1
|
Lee SJ, Kim JE, Choi YJ, Gong JE, Jin YJ, Lee DW, Choi YW, Hwang DY. Anti-Obesity Effect of α-Cubebenol Isolated from Schisandra chinensis in 3T3-L1 Adipocytes. Biomolecules 2021; 11:1650. [PMID: 34827648 PMCID: PMC8615670 DOI: 10.3390/biom11111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 11/17/2022] Open
Abstract
The efficacy of α-cubebenol isolated from Schisandra chinensis has been studied in several diseases, including cecal ligation, puncture challenge-induced sepsis, and degranulation of neutrophils. To identify the novel functions of α-cubebenol on lipid metabolism, alterations on the regulation of lipogenesis, lipolysis, and inflammatory response were observed in 3T3-L1 adipocytes treated with α-cubebenol. Most lipogenic targets, including lipid accumulation, level of lipogenic transcription factors, and expression of lipogenic regulators, were suppressed in MDI (3-isobutyl-1-methylxanthine, dexamethasone, and insulin)-stimulated 3T3-L1 adipocytes treated with α-cubebenol without significant cytotoxicity. In addition, similar inhibition effects were observed in the iNOS-induced COX-2 mediated pathway and NLRP3 inflammasome pathway of MDI-stimulated 3T3-L1 cells treated with α-cubebenol. Lipolytic targets, such as cAMP concentration, expression of adenylyl cyclase and PDE4, and their downstream signaling pathway, in MDI-stimulated 3T3-L1 cells were stimulated by the α-cubebenol treatment. The levels of transcription factors and related proteins for β-oxidation were significantly higher in the MDI + α-cubebenol treated group than in the MDI + Vehicle treated group. These results show that α-cubebenol has a novel role as a lipogenesis inhibitor, lipolysis and β-oxidation stimulator, and inflammasome suppressor in MDI-stimulated 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Su Jin Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Ji Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Yun Ju Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Jeong Eun Gong
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - You Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Da Woon Lee
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
| | - Young Whan Choi
- Department of Horticultural Bioscience, Life and Industry Convergence Research Institute, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea;
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea; (S.J.L.); (J.E.K.); (Y.J.C.); (J.E.G.); (Y.J.J.); (D.W.L.)
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Korea
| |
Collapse
|
2
|
Schisandra chinensis: A comprehensive review on its phytochemicals and biological activities. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
3
|
Ye BH, Kim EJ, Baek SE, Choi YW, Park SY, Kim CD. α-Isocubebene modulates vascular tone by inhibiting myosin light chain phosphorylation in murine thoracic aorta. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:437-445. [PMID: 29962858 PMCID: PMC6019879 DOI: 10.4196/kjpp.2018.22.4.437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 02/07/2023]
Abstract
α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms, but the mechanism responsible for this activity has not been determined. To determine the role played by ICB on the regulation of vascular tone, we investigated the inhibitory effects of ICB on vascular contractile responses by adrenergic α-receptor agonists. In addition, we investigated the role on myosin light chain (MLC) phosphorylation and cytosolic calcium concentration in vascular smooth muscle cells (VSMC). In aortic rings isolated from C57BL/6J mice, ICB significantly attenuated the contraction induced by phenylephrine (PE) and norepinephrine (NE), whereas ICB had no effects on KCl (60 mM)-induced contraction. In vasculatures precontracted with PE, ICB caused marked relaxation of aortic rings with or without endothelium, suggesting a direct effect on VSMC. In cultured rat VSMC, PE or NE increased MLC phosphorylation and increased cytosolic calcium levels. Both of these effects were significantly suppressed by ICB. In conclusion, our results showed that ICB regulated vascular tone by inhibiting MLC phosphorylation and calcium flux into VSMC, and suggest that ICB has anti-hypertensive properties and therapeutic potential for cardiovascular disorders related to vascular hypertension.
