1
|
Li FR, Wang Q, Pan X, Xu HM, Dong LB. Discovery, Structure, and Engineering of a cis-Geranylfarnesyl Diphosphate Synthase. Angew Chem Int Ed Engl 2024; 63:e202401669. [PMID: 38651244 DOI: 10.1002/anie.202401669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/15/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
cis-Prenyltransferases (cis-PTs) catalyze the sequential head-to-tail condensation of isopentenyl diphosphate (IPP) to allylic diphosphates, producing mixed E-Z prenyl diphosphates of varying lengths; however, the specific enzymes synthesizing cis-C25 prenyl diphosphates have not been identified. Herein, we present the discovery and characterization of a cis-geranylfarnesyl diphosphate synthase (ScGFPPS) from Streptomyces clavuligerus. This enzyme demonstrates high catalytic proficiency in generating six distinct cis-polyisoprenoids, including three C25 and three C20 variants. We determined the crystal structure of ScGFPPS. Additionally, we unveil the crystal structure of nerylneryl diphosphate synthase (NNPS), known for synthesizing an all-cis-C20 polyisoprenoid. Comparative structural analysis of ScGFPPS and NNPS has identified key differences that influence product specificity. Through site-directed mutagenesis, we have identified eight single mutations that significantly refine the selectivity of ScGFPPS for cis-polyisoprenoids. Our findings not only expand the functional spectrum of cis-PTs but also provide a structural comparison strategy in cis-PTs engineering.
Collapse
Affiliation(s)
- Fang-Ru Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qingling Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
2
|
Kurokawa H, Ambo T, Takahashi S, Koyama T. Crystal structure of Thermobifida fusca cis-prenyltransferase reveals the dynamic nature of its RXG motif-mediated inter-subunit interactions critical for its catalytic activity. Biochem Biophys Res Commun 2020; 532:459-465. [PMID: 32892948 DOI: 10.1016/j.bbrc.2020.08.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022]
Abstract
cis-Prenyltransferases (cis-PTs) catalyze consecutive condensations of isopentenyl diphosphate to an allylic diphosphate acceptor to produce a linear polyprenyl diphosphate of designated length. Dimer formation is a prerequisite for cis-PTs to catalyze all cis-prenyl condensation reactions. The structure-function relationship of a conserved C-terminal RXG motif in cis-PTs that forms inter-subunit interactions and has a role in catalytic activity has attracted much attention. Here, we solved the crystal structure of a medium-chain cis-PT from Thermobifida fusca that produces dodecaprenyl diphosphate as a polyprenoid glycan carrier for cell wall synthesis. The structure revealed a characteristic dimeric architecture of cis-PTs in which a rigidified RXG motif of one monomer formed inter-subunit hydrogen bonds with the catalytic site of the other monomer, while the RXG motif of the latter remained flexible. Careful analyses suggested the existence of a possible long-range negative cooperativity between the two catalytic sites on the two monomeric subunits that allowed the binding of one subunit to stabilize the formation of the enzyme-substrate ternary complex and facilitated the release of Mg-PPi and subsequent intra-molecular translocation at the counter subunit so that the condensation reaction could occur in consecutive cycles. The current structure reveals the dynamic nature of the RXG motif and provides a rationale for pursuing further investigations to elucidate the inter-subunit cooperativity of cis-PTs.
Collapse
Affiliation(s)
- Hirofumi Kurokawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan.
| | - Takanori Ambo
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aramaki Aza Aoba 6-6-11, Aoba-ku, Sendai, 980-8579, Japan
| | - Tanetoshi Koyama
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai, 980-8577, Japan
| |
Collapse
|
3
|
Abstract
Natural rubber (NR), principally comprising cis-1,4-polyisoprene, is an industrially important natural hydrocarbon polymer because of its unique physical properties, which render it suitable for manufacturing items such as tires. Presently, industrial NR production depends solely on latex obtained from the Pará rubber tree, Hevea brasiliensis. In latex, NR is enclosed in rubber particles, which are specialized organelles comprising a hydrophobic NR core surrounded by a lipid monolayer and membrane-bound proteins. The similarity of the basic carbon skeleton structure between NR and dolichols and polyprenols, which are found in most organisms, suggests that the NR biosynthetic pathway is related to the polyisoprenoid biosynthetic pathway and that rubber transferase, which is the key enzyme in NR biosynthesis, belongs to the cis-prenyltransferase family. Here, we review recent progress in the elucidation of molecular mechanisms underlying NR biosynthesis through the identification of the enzymes that are responsible for the formation of the NR backbone structure.
Collapse
Affiliation(s)
- Satoshi Yamashita
- Department of Material Chemistry, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan;
| | - Seiji Takahashi
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan;
| |
Collapse
|
4
|
A Simple In Vitro Assay to Measure the Activity of Geranylgeranyl Diphosphate Synthase and Other Short-Chain Prenyltransferases. Methods Mol Biol 2019; 2083:27-38. [PMID: 31745910 DOI: 10.1007/978-1-4939-9952-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
|
5
|
Grabińska KA, Park EJ, Sessa WC. cis-Prenyltransferase: New Insights into Protein Glycosylation, Rubber Synthesis, and Human Diseases. J Biol Chem 2016; 291:18582-90. [PMID: 27402831 PMCID: PMC5000101 DOI: 10.1074/jbc.r116.739490] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
cis-Prenyltransferases (cis-PTs) constitute a large family of enzymes conserved during evolution and present in all domains of life. cis-PTs catalyze consecutive condensation reactions of allylic diphosphate acceptor with isopentenyl diphosphate (IPP) in the cis (Z) configuration to generate linear polyprenyl diphosphate. The chain lengths of isoprenoid carbon skeletons vary widely from neryl pyrophosphate (C10) to natural rubber (C>10,000). The homo-dimeric bacterial enzyme, undecaprenyl diphosphate synthase (UPPS), has been structurally and mechanistically characterized in great detail and serves as a model for understanding the mode of action of eukaryotic cis-PTs. However, recent experiments have revealed that mammals, fungal, and long-chain plant cis-PTs are heteromeric enzymes composed of two distantly related subunits. In this review, the classification, function, and evolution of cis-PTs will be discussed with a special emphasis on the role of the newly described NgBR/Nus1 subunit and its plants' orthologs as essential, structural components of the cis-PTs activity.
Collapse
Affiliation(s)
- Kariona A Grabińska
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - Eon Joo Park
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| | - William C Sessa
- From the Department of Pharmacology and Vascular Biology and Therapeutics Program (VBT), Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
6
|
Abstract
This article summarizes what is currently known of the structures, physiological roles, involvement in pathogenicity, and biogenesis of a variety of noncovalently bound cell envelope lipids and glycoconjugates of Mycobacterium tuberculosis and other Mycobacterium species. Topics addressed in this article include phospholipids; phosphatidylinositol mannosides; triglycerides; isoprenoids and related compounds (polyprenyl phosphate, menaquinones, carotenoids, noncarotenoid cyclic isoprenoids); acyltrehaloses (lipooligosaccharides, trehalose mono- and di-mycolates, sulfolipids, di- and poly-acyltrehaloses); mannosyl-beta-1-phosphomycoketides; glycopeptidolipids; phthiocerol dimycocerosates, para-hydroxybenzoic acids, and phenolic glycolipids; mycobactins; mycolactones; and capsular polysaccharides.
Collapse
|
7
|
Abstract
Farnesyl diphosphate synthase (FPS) catalyzes the sequential head-to-tail condensation of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) and geranyl diphosphate (GPP, C10) to produce farnesyl diphosphate (FPP, C15). This short-chain prenyl diphosphate constitutes a key branch-point of the isoprenoid biosynthetic pathway from which a variety of bioactive isoprenoids that are vital for normal plant growth and survival are produced. Here we describe a protocol to obtain highly purified preparations of recombinant FPS and a radiochemical assay method for measuring FPS activity in purified enzyme preparations and plant tissue extracts.
Collapse
Affiliation(s)
- Montserrat Arró
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, Barcelona, Spain
| | | | | |
Collapse
|
8
|
Engineered heterologous FPP synthases-mediated Z,E-FPP synthesis in E. coli. Metab Eng 2013; 18:53-9. [DOI: 10.1016/j.ymben.2013.04.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 01/21/2013] [Accepted: 04/01/2013] [Indexed: 02/03/2023]
|
9
|
Substrate specificity of undecaprenyl diphosphate synthase from the hyperthermophilic archaeon Aeropyrum pernix. Biochem Biophys Res Commun 2013; 436:230-4. [PMID: 23726912 DOI: 10.1016/j.bbrc.2013.05.081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 05/21/2013] [Indexed: 11/20/2022]
Abstract
Cis-prenyltransferase from a hyperthermophilic archaeon Aeropyrum pernix was expressed in Escherichia coli and purified for characterization. Properties such as substrate specificity, product chain-length, thermal stability and cofactor requirement were investigated using the recombinant enzyme. In particular, the substrate specificity of the enzyme attracts interest because only dimethylallyl diphosphate and geranylfarnesyl diphosphate, both of which are unusual substrates for known cis-prenyltransferases, are likely available as an allylic primer substrate in A. pernix. From the enzymatic study, the archaeal enzyme was shown to be undecaprenyl diphosphate synthase that has anomalous substrate specificity, which results in a preference for geranylfarnesyl diphosphate. This means that the product of the enzyme, which is probably used as the precursor of the glycosyl carrier lipid, would have an undiscovered structure.
Collapse
|
10
|
Akhtar TA, Matsuba Y, Schauvinhold I, Yu G, Lees HA, Klein SE, Pichersky E. The tomato cis-prenyltransferase gene family. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:640-52. [PMID: 23134568 DOI: 10.1111/tpj.12063] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 10/25/2012] [Accepted: 10/29/2012] [Indexed: 05/22/2023]
Abstract
cis-prenyltransferases (CPTs) are predicted to be involved in the synthesis of long-chain polyisoprenoids, all with five or more isoprene (C5) units. Recently, we identified a short-chain CPT, neryl diphosphate synthase (NDPS1), in tomato (Solanum lycopersicum). Here, we searched the tomato genome and identified and characterized its entire CPT gene family, which comprises seven members (SlCPT1-7, with NDPS1 designated as SlCPT1). Six of the SlCPT genes encode proteins with N-terminal targeting sequences, which, when fused to GFP, mediated GFP transport to the plastids of Arabidopsis protoplasts. The SlCPT3-GFP fusion protein was localized to the cytosol. Enzymatic characterization of recombinant SlCPT proteins demonstrated that SlCPT6 produces Z,Z-FPP, and SlCPT2 catalyzes the formation of nerylneryl diphosphate while SlCPT4, SlCPT5 and SlCPT7 synthesize longer-chain products (C25-C55). Although no in vitro activity was demonstrated for SlCPT3, its expression in the Saccharomyces cerevisiae dolichol biosynthesis mutant (rer2) complemented the temperature-sensitive growth defect. Transcripts of SlCPT2, SlCPT4, SlCPT5 and SlCPT7 are present at low levels in multiple tissues, SlCPT6 is exclusively expressed in red fruit and roots, and SlCPT1, SlCPT3 and SlCPT7 are highly expressed in trichomes. RNAi-mediated suppression of NDPS1 led to a large decrease in β-phellandrene (which is produced from neryl diphosphate), with greater reductions achieved with the general 35S promoter compared to the trichome-specific MKS1 promoter. Phylogenetic analysis revealed CPT gene families in both eudicots and monocots, and showed that all the short-chain CPT genes from tomato (SlCPT1, SlCPT2 and SlCPT6) are closely linked to terpene synthase gene clusters.
Collapse
Affiliation(s)
- Tariq A Akhtar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Kera K, Takahashi S, Sutoh T, Koyama T, Nakayama T. Identification and characterization of a cis,trans-mixed heptaprenyl diphosphate synthase from Arabidopsis thaliana. FEBS J 2012; 279:3813-27. [PMID: 22883514 DOI: 10.1111/j.1742-4658.2012.08742.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 08/03/2012] [Accepted: 08/08/2012] [Indexed: 11/29/2022]
Abstract
In eukaryotes, dolichols (C(70-120)) play indispensable roles as glycosyl carrier lipids in the biosynthesis of glycoproteins on endoplasmic reticulum. In addition to dolichols, seed plants have other types of Z,E-mixed polyisoprenoids termed ficaprenol (tri-trans,poly-cis-polyprenol, C(45-75)) and betulaprenol (di-trans,poly-cis-polyprenol, C(30-45) and C(≥70)) in abundance. However, the physiological significance of these polyprenols has not been elucidated because of limited information regarding cis-prenyltransferases (cPTs) which catalyze the formation of the structural backbone of Z,E-mixed polyisoprenoids. In the comprehensive identification and characterization of cPT homologues from Arabidopsis thaliana, AtHEPS was identified as a novel cis,trans-mixed heptaprenyl diphosphate synthase. AtHEPS heterologously expressed in Escherichia coli catalyzed the formation of C(35) polyisoprenoid as a major product, independent of the chain lengths of all-trans allylic primer substrates. Kinetic analyses revealed that farnesyl diphosphate was the most favorable for AtHEPS among the allylic substrates tested suggesting that AtHEPS was responsible for the formation of C(35) betulaprenol. AtHEPS partially suppressed the phenotypes of a yeast cPT mutant deficient in the biosynthesis of dolichols. Moreover, in A. thaliana cells, subcellular localization of AtHEPS on the endoplasmic reticulum was shown by using green fluorescent protein fused proteins. However, a cold-stress-inducible expression of AtHEPS suggested that AtHEPS and its product might function in response to abiotic stresses rather than in cell maintenance as a glycosyl carrier lipid on the endoplasmic reticulum.
Collapse
Affiliation(s)
- Kota Kera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | | | | | | |
Collapse
|
12
|
Substrate specificities of E- and Z-farnesyl diphosphate synthases with substrate analogs. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.04.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Lohr M, Schwender J, Polle JEW. Isoprenoid biosynthesis in eukaryotic phototrophs: a spotlight on algae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 185-186:9-22. [PMID: 22325862 DOI: 10.1016/j.plantsci.2011.07.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 07/25/2011] [Accepted: 07/29/2011] [Indexed: 05/04/2023]
Abstract
Isoprenoids are one of the largest groups of natural compounds and have a variety of important functions in the primary metabolism of land plants and algae. In recent years, our understanding of the numerous facets of isoprenoid metabolism in land plants has been rapidly increasing, while knowledge on the metabolic network of isoprenoids in algae still lags behind. Here, current views on the biochemistry and genetics of the core isoprenoid metabolism in land plants and in the major algal phyla are compared and some of the most pressing open questions are highlighted. Based on the different evolutionary histories of the various groups of eukaryotic phototrophs, we discuss the distribution and regulation of the mevalonate (MVA) and the methylerythritol phosphate (MEP) pathways in land plants and algae and the potential consequences of the loss of the MVA pathway in groups such as the green algae. For the prenyltransferases, serving as gatekeepers to the various branches of terpenoid biosynthesis in land plants and algae, we explore the minimal inventory necessary for the formation of primary isoprenoids and present a preliminary analysis of their occurrence and phylogeny in algae with primary and secondary plastids. The review concludes with some perspectives on genetic engineering of the isoprenoid metabolism in algae.
Collapse
Affiliation(s)
- Martin Lohr
- Institut für Allgemeine Botanik, Johannes Gutenberg-Universität, 55099 Mainz, Germany.
| | | | | |
Collapse
|
14
|
Liu MC, Wang BJ, Huang JK, Wang CS. Expression, Localization and Function of a cis-Prenyltransferase in the Tapetum and Microspores of Lily Anthers. ACTA ACUST UNITED AC 2011; 52:1487-500. [DOI: 10.1093/pcp/pcr090] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
15
|
|
16
|
Umesiri FE, Sanki AK, Boucau J, Ronning DR, Sucheck SJ. Recent advances toward the inhibition of mAG and LAM synthesis in Mycobacterium tuberculosis. Med Res Rev 2010; 30:290-326. [DOI: 10.1002/med.20190] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Vandermoten S, Haubruge E, Cusson M. New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 2009; 66:3685-95. [PMID: 19633972 PMCID: PMC11115643 DOI: 10.1007/s00018-009-0100-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 06/28/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Isoprenoids form an extensive group of natural products involved in a number of important biological processes. Their biosynthesis proceeds through sequential 1'-4 condensations of isopentenyl diphosphate (C5) with an allylic acceptor, the first of which is dimethylallyl diphosphate (C5). The reactions leading to the production of geranyl diphosphate (C10), farnesyl diphosphate (C15) and geranylgeranyl diphosphate (C20), which are the precursors of mono-, sesqui- and diterpenes, respectively, are catalyzed by a group of highly conserved enzymes known as short-chain isoprenyl diphosphate synthases, or prenyltransferases. In recent years, the sequences of many new prenyltransferases have become available, including those of several plant and animal geranyl diphosphate synthases, revealing novel mechanisms of product chain-length selectivity and an intricate evolutionary path from a putative common ancestor. Finally, there is considerable interest in designing inhibitors specific to short-chain prenyltransferases, for the purpose of developing new drugs or pesticides that target the isoprenoid biosynthetic pathway.
Collapse
Affiliation(s)
- Sophie Vandermoten
- Department of Functional and Evolutionary Entomology, Gembloux Agricultural University, Passage des Déportés 2, 5030 Gembloux, Belgium.
| | | | | |
Collapse
|
18
|
Ambo T, Noike M, Kurokawa H, Koyama T. Cloning and functional analysis of cis-prenyltransferase from Thermobifida fusca. J Biosci Bioeng 2009; 107:620-2. [PMID: 19447338 DOI: 10.1016/j.jbiosc.2009.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 01/31/2009] [Accepted: 02/02/2009] [Indexed: 11/18/2022]
Abstract
cis-Prenyltransferase catalyzes the synthesis of Z,E-mixed prenyl diphosphates by a condensation of isopentenyl diphosphate to an allylic diphosphate. A novel gene encoding a cis-prenyltransferase is cloned from Thermobifida fusca. It showed a unique substrate specificity accepting dimethylallyl diphosphate as a shortest allylic substrate, and synthesizes polyprenyl products up to C(70).
Collapse
Affiliation(s)
- Takanori Ambo
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | | | | | | |
Collapse
|