subject to strong suppressive control by these hormones. Vtg2 mRNA levels were not significantly affected from exposure to several juvenoid hormones. Results indicate that ecdysteroids are suppressors of vitellogenin gene expression and that vitellogenin mRNA levels can be elevated or suppressed in daphnids by xenobiotics that elicit antiecdysteroidal or ecdysteroidal activity, respectively. Importantly, daphnid Vtg2 is not elevated in response to estrogenic activity.
Collapse
Affiliation(s)
| | | | | | | | | | - Gerald A. LeBlanc
- Corresponding author: Box 7633, Raleigh, NC, USA 27695-7633, Phone: (919)515-7404, Fax: (919)515-7169,
| |
Collapse
|
35
|
Thomson SA, Baldwin WS, Wang YH, Kwon G, LeBlanc GA. Annotation, phylogenetics, and expression of the nuclear receptors in Daphnia pulex. BMC Genomics 2009; 10:500. [PMID: 19863811 PMCID: PMC2774871 DOI: 10.1186/1471-2164-10-500] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Accepted: 10/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nuclear receptor superfamily currently consists of seven gene subfamilies that encompass over 80 distinct receptor proteins. These transcription factors typically share a common five-domain structure with a highly conserved DNA-binding domain. Some nuclear receptors are ubiquitous among the metazoans, while others are unique to specific phylogenetic groups. Crustaceans represent the second largest group of arthropods with insects being the largest. However, relative to insects, little is known about the nuclear receptors of crustaceans. The aim of this study was to identify putative nuclear receptors from the first assembled genome of a crustacean Daphnia pulex http://wFleaBase.org. Nuclear receptor expression was evaluated and receptors were subjected to phylogenetic analyses to gain insight into evolution and function. RESULTS Twenty-five putative nuclear receptors were identified in D. pulex based on the presence of a conserved DNA-binding domain. All of the nuclear receptor protein sequences contain a highly homologous DNA-binding domain and a less conserved ligand-binding domain with the exception of the NR0A group. These receptors lack a ligand-binding domain. Phylogenetic analysis revealed the presence of all seven receptor subfamilies. The D. pulex genome contains several nuclear receptors that have vertebrate orthologs. However, several nuclear receptor members that are represented in vertebrates are absent from D. pulex. Notable absences include receptors of the 1C group (peroxisome proliferators-activated receptors), the 3A group (estrogen receptor), and the 3C group (androgen, progestogen, mineralcorticoid, and glucocorticoid receptors). The D. pulex genome also contains nuclear receptor orthologs that are present in insects and nematodes but not vertebrates, including putative nuclear receptors within the NR0A group. A novel group of receptors, designated HR97, was identified in D. pulex that groups with the HR96/CeNHR8/48/DAF12 clade, but forms its own sub-clade. Gene products were detected in adult female D. pulex for 21 of the 25 receptors. CONCLUSION Nuclear receptors are ancient proteins with highly conserved DNA-binding domains. The DNA-binding domains of the nuclear receptors of D. pulex contain the same degree of conservation that is typically found within nuclear receptors of other species. Most of the receptors identified in D. pulex have orthologs within the vertebrate and invertebrate lineages examined with the exception of the novel HR97 group and the Dappu-HR10 and potentially the Dappu-HR11 receptors found in D. pulex. These groups of receptors may harbour functions that are intrinsic to crustacean physiology.
Collapse
Affiliation(s)
- Susanne A Thomson
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | - William S Baldwin
- Environmental Toxicology Program and Biological Sciences Department, Clemson University, Pendleton, South Carolina, USA
| | - Ying H Wang
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | - Gwijun Kwon
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| | - Gerald A LeBlanc
- Department of Environmental and Molecular Toxicology, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
36
|
Reitzel AM, Tarrant AM. Nuclear receptor complement of the cnidarian Nematostella vectensis: phylogenetic relationships and developmental expression patterns. BMC Evol Biol 2009; 9:230. [PMID: 19744329 PMCID: PMC2749838 DOI: 10.1186/1471-2148-9-230] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 09/10/2009] [Indexed: 11/15/2022] Open
Abstract
Background Nuclear receptors are a superfamily of metazoan transcription factors that regulate diverse developmental and physiological processes. Sequenced genomes from an increasing number of bilaterians have provided a more complete picture of duplication and loss of nuclear receptors in protostomes and deuterostomes but have left open the question of which nuclear receptors were present in the cnidarian-bilaterian ancestor. In addition, nuclear receptor expression and function are largely uncharacterized within cnidarians, preventing determination of conserved and novel nuclear receptor functions in the context of animal evolution. Results Here we report the first complete set of nuclear receptors from a cnidarian, the starlet sea anemone Nematostella vectensis. Genomic searches using conserved DNA- and ligand-binding domains revealed seventeen nuclear receptors in N. vectensis. Phylogenetic analyses support N. vectensis orthologs of bilaterian nuclear receptors in four nuclear receptor subfamilies within nuclear receptor family 2 (COUP-TF, TLL, HNF4, TR2/4) and one putative ortholog of GCNF (nuclear receptor family 6). Other N. vectensis genes grouped well with nuclear receptor family 2 but represented lineage-specific duplications somewhere within the cnidarian lineage and were not clear orthologs of bilaterian genes. Three nuclear receptors were not well-supported within any particular nuclear receptor family. The seventeen nuclear receptors exhibited distinct developmental expression patterns, with expression of several nuclear receptors limited to a subset of developmental stages. Conclusion N. vectensis contains a diverse complement of nuclear receptors including orthologs of several bilaterian nuclear receptors. Novel nuclear receptors in N. vectensis may be ancient genes lost from triploblastic lineages or may represent cnidarian-specific radiations. Nuclear receptors exhibited distinct developmental expression patterns, which are consistent with diverse regulatory roles for these genes. Understanding the evolutionary relationships and developmental expression of the N. vectensis nuclear receptor complement provides insight into the evolution of the nuclear receptor superfamily and a foundation for mechanistic characterization of cnidarian nuclear receptor function.
Collapse
Affiliation(s)
- Adam M Reitzel
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | |
Collapse
|