1
|
Qiu X, Tan G, Wen H, Lian L, Xiao S. Forkhead box O1 targeting replication factor C subunit 2 expression promotes glioma temozolomide resistance and survival. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:692. [PMID: 33987390 PMCID: PMC8105996 DOI: 10.21037/atm-21-1523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Additional mechanisms of temozolomide (TMZ) resistance in gliomas remain uncertain. The aim of this study was to identify another DNA repair mechanism involving forkhead box O1 (FoxO1) and replicator C2 (RFC2) in gliomas. Methods We established glioma cells against TMZ, U87R, by exposure to TMZ. Proliferation rate Cell counting kit-8 (CCK8) was used, and epithelial-mesenchymal transition (EMT)-related markers were detected by western blot. The association between FoxO1 and RFC2 was analyzed by heat maps and scatter plot, and Real-time reverse transcription polymerase chain reaction (qRT-PCR) and Western blot were used to detect the effect of FoxO1 on the expression of RFC2. The regulation effect of FoxO1 on RFC2 expression was analyzed by luciferase reporter gene assay. Knockdown of FoxO1/RFC2 was achieved via short hairpin RNA (shRNA), the effect of knockdown on the proliferation was determined by CCK8 assay and colony formation assay, and apoptosis was examined by flow cytometry and immunoblotting. Results The TMZ-resistant glioma cell line, U87R, was established. The FoxO1 and RFC2 proteins increased significantly in U87R. The expression of FoxO1 and RFC2 were positively related in glioma tissues. We found that FoxO1 contributes to TMZ resistance and cell survival via regulating the expression of RFC2. Moreover, FoxO1 functions as a transcriptional activator to RFC2 by binding to the promoter of RFC2. Furthermore, knockdown of FoxO1/RFC2 suppressed cell proliferation, TMZ resistance, and induced apoptosis in U87R. Conclusions The FoxO1/RFC2 signaling pathway promotes glioma cell proliferation and TMZ resistance, suggesting that the FoxO1/RFC2 pathway may be a potential target for TMZ-resistant glioma therapy.
Collapse
Affiliation(s)
- Xingsheng Qiu
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guifeng Tan
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hao Wen
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lian Lian
- Department of Oncology, Suzhou Xiangcheng People's Hospital, Suzhou, China
| | - Songhua Xiao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Patel NH, Bloukh S, Alwohosh E, Alhesa A, Saleh T, Gewirtz DA. Autophagy and senescence in cancer therapy. Adv Cancer Res 2021; 150:1-74. [PMID: 33858594 DOI: 10.1016/bs.acr.2021.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Tumor cells can undergo diverse responses to cancer therapy. While apoptosis represents the most desirable outcome, tumor cells can alternatively undergo autophagy and senescence. Both autophagy and senescence have the potential to make complex contributions to tumor cell survival via both cell autonomous and cell non-autonomous pathways. The induction of autophagy and senescence in tumor cells, preclinically and clinically, either individually or concomitantly, has generated interest in the utilization of autophagy modulating and senolytic therapies to target autophagy and senescence, respectively. This chapter summarizes the current evidence for the promotion of autophagy and senescence as fundamental responses to cancer therapy and discusses the complexity of their functional contributions to cell survival and disease outcomes. We also highlight current modalities designed to exploit autophagy and senescence in efforts to improve the efficacy of cancer therapy.
Collapse
Affiliation(s)
- Nipa H Patel
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States
| | - Sarah Bloukh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Enas Alwohosh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Ahmad Alhesa
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - David A Gewirtz
- Department of Pharmacology and Toxicology and Medicine, Virginia Commonwealth University, Richmond, VA, United States; Massey Cancer Center, Goodwin Research Laboratories, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
3
|
Yi GZ, Huang G, Guo M, Zhang X, Wang H, Deng S, Li Y, Xiang W, Chen Z, Pan J, Li Z, Yu L, Lei B, Liu Y, Qi S. Acquired temozolomide resistance in MGMT-deficient glioblastoma cells is associated with regulation of DNA repair by DHC2. Brain 2020; 142:2352-2366. [PMID: 31347685 PMCID: PMC6658867 DOI: 10.1093/brain/awz202] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 01/05/2023] Open
Abstract
The acquisition of temozolomide resistance is a major clinical challenge for glioblastoma treatment. Chemoresistance in glioblastoma is largely attributed to repair of temozolomide-induced DNA lesions by O6-methylguanine-DNA methyltransferase (MGMT). However, some MGMT-deficient glioblastomas are still resistant to temozolomide, and the underlying molecular mechanisms remain unclear. We found that DYNC2H1 (DHC2) was expressed more in MGMT-deficient recurrent glioblastoma specimens and its expression strongly correlated to poor progression-free survival in MGMT promotor methylated glioblastoma patients. Furthermore, silencing DHC2, both in vitro and in vivo, enhanced temozolomide-induced DNA damage and significantly improved the efficiency of temozolomide treatment in MGMT-deficient glioblastoma. Using a combination of subcellular proteomics and in vitro analyses, we showed that DHC2 was involved in nuclear localization of the DNA repair proteins, namely XPC and CBX5, and knockdown of either XPC or CBX5 resulted in increased temozolomide-induced DNA damage. In summary, we identified the nuclear transportation of DNA repair proteins by DHC2 as a critical regulator of acquired temozolomide resistance in MGMT-deficient glioblastoma. Our study offers novel insights for improving therapeutic management of MGMT-deficient glioblastoma.