Collapse
Affiliation(s)
- Byeong Hyeok Ye
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea
| | - Eun Jung Kim
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - Seung Eun Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - Young Whan Choi
- College of Natural Resources & Life Sciences, Pusan National University, Miryang 50463, Korea
| | - So Youn Park
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 50612, Korea.,Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
4
|
Quantitative Evaluation of Chinese Herb Medicine in the Treatment of Sialorrhea and Frequent Nighttime Urination in Patients with Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3045260. [PMID: 28484503 PMCID: PMC5412142 DOI: 10.1155/2017/3045260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 03/26/2017] [Indexed: 12/13/2022]
Abstract
Aims. To evaluate the efficacy of Lian-Se formula (LSF), one Chinese herb formulation for treating sialorrhea and frequent overnight urination in patients with Parkinson's disease (PD). Methods. 96 PD patients suffering from sialorrhea and/or frequent nighttime urination were divided into two groups: an LSF group (n = 48) treated with LSF for 6 weeks and a placebo group (n = 48) treated with a placebo formula whose appearance and taste were the same as LSF for 6 weeks. All patients were treated by standard antiparkinsonism medicine according to the PD guideline of China. The changes of the quantity of saliva (QS) (mL), frequency of nighttime urination (FNU) and early sleep activity (ESA), and nocturnal activity (NA) by analyzing actigraphic records as the primary results and the total score of unified Parkinson's disease rating scale (UPDRS) and the Epworth Sleepiness Scale (ESS) as the secondary results were used to evaluate the clinical efficacy in both groups. Results. There were no significant differences in the baseline values of QS, FNU, NA, ESA, UPDRS total score, and ESS between the two groups. At the end of week 6, the QS, FNU, NA, and ESA in the LSF group showed superior results to those of the placebo group with no differences in the total UPDRS score between the two groups during the investigation. The ESS was significantly improved at the end of week 6 compared with the baseline and the placebo group. Laboratory test results indicated there were no side effects in either group. Conclusion. The findings of LSF treatment have clear clinical effects in patients with sialorrhea and frequent overnight urination. LSF thus appears to be a potential choice as an additional drug that can improve the sialorrhea and frequent overnight urination symptoms of PD patients.
Collapse
|
5
|
Jang MA, Lee SJ, Baek SE, Park SY, Choi YW, Kim CD. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression. PLoS One 2017; 12:e0170699. [PMID: 28114367 PMCID: PMC5256966 DOI: 10.1371/journal.pone.0170699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1-10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538-234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression.
Collapse
Affiliation(s)
- Min A. Jang
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, Republic of Korea
| | - Seung Jin Lee
- College of Pharmacy, Pusan National University, Busan, Republic of Korea
| | - Seung Eun Baek
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, Republic of Korea
| | - So Youn Park
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, Republic of Korea
| | - Young Whan Choi
- College of Natural Resources & Life Sciences, Pusan National University, Gyeongnam, Republic of Korea
| | - Chi Dae Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Gyeongnam, Republic of Korea
- Gene & Cell Therapy Research Center for Vessel-associated Diseases, Pusan National University, Gyeongnam, Republic of Korea
| |
Collapse
|
6
|
α-Isocubebenol alleviates scopolamine-induced cognitive impairment by repressing acetylcholinesterase activity. Neurosci Lett 2017; 638:121-128. [DOI: 10.1016/j.neulet.2016.12.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 01/09/2023]
|
7
|
PARK SUNYOUNG, JUNG WONJUNG, KANG JUMSOON, KIM CHEOLMIN, PARK GEUNTAE, CHOI YOUNGWHAN. Neuroprotective effects of α-iso-cubebene against glutamate-induced damage in the HT22 hippocampal neuronal cell line. Int J Mol Med 2014; 35:525-32. [DOI: 10.3892/ijmm.2014.2031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/04/2014] [Indexed: 11/06/2022] Open
|
8
|
Park SY, Son BG, Park YH, Kim CM, Park G, Choi YW. The Neuroprotective Effects of α-Iso-cubebene on Dopaminergic Cell Death: Involvement of CREB/Nrf2 Signaling. Neurochem Res 2014; 39:1759-66. [DOI: 10.1007/s11064-014-1371-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/26/2014] [Accepted: 06/21/2014] [Indexed: 01/15/2023]
|
9
|
Kang S, Lee KP, Park SJ, Noh DY, Kim JM, Moon HR, Lee YG, Choi YW, Im DS. Identification of a novel anti-inflammatory compound, α-cubebenoate from Schisandra chinensis. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:242-249. [PMID: 24561384 DOI: 10.1016/j.jep.2014.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/09/2014] [Accepted: 02/14/2014] [Indexed: 06/03/2023]
Abstract
AIMS OF THE STUDY Extracts of Schisandra chinensis have been used as an anti-fatigue and tonic agent. Because chronic fatigue syndrome is related to inflammatory and oxidative stress, we assessed whether Schisandra chinensis has anti-inflammatory constituents and studied the effect of a novel α-cubebenoate isolated from Schisandra chinensis. MATERIALS AND METHODS α-Cubebenoate was isolated from an extract of Schisandra chinensis fruits. The inductions of inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) by lipopolysaccharide (LPS) were quantified by RT-PCR and Western blotting in mouse peritoneal macrophages. Nitric oxide (NO) and prostaglandin E2 (PGE2) were also measured in the media by Griess reagent and EIA method. A mouse model of LPS-induced peritonitis was used to test the in vivo efficacy of α-cubebenoate. RESULTS α-Cubebenoate (5-10μg/ml) inhibited the inductions of iNOS and COX-2 in mouse peritoneal macrophages at the mRNA and protein levels. LPS-induced productions of NO and PGE2 were inhibited by α-cubebenoate (5-10μg/ml). In addition, α-cubebenoate inhibited the LPS-induced activation of JNK, but not those of ERK and p38 MAPK in mouse peritoneal macrophages. Furthermore, in the LPS-induced in vivo peritonitis model, α-cubebenoate (1mg/kg) strongly inhibited the accumulation of polymorph nuclear lymphocytes in the peritoneal cavity. CONCLUSION α-Cubebenoate inhibited LPS-induced expression of iNOS and COX-2 in a concentration-dependent manner, thereby suppressing productions of NO and PGE2 in vitro in peritoneal macrophages. α-Cubebenoate also inhibited LPS-induced accumulation of polymorph nuclear lymphocytes in LPS-induced peritonitis model in vivo. α-Cubebenoate may act as an anti-fatigue constituent of Schisandra chinensis through anti-inflammation and could be of therapeutic use as a treatment for inflammatory diseases.