Collapse
Affiliation(s)
- Guo-Zhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China.,The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China.,Department of Neurosurgery, Longgang Central Hospital of Shenzhen, Shenzhen 518116, Guangdong, People's Republic of China
| | - Manlan Guo
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Xi'an Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Hai Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Shengze Deng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Yaomin Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Wei Xiang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China.,Department of Neurosurgery, The First Affliated Hospital, Southwest Medical University, Luzhou 646000, Sichuan, People's Republic of China
| | - Ziyang Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Jun Pan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Lei Yu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Bingxi Lei
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Yawei Liu
- The Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, People's Republic of China.,Nanfang Glioma Center, Guangzhou 510515, Guangdong, People's Republic of China
| |
Collapse
|
4
|
Saleh T, Bloukh S, Carpenter VJ, Alwohoush E, Bakeer J, Darwish S, Azab B, Gewirtz DA. Therapy-Induced Senescence: An "Old" Friend Becomes the Enemy. Cancers (Basel) 2020; 12:cancers12040822. [PMID: 32235364 PMCID: PMC7226427 DOI: 10.3390/cancers12040822] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 01/10/2023] Open
Abstract
For the past two decades, cellular senescence has been recognized as a central component of the tumor cell response to chemotherapy and radiation. Traditionally, this form of senescence, termed Therapy-Induced Senescence (TIS), was linked to extensive nuclear damage precipitated by classical genotoxic chemotherapy. However, a number of other forms of therapy have also been shown to induce senescence in tumor cells independently of direct genomic damage. This review attempts to provide a comprehensive summary of both conventional and targeted anticancer therapeutics that have been shown to induce senescence in vitro and in vivo. Still, the utility of promoting senescence as a therapeutic endpoint remains under debate. Since senescence represents a durable form of growth arrest, it might be argued that senescence is a desirable outcome of cancer therapy. However, accumulating evidence suggesting that cells have the capacity to escape from TIS would support an alternative conclusion, that senescence provides an avenue whereby tumor cells can evade the potentially lethal action of anticancer drugs, allowing the cells to enter a temporary state of dormancy that eventually facilitates disease recurrence, often in a more aggressive state. Furthermore, TIS is now strongly connected to tumor cell remodeling, potentially to tumor dormancy, acquiring more ominous malignant phenotypes and accounts for several untoward adverse effects of cancer therapy. Here, we argue that senescence represents a barrier to effective anticancer treatment, and discuss the emerging efforts to identify and exploit agents with senolytic properties as a strategy for elimination of the persistent residual surviving tumor cell population, with the goal of mitigating the tumor-promoting influence of the senescent cells and to thereby reduce the likelihood of cancer relapse.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Sarah Bloukh
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Valerie J. Carpenter
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Enas Alwohoush
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Jomana Bakeer
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
| | - Sarah Darwish
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan; (T.S.); (S.D.)
| | - Belal Azab
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan; (S.B.); (E.A.); (J.B.); (B.A.)
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - David A. Gewirtz
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
- Correspondence:
| |
Collapse
|
5
|
Robinson-Garcia L, Ferreira da Silva J, Loizou JI. Synthetic Lethal Interactions for Kinase Deficiencies to DNA Damage Chemotherapeutics. Cancer Res 2019; 79:5693-5698. [PMID: 31387919 PMCID: PMC7611143 DOI: 10.1158/0008-5472.can-19-1364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022]
Abstract
Kinases are signaling enzymes that regulate diverse cellular processes. As such, they are frequently mutated in cancer and therefore represent important targets for drug discovery. However, until recently, systematic approaches to identify vulnerabilities and resistances of kinases to DNA-damaging chemotherapeutics have not been possible, partially due to the lack of appropriate technologies. With the advent of CRISPR-Cas9, a comprehensive study has investigated the cellular survival of more than 300 kinase-deficient isogenic cell lines to a diverse panel of DNA-damaging agents, enriched for chemotherapeutics. Here, we discuss how this approach has allowed for the rational development of combination therapies that are aimed at using synthetic lethal interactions between kinase deficiencies and DNA-damaging agents that are used as chemotherapeutics.
Collapse
Affiliation(s)
- Lydia Robinson-Garcia
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Joana Ferreira da Silva
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
6
|
Chen X, Zhang M, Gan H, Wang H, Lee JH, Fang D, Kitange GJ, He L, Hu Z, Parney IF, Meyer FB, Giannini C, Sarkaria JN, Zhang Z. A novel enhancer regulates MGMT expression and promotes temozolomide resistance in glioblastoma. Nat Commun 2018; 9:2949. [PMID: 30054476 PMCID: PMC6063898 DOI: 10.1038/s41467-018-05373-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/02/2018] [Indexed: 12/26/2022] Open
Abstract
Temozolomide (TMZ) was used for the treatment of glioblastoma (GBM) for over a decade, but its treatment benefits are limited by acquired resistance, a process that remains incompletely understood. Here we report that an enhancer, located between the promoters of marker of proliferation Ki67 (MKI67) and O6-methylguanine-DNA-methyltransferase (MGMT) genes, is activated in TMZ-resistant patient-derived xenograft (PDX) lines and recurrent tumor samples. Activation of the enhancer correlates with increased MGMT expression, a major known mechanism for TMZ resistance. We show that forced activation of the enhancer in cell lines with low MGMT expression results in elevated MGMT expression. Deletion of this enhancer in cell lines with high MGMT expression leads to a dramatic reduction of MGMT and a lesser extent of Ki67 expression, increased TMZ sensitivity, and impaired proliferation. Together, these studies uncover a mechanism that regulates MGMT expression, confers TMZ resistance, and potentially regulates tumor proliferation.
Collapse
Affiliation(s)
- Xiaoyue Chen
- Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Minjie Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Haiyun Gan
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Heping Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jie Fang Avenue, Hankou, 430030, Wuhan, China
| | - Jeong-Heon Lee
- Biochemistry and Molecular Biology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Dong Fang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA
| | - Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Lihong He
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Zeng Hu
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Ian F Parney
- Department of Neurologic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Fredric B Meyer
- Department of Neurologic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| | - Zhiguo Zhang
- Institute for Cancer Genetics, Department of Pediatrics and Department of Genetics and Development, Irving Cancer Research Center, Columbia University, 1130 St. Nicholas Avenue, New York, NY, 10032, USA.
| |
Collapse
|
7
|
Alterations in Cell Motility, Proliferation, and Metabolism in Novel Models of Acquired Temozolomide Resistant Glioblastoma. Sci Rep 2018; 8:7222. [PMID: 29740146 PMCID: PMC5940876 DOI: 10.1038/s41598-018-25588-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive and incurable tumor of the brain with limited treatment options. Current first-line standard of care is the DNA alkylating agent temozolomide (TMZ), but this treatment strategy adds only ~4 months to median survival due to the rapid development of resistance. While some mechanisms of TMZ resistance have been identified, they are not fully understood. There are few effective strategies to manage therapy resistant GBM, and we lack diverse preclinical models of acquired TMZ resistance in which to test therapeutic strategies on TMZ resistant GBM. In this study, we create and characterize two new GBM cell lines resistant to TMZ in vitro, based on the 8MGBA and 42MGBA cell lines. Analysis of the TMZ resistant (TMZres) variants in conjunction with their parental, sensitive cell lines shows that acquisition of TMZ resistance is accompanied by broad phenotypic changes, including increased proliferation, migration, chromosomal aberrations, and secretion of cytosolic lipids. Importantly, each TMZ resistant model captures a different facet of the “go” (8MGBA-TMZres) or “grow” (42MGBA-TMZres) hypothesis of GBM behavior. These in vitro model systems will be important additions to the available tools for investigators seeking to define molecular mechanisms of acquired TMZ resistance.
Collapse
|
8
|
Abstract
Carmustine is one of the alkylating chemotherapeutic agents, which are used to treat various types of cancers, such as brain tumors, Hodgkins and non-Hodgkins lymphoma and multiple myeloma. However, carmustine has the side effect of thrombocytopenia, and the mechanism is not completely understood. In this study, we show that carmustine dose-dependently induced depolarization of mitochondrial inner transmembrane potential (ΔΨm), up-regulation of Bax, down-regulation of Bcl-2 and caspase-3 activation. Carmustine did not induce surface expression of P-selectin or PAC-1 binding, whereas, obviously reduced collagen and thrombin-induced platelet aggregation. Dicumarol, c-Jun NH2-terminal kinase-specific inhibitor, reduced carmustine-induced ΔΨm depolarization in platelets. The numbers of circulating platelets were reduced, and the tail bleeding time was significantly increased in mice that were injected with carmustine. Taken together, these data indicate that carmustine induced platelet apoptosis, suggesting the possible pathogenesis of thrombocytopenia in patients treated with carmustine.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Collaborative Innovation Center of Hematology, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health , Suzhou , China
| | | | | | | | | | | |
Collapse
|
9
|
Riehmer V, Gietzelt J, Beyer U, Hentschel B, Westphal M, Schackert G, Sabel MC, Radlwimmer B, Pietsch T, Reifenberger G, Weller M, Weber RG, Loeffler M. Genomic profiling reveals distinctive molecular relapse patterns in IDH1/2 wild-type glioblastoma. Genes Chromosomes Cancer 2014; 53:589-605. [PMID: 24706357 DOI: 10.1002/gcc.22169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/12/2014] [Indexed: 12/28/2022] Open
Abstract
Molecular changes associated with the progression of glioblastoma after standard radiochemotherapy remain poorly understood. We compared genomic profiles of 27 paired primary and recurrent IDH1/2 wild-type glioblastomas by genome-wide array-based comparative genomic hybridization. By bioinformatic analysis, primary and recurrent tumor profiles were normalized and segmented, chromosomal gains and losses identified taking the tumor cell content into account, and difference profiles deduced. Seven of 27 (26%) pairs lacked DNA copy number differences between primary and recurrent tumors (equal pairs). The recurrent tumors in 9/27 (33%) pairs contained all chromosomal imbalances of the primary tumors plus additional ones, suggesting a sequential acquisition of and/or selection for aberrations during progression (sequential pairs). In 11/27 (41%) pairs, the profiles of primary and recurrent tumors were divergent, i.e., the recurrent tumors contained additional aberrations but had lost others, suggesting a polyclonal composition of the primary tumors and considerable clonal evolution (discrepant pairs). Losses on 9p21.3 harboring the CDKN2A/B locus were significantly more common in primary tumors from sequential and discrepant (nonequal) pairs. Nonequal pairs showed ten regions of recurrent genomic differences between primary and recurrent tumors harboring 46 candidate genes associated with tumor recurrence. In particular, copy numbers of genes encoding apoptosis regulators were frequently changed at progression. In summary, approximately 25% of IDH1/2 wild-type glioblastoma pairs have stable genomic imbalances. In contrast, approximately 75% of IDH1/2 wild-type glioblastomas undergo further genomic aberrations and alter their clonal composition upon recurrence impacting their genomic profile, a process possibly facilitated by 9p21.3 loss in the primary tumor. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vera Riehmer
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Jilani K, Lang F. Carmustine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel) 2013; 5:703-16. [PMID: 23604064 PMCID: PMC3705288 DOI: 10.3390/toxins5040703] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/07/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023] Open
Abstract
The nitrosourea alkylating agent, carmustine, is used as chemotherapeutic drug in several malignancies. The substance triggers tumor cell apoptosis. Side effects of carmustine include myelotoxicity with anemia. At least in theory, anemia could partly be due to stimulation of eryptosis, the suicidal death of erythrocytes, characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca²⁺ activity ([Ca²⁺]i). The present study tested whether carmustine triggers eryptosis. To this end [Ca²⁺]i was estimated from Fluo3 fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin V binding, and hemolysis from hemoglobin release. As a result a 48 h exposure to carmustine (≥25 µM) significantly increased [Ca²⁺]i, decreased forward scatter and increased annexin V binding. The effect on annexin V binding was significantly blunted in the absence of extracellular Ca²⁺. In conclusion, carmustine stimulates eryptosis at least partially by increasing cytosolic Ca²⁺ activity.
Collapse
Affiliation(s)
- Kashif Jilani
- Department of Physiology, University of Tuebingen, Gmelinstr. 5, Tuebingen D-72076, Germany.
| | | |
Collapse
|
11
|
Effect of lomeguatrib-temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumour Biol 2013; 34:1935-47. [PMID: 23519841 DOI: 10.1007/s13277-013-0738-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022] Open
Abstract
Temozolomide (TMZ) is commonly used in the treatment of glioblastoma (GBM). The MGMT repair enzyme (O (6)-methylguanine-DNA methyltransferase) is an important factor causing chemotherapeutic resistance. MGMT prevents the formation of toxic effects of alkyl adducts by removing them from the DNA. Therefore, MGMT inhibition is an interesting therapeutic approach to circumvent TMZ resistance. The aim of the study was to investigate the effect of the combination of lomeguatrib (an MGMT inactivator) with TMZ, on MGMT expression and methylation. Primary cell cultures were obtained from GBM tumor tissues. The sensitivity of primary GBM cell cultures and GBM cell lines to TMZ, and to the combination of TMZ and lomeguatrib, was determined by a cytotoxicity assay (MTT). MGMT and p53 expression, and MGMT methylation were investigated after drug application. In addition, the proportion of apoptotic cells and DNA fragmentation was analyzed. The combination of TMZ and lomeguatrib in primary GBM cell cultures and glioma cell lines decreased MGMT expression, increased p53 expression, and did not change MGMT methylation. Moreover, apoptosis was induced and DNA fragmentation was increased in cells. In addition, we also showed that lomeguatrib-TMZ combination did not have any effect on the cell cycle. Finally, we determined that the sensitivity of each primary GBM cells and glioma cell lines to the lomeguatrib-TMZ combination was different and significantly associated with the structure of MGMT methylation. Our study suggests that lomeguatrib can be used with TMZ for GBM treatment, although further clinical studies will be needed so as to determine the feasibility of this therapeutic approach.
Collapse
|
12
|
Lu XY, Cao K, Li QY, Yuan ZC, Lu PS. The synergistic therapeutic effect of temozolomide and hyperbaric oxygen on glioma U251 cell lines is accompanied by alterations in vascular endothelial growth factor and multidrug resistance-associated protein-1 levels. J Int Med Res 2013; 40:995-1004. [PMID: 22906272 DOI: 10.1177/147323001204000318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Temozolomide (TMZ) is an oral alkylating agent widely used in the treatment of refractory glioma. Its efficacy is limited, however, by poor cancer cell penetration and drug resistance. The present study, therefore, aimed to investigate whether hyperbaric oxygen (HBO) may facilitate drug delivery and enhance the anticancer effect of TMZ. METHODS Cultured glioma U251 cells were treated with HBO, TMZ, or TMZ + HBO, or were untreated (controls). Rates of growth inhibition, cell death and apoptosis were investigated using the 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, propidium iodide staining and flow cytometry, respectively. Protein levels of vascular endothelial growth factor (VEGF) and multidrug resistance-associated protein-1 (MRP-1) were evaluated by enzyme-linked immunosorbent assay. RESULTS Compared with TMZ or HBO alone, combined treatment with both therapies synergistically inhibited growth and induced apoptosis and death of cultured glioma U251 cells, which was accompanied by a significant decrease in levels of VEGF and MRP-1. CONCLUSIONS TMZ and HBO synergistically induced the apoptosis of glioma cells, possibly through reduced vascularization and inhibition of drug resistance. The combination of TMZ and HBO may be a powerful treatment for malignant glioma.
Collapse
Affiliation(s)
- X-Y Lu
- Department of Neurosurgery, People's Hospital Affiliated to Jiangsu University, Zhenjiang, Jiangsu Province, China
| | | | | | | | | |
Collapse
|
13
|
Inverardi F, Chikhladze M, Donzelli A, Moroni RF, Regondi MC, Pennacchio P, Zucca I, Corradini I, Braida D, Sala M, Franceschetti S, Frassoni C. Cytoarchitectural, behavioural and neurophysiological dysfunctions in the BCNU-treated rat model of cortical dysplasia. Eur J Neurosci 2012; 37:150-62. [PMID: 23095101 DOI: 10.1111/ejn.12032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/21/2012] [Accepted: 09/21/2012] [Indexed: 11/27/2022]
Abstract
Cortical dysplasias (CDs) include a spectrum of cerebral lesions resulting from cortical development abnormalities during embryogenesis that lead to cognitive disabilities and epilepsy. The experimental model of CD obtained by means of in utero administration of BCNU (1-3-bis-chloroethyl-nitrosurea) to pregnant rats on embryonic day 15 mimics the histopathological abnormalities observed in many patients. The aim of this study was to investigate the behavioural, electrophysiological and anatomical profile of BCNU-treated rats in order to determine whether cortical and hippocampal lesions can directly lead to cognitive dysfunction. The BCNU-treated rats showed impaired short-term working memory but intact long-term aversive memory, whereas their spontaneous motor activity and anxiety-like response were normal. The histopathological and immunohistochemical analyses, made after behavioural tests, revealed the disrupted integrity of neuronal populations and connecting fibres in hippocampus and prefrontal and entorhinal cortices, which are involved in memory processes. An electrophysiological evaluation of the CA1 region of in vitro hippocampal slices indicated a decrease in the efficiency of excitatory synaptic transmission and impaired paired pulse facilitation, but enhanced long-term potentiation (LTP) associated with hyperexcitability in BCNU-treated rats compared with controls. The enhanced LTP, associated with hyperexcitability, may indicate a pathological distortion of long-term plasticity. These findings suggest that prenatal developmental insults at the time of peak cortical neurogenesis can induce anatomical abnormalities associated with severe impairment of spatial working memory in adult BCNU-treated rats and may help to clarify the pathophysiological mechanisms of cognitive dysfunction that is often associated with epilepsy in patients with CD.
Collapse
Affiliation(s)
- Francesca Inverardi
- Clinical Epileptology and Experimental Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
The tumor suppressor Caliban regulates DNA damage-induced apoptosis through p53-dependent and -independent activity. Oncogene 2012; 32:3857-66. [PMID: 22964637 DOI: 10.1038/onc.2012.395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 06/04/2012] [Accepted: 07/20/2012] [Indexed: 12/18/2022]
Abstract
We previously identified Caliban (Clbn) as the Drosophila homolog of human Serologically defined colon cancer antigen 1 gene and demonstrated that it could function as a tumor suppressor in human non-small-cell lung cancer (NSCLC) cells, although its mode of action was unknown. Herein, we identify roles for Clbn in DNA damage response. We generate clbn knockout flies using homologous recombination and demonstrate that they have a heightened sensitivity to irradiation. We show that normal Clbn function facilitates both p53-dependent and -independent DNA damage-induced apoptosis. Clbn coordinates different apoptosis pathways, showing a two-stage upregulation following DNA damage. Clbn has proapoptotic functions, working with both caspase and the proapoptotic gene Hid. Finally, ecotopic expression of clbn(+) in NSCLC cells suppresses tumor formation in athymic nude mice. We conclude that Caliban is a regulator of DNA damage-induced apoptosis, functioning as a tumor suppressor in both p53-dependent and -independent pathways.
Collapse
|
15
|
Kitange GJ, Mladek AC, Carlson BL, Schroeder MA, Pokorny JL, Cen L, Decker PA, Wu W, Lomberk GA, Gupta SK, Urrutia RA, Sarkaria JN. Inhibition of histone deacetylation potentiates the evolution of acquired temozolomide resistance linked to MGMT upregulation in glioblastoma xenografts. Clin Cancer Res 2012; 18:4070-9. [PMID: 22675172 DOI: 10.1158/1078-0432.ccr-12-0560] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE The therapeutic benefit of temozolomide in glioblastoma multiforme (GBM) is limited by resistance. The goal of this study was to elucidate mechanisms of temozolomide resistance in GBM. EXPERIMENTAL DESIGN We developed an in vivo GBM model of temozolomide resistance and used paired parental and temozolomide-resistant tumors to define the mechanisms underlying the development of resistance and the influence of histone deacetylation (HDAC) inhibition. RESULTS Analysis of paired parental and resistant lines showed upregulation of O6-methylguanine-DNA methyltransferase (MGMT) expression in 3 of the 5 resistant xenografts. While no significant change was detected in MGMT promoter methylation between parental and derivative-resistant samples, chromatin immunoprecipitation showed an association between MGMT upregulation and elevated acetylation of lysine 9 of histone H3 (H3K9-ac) and decreased dimethylation (H3K9-me2) in GBM12 and GBM14. In contrast, temozolomide resistance development in GBM22 was not linked to MGMT expression, and both parental and resistant lines had low H3K9-ac and high H3K9-me2 within the MGMT promoter. In the GBM12TMZ-resistant line, MGMT reexpression was accompanied by increased recruitment of SP1, C-JUN, NF-κB, and p300 within the MGMT promoter. Interestingly, combined treatment of GBM12 flank xenografts with temozolomide and the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) favored the evolution of temozolomide resistance by MGMT overexpression as compared with treatment with temozolomide alone. CONCLUSION This study shows, for the first time, a unique mechanism of temozolomide resistance development driven by chromatin-mediated MGMT upregulation and highlights the potential for epigenetically directed therapies to influence the mechanisms of resistance development in GBM.
Collapse
Affiliation(s)
- Gaspar J Kitange
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Happold C, Roth P, Wick W, Schmidt N, Florea AM, Silginer M, Reifenberger G, Weller M. Distinct molecular mechanisms of acquired resistance to temozolomide in glioblastoma cells. J Neurochem 2012; 122:444-55. [DOI: 10.1111/j.1471-4159.2012.07781.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Malzkorn B, Wolter M, Riemenschneider MJ, Reifenberger G. Unraveling the glioma epigenome: from molecular mechanisms to novel biomarkers and therapeutic targets. Brain Pathol 2012; 21:619-32. [PMID: 21939466 DOI: 10.1111/j.1750-3639.2011.00536.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Epigenetic regulation of gene expression by DNA methylation and histone modification is frequently altered in human cancers including gliomas, the most common primary brain tumors. In diffuse astrocytic and oligodendroglial gliomas, epigenetic changes often present as aberrant hypermethylation of 5'-cytosine-guanine (CpG)-rich regulatory sequences in a large variety of genes, a phenomenon referred to as glioma CpG island methylator phenotype (G-CIMP). G-CIMP is particularly common but not restricted to gliomas with isocitrate dehydrogenase 1 (IDH1) or 2 (IDH2) mutation. Recent studies provided a mechanistic link between these genetic mutations and the associated widespread epigenetic modifications. Specifically, 2-hydroxyglutarate, the oncometabolite produced by mutant IDH1 and IDH2 proteins, has been shown to function as a competitive inhibitor of various α-ketoglutarate (α-KG)-dependent dioxygenases, including histone demethylases and members of the ten-eleven-translocation (TET) family of 5-methylcytosine (5mC) hydroxylases. In this review article, we briefly address (i) the basic principles of epigenetic control of gene expression; (ii) the most important methods to analyze focal and global epigenetic alterations in cells and tissues; and (iii) the involvement of epigenetic alterations in the molecular pathogenesis of gliomas. Moreover, we discuss the promising roles of epigenetic alterations as molecular diagnostic markers and novel therapeutic targets, and highlight future perspectives toward unraveling the "glioma epigenome."
Collapse
Affiliation(s)
- Bastian Malzkorn
- Department of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
18
|
Qureshi IA, Mehler MF. Epigenetics, nervous system tumors, and cancer stem cells. Cancers (Basel) 2011; 3:3525-56. [PMID: 24212967 PMCID: PMC3759209 DOI: 10.3390/cancers3033525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/01/2011] [Accepted: 09/08/2011] [Indexed: 12/11/2022] Open
Abstract
Recent advances have begun to elucidate how epigenetic regulatory mechanisms are responsible for establishing and maintaining cell identity during development and adult life and how the disruption of these processes is, not surprisingly, one of the hallmarks of cancer. In this review, we describe the major epigenetic mechanisms (i.e., DNA methylation, histone and chromatin modification, non-coding RNA deployment, RNA editing, and nuclear reorganization) and discuss the broad spectrum of epigenetic alterations that have been uncovered in pediatric and adult nervous system tumors. We also highlight emerging evidence that suggests epigenetic deregulation is a characteristic feature of so-called cancer stem cells (CSCs), which are thought to be present in a range of nervous system tumors and responsible for tumor maintenance, progression, treatment resistance, and recurrence. We believe that better understanding how epigenetic mechanisms operate in neural cells and identifying the etiologies and consequences of epigenetic deregulation in tumor cells and CSCs, in particular, are likely to promote the development of enhanced molecular diagnostics and more targeted and effective therapeutic agents for treating recalcitrant nervous system tumors.
Collapse
Affiliation(s)
- Irfan A. Qureshi
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; E-Mail:
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Mark F. Mehler
- Rosyln and Leslie Goldstein Laboratory for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA; E-Mail:
- Institute for Brain Disorders and Neural Regeneration, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Rose F. Kennedy Center for Research on Intellectual and Developmental Disabilities, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-718-430-3543; Fax: +1-718-918-7505
| |
Collapse
|
19
|
Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC, Westphal M, Schackert G, Kreth FW, Pietsch T, Löffler M, Weller M, Reifenberger G, Tonn JC. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer 2011; 129:659-70. [PMID: 21425258 DOI: 10.1002/ijc.26083] [Citation(s) in RCA: 228] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epigenetic silencing of the O(6) -methylguanine-DNA methyltransferase (MGMT) gene promoter is associated with prolonged survival in glioblastoma patients treated with temozolomide (TMZ). We investigated whether glioblastoma recurrence is associated with changes in the promoter methylation status and the expression of MGMT and the DNA mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2 in pairs of primary and recurrent glioblastomas of 80 patients, including 64 patients treated with radiotherapy and TMZ after the first operation. Among the primary tumors, the MGMT promoter was methylated in 31 patients and unmethylated in 49 patients. In 71 patients (89%), the MGMT promoter methylation status of the primary tumor was retained at recurrence. MGMT promoter methylation, but not MGMT protein expression, was associated with longer progression-free survival, overall survival and postrecurrence survival (PRS). Moreover, PRS was increased under salvage chemotherapy. Investigation of primary and recurrent glioblastomas of 43 patients did not identify promoter methylation in any of the four MMR genes. However, recurrent glioblastomas demonstrated significantly lower MSH2, MSH6 and PMS2 protein expression as detected by immunohistochemistry. In conclusion, reduced expression of MMR proteins, but not changes in MGMT promoter methylation, is characteristic of glioblastomas recurring after the current standards of care.
Collapse
Affiliation(s)
- Jörg Felsberg
- Department of Neuropathology, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen CH, Chang YJ, Ku MSB, Chung KT, Yang JT. Enhancement of temozolomide-induced apoptosis by valproic acid in human glioma cell lines through redox regulation. J Mol Med (Berl) 2011; 89:303-15. [PMID: 21340685 DOI: 10.1007/s00109-010-0707-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/09/2010] [Accepted: 11/18/2010] [Indexed: 12/18/2022]
Abstract
Temozolomide (TMZ) is an oral alkylating agent that has been widely used in the treatment of refractory glioma, although inherent and acquired resistance to this drug is common. The clinical use of valproic acid (VPA) as an anticonvulsant and mood-stabilizing drug has been reported primarily for the treatment of epilepsy and bipolar disorder and less commonly for major depression. VPA is also used in the treatment of glioma-associated seizures with or without intracranial operation. In this study, we evaluated the potential synergistic effect of TMZ and VPA in human glioma cell lines. Compared with the use of TMZ or VPA alone, concurrent treatment with both drugs synergistically induced apoptosis in U87MG cells as evidenced by p53 and Bax expression, mitochondrial transmembrane potential loss, reactive oxygen species production, and glutathione depletion. This synergistic effect correlated with a decrease in nuclear translocation of the nuclear factor-erythroid 2 p45-related factor and corresponded with reduced heme oxygenase-1 and γ-glutamylcysteine synthetase expression. Pretreatment with N-acetylcysteine partially recovered the apoptotic effect of the TMZ/VPA combination treatment. The same degree of synergism is also seen in p53-mutant Hs683 cells, which indicates that p53 may not play a major role in the increased proapoptotic effect of the TMZ/VPA combination. In conclusion, VPA enhanced the apoptotic effect of TMZ, possibly through a redox regulation mechanism. The TMZ/VPA combination may be effective for treating glioma cancer and may be a powerful agent against malignant glioma. This drug combination should be further explored in the clinical setting.
Collapse
Affiliation(s)
- Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan
| | | | | | | | | |
Collapse
|
21
|
Riemenschneider MJ, Jeuken JWM, Wesseling P, Reifenberger G. Molecular diagnostics of gliomas: state of the art. Acta Neuropathol 2010; 120:567-84. [PMID: 20714900 PMCID: PMC2955236 DOI: 10.1007/s00401-010-0736-4] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 07/22/2010] [Accepted: 08/06/2010] [Indexed: 01/28/2023]
Abstract
Modern neuropathology serves a key function in the multidisciplinary management of brain tumor patients. Owing to the recent advancements in molecular neurooncology, the neuropathological assessment of brain tumors is no longer restricted to provide information on a tumor's histological type and malignancy grade, but may be complemented by a growing number of molecular tests for clinically relevant tissue-based biomarkers. This article provides an overview and critical appraisal of the types of genetic and epigenetic aberrations that have gained significance in the molecular diagnostics of gliomas, namely deletions of chromosome arms 1p and 19q, promoter hypermethylation of the O6-methylguanine-methyl-transferase (MGMT) gene, and the mutation status of the IDH1 and IDH2 genes. In addition, the frequent oncogenic aberration of BRAF in pilocytic astrocytomas may serve as a novel diagnostic marker and therapeutic target. Finally, this review will summarize recent mechanistic insights into the molecular alterations underlying treatment resistance in malignant gliomas and outline the potential of genome-wide profiling approaches for increasing our repertoire of clinically useful glioma markers.
Collapse
Affiliation(s)
| | - Judith W. M. Jeuken
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich-Heine-University, Moorenstr. 5, 40225 Duesseldorf, Germany
| |
Collapse
|
22
|
Bilir A, Erguven M, Yazihan N, Aktas E, Oktem G, Sabanci A. Enhancement of vinorelbine-induced cytotoxicity and apoptosis by clomipramine and lithium chloride in human neuroblastoma cancer cell line SH-SY5Y. J Neurooncol 2010; 100:385-95. [PMID: 20467784 DOI: 10.1007/s11060-010-0209-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 04/14/2010] [Indexed: 02/04/2023]
Abstract
The aim of this work is to investigate whether clomipramine (CIM) and lithium chloride (LiCl) potentiate the cytotoxicity of vinorelbine (VNR) on SH-SY5Y human neuroblastoma cells in vitro and whether midkine (MK) can be a resistance factor for these treatments. Four groups of experiments were performed for 96 h using both monolayer and spheroid cultures of SH-SY5Y cells: (1) control group, (2) singly applied VNR, CIM, and LiCl, (3) VNR with CIM, and (4) VNR with LiCl. Their effects on monolayer and spheroid cultures were determined by evaluating cell proliferation, bromodeoxyuridine labeling index (BrdU-LI), apoptosis, cyclic adenosine monophosphate (cAMP) and midkine levels, colony-forming efficiency, spheroid size, and ultrastructure. In comparison with the control group, single and combination drug treatments significantly reduced the proliferation index (PI) for 96 h. The most potent reduction of PI was observed with VNR in combination with CIM and LiCl for all time intervals. VNR with CIM and LiCl seemed to be ineffective in reducing BrdU-LI of both monolayer cell and spheroid cultures, spheroid size, and cAMP level. VNR with LiCl increased apoptosis at 24 h, however VNR with CIM increased apoptosis at 96 h. VNR was the most potent drug in inhibiting colony-forming efficiency. The combination of VNR with CIM was the most potent in reducing midkine levels among all groups. Interestingly, the combination of VNR with LiCl led to both nuclear membrane breakdown and disappearance of the cellular membranes inside the spheroids. Both CIM and LiCl seemed to potentiate VNR-induced cytotoxicity, and MK was not a resistance factor for VNR, LiCl, and CIM.
Collapse
Affiliation(s)
- Ayhan Bilir
- Department of Histology and Embryology, Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|