Collapse
Affiliation(s)
- Saeromi Kang
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Kyoung-Pil Lee
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Soo-Jin Park
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Dae-Young Noh
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Jung-Min Kim
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Hyung Ryong Moon
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Young-Geun Lee
- Department of Horticultural Bioscience, College of Natural Resources & Life Science, Pusan National University, Miryang-si, Gyeongsangnam 627-706, Republic of Korea
| | - Young-Whan Choi
- Department of Horticultural Bioscience, College of Natural Resources & Life Science, Pusan National University, Miryang-si, Gyeongsangnam 627-706, Republic of Korea.
| | - Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, 63 Beon-gil 2, Busandaehag-ro, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
10
|
Park SY, Park TG, Lee SJ, Bae YS, Ko MJ, Choi YW. α-Iso-cubebenol inhibits inflammation-mediated neurotoxicity and amyloid beta 1-42 fibril-induced microglial activation. ACTA ACUST UNITED AC 2013; 66:93-105. [PMID: 24138316 DOI: 10.1111/jphp.12160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/16/2013] [Indexed: 01/16/2023]
Abstract
OBJECTIVES To examine the antineuroinflammatory and neuroprotective activity of α-iso-cubebenol and its molecular mechanism of action in amyloid β (Aβ) 1-42 fibril-stimulated microglia. METHODS Aβ 1-42 fibrils were used to induce a neuroinflammatory response in murine primary microglia and BV-2 murine microglia cell lines. Cell viability was monitored by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, protein expression and phosphorylation were determined by Western blot analysis, and matrix metalloproteinase-9 (MMP-9) activity was determined by gelatin zymography assay. In addition, prostaglandin E2 (PGE2), pro-inflammatory cytokines and chemokines were measured by ELISA, and the transactivity of nuclear factor (NF)-κB was determined by a reporter assay. KEY FINDINGS α-Iso-cubebenol significantly inhibited Aβ 1-42 fibril-induced MMP-9, inducible nitric oxide synthase and cyclooxygenase-2 expressions and activity, without affecting cell viability. α-Iso-cubebenol also suppressed the production of tumour necrosis factor-α, IL-1β, IL-6, monocyte chemoattractant protein-1 and reactive oxygen species in a dose-dependent manner, while decreasing the nuclear translocation and transactivity of NF-κB by inhibiting the phosphorylation and degradation of the inhibitor of κB (IκB)α. α-Iso-cubebenol suppressed the phosphorylation of mitogen-activated protein kinase (MAPK) in Aβ 1-42 fibril-stimulated microglia. Primary cortical neurons were protected by the inhibitory effect of α-iso-cubebenol on Aβ 1-42 fibril-induced neuroinflammatory response. CONCLUSIONS α-Iso-cubebenol suppresses Aβ 1-42 fibril-induced neuroinflammatory molecules in primary microglia via the suppression of NF-κB/inhibitor of κBα and MAPK. Importantly, the antineuroinflammatory potential of α-iso-cubebenol is critical for neuroprotection.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Busan, South Korea
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
This review covers the isolation, structural determination, synthesis and chemical and microbiological transformations of natural sesquiterpenoids. The literature from January to December 2012 is reviewed, and 471 references are cited.
Collapse
Affiliation(s)
- Braulio M Fraga
- Instituto de Productos Naturales y Agrobiología, CSIC, 38206-La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
12
|
Lee SK, Kim SD, Lee HY, Baek SH, Ko MJ, Son BG, Park S, Choi YW, Bae YS. α-Iso-cubebene, a natural compound isolated from Schisandra chinensis fruit, has therapeutic benefit against polymicrobial sepsis. Biochem Biophys Res Commun 2012; 426:226-31. [PMID: 22940134 DOI: 10.1016/j.bbrc.2012.08.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 01/18/2023]
Abstract
α-Iso-cubebene, a natural compound isolated from Schisandra chinensis fruit, strongly enhanced survival rate in cecal ligation and puncture (CLP) challenge-induced sepsis. The mechanism involved the marked reduction of viable bacteria in the peritoneal fluid, by virtue of increased phagocytic activity and production of hydrogen peroxide. α-Iso-cubebene also significantly attenuated lung inflammation and widespread immune cell apoptosis in a mouse CLP sepsis model, and inhibited the production of proinflammatory cytokines including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 in CLP mice and lipopolysaccharide-stimulated splenocytes. The results indicate that α-iso-cubebene can reverse the progression of toxic shock by triggering multiple protective downstream signaling pathways to enhance microbial killing and maintain organ function and leukocyte survival.
Collapse
Affiliation(s)
- Sung Kyun Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mathys J, De Cremer K, Timmermans P, Van Kerckhove S, Lievens B, Vanhaecke M, Cammue BPA, De Coninck B. Genome-Wide Characterization of ISR Induced in Arabidopsis thaliana by Trichoderma hamatum T382 Against Botrytis cinerea Infection. FRONTIERS IN PLANT SCIENCE 2012; 3:108. [PMID: 22661981 PMCID: PMC3362084 DOI: 10.3389/fpls.2012.00108] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/07/2012] [Indexed: 05/04/2023]
Abstract
In this study, the molecular basis of the induced systemic resistance (ISR) in Arabidopsis thaliana by the biocontrol fungus Trichoderma hamatum T382 against the phytopathogen Botrytis cinerea B05-10 was unraveled by microarray analysis both before (ISR-prime) and after (ISR-boost) additional pathogen inoculation. The observed high numbers of differentially expressed genes allowed us to classify them according to the biological pathways in which they are involved. By focusing on pathways instead of genes, a holistic picture of the mechanisms underlying ISR emerged. In general, a close resemblance is observed between ISR-prime and systemic acquired resistance, the systemic defense response that is triggered in plants upon pathogen infection leading to increased resistance toward secondary infections. Treatment with T. hamatum T382 primes the plant (ISR-prime), resulting in an accelerated activation of the defense response against B. cinerea during ISR-boost and a subsequent moderation of the B. cinerea induced defense response. Microarray results were validated for representative genes by qRT-PCR. The involvement of various defense-related pathways was confirmed by phenotypic analysis of mutants affected in these pathways, thereby proving the validity of our approach. Combined with additional anthocyanin analysis data these results all point to the involvement of the phenylpropanoid pathway in T. hamatum T382-induced ISR.
Collapse
Affiliation(s)
- Janick Mathys
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Kaat De Cremer
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Pieter Timmermans
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | | | - Bart Lievens
- Scientia Terrae Research InstituteSint-Katelijne-Waver, Belgium
- Laboratory for Process Microbial Ecology and Bioinspirational Management, Consortium for Industrial Microbiology and Biotechnology (CIMB), Department of Microbial and Molecular Systems, Katholieke Universiteit Leuven AssociationSint-Katelijne-Waver, Belgium
| | - Mieke Vanhaecke
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Bruno P. A. Cammue
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| | - Barbara De Coninck
- Centre of Microbial and Plant Genetics, Katholieke Universiteit LeuvenHeverlee, Belgium
| |
Collapse
|
14
|
CUI L, LIU CQ, LI DJ. Changes in Volatile Compounds of Sweet Potato Tips During Fermentation. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60267-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Lee YJ, Park SY, Kim SG, Park DJ, Kang JS, Lee SJ, Yoon S, Kim YH, Bae YS, Choi YW. Identification of a novel compound that inhibits iNOS and COX-2 expression in LPS-stimulated macrophages from Schisandra chinensis. Biochem Biophys Res Commun 2010; 391:1687-92. [DOI: 10.1016/j.bbrc.2009.12.131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/23/2009] [Indexed: 11/29/2022]
|
16
|
Ou CC, Hsiao YM, Wu WJ, Tasy GJ, Ko JL, Lin MY. FIP-fve stimulates interferon-gamma production via modulation of calcium release and PKC-alpha activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:11008-11013. [PMID: 19919129 DOI: 10.1021/jf902725s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Fungal immunomodulatory protein, FIP-fve, has been isolated from Flammulina velutipes, and its immunomodulatory effects are believed to be associated with the enhanced activation of IFN-gamma-releasing Th1 cells. However, the mechanisms of FIP-fve-mediated signal transduction in the regulation of interferon-gamma (IFN-gamma) gene expression in human peripheral blood mononuclear cells (PBMCs) are still poorly understood. Using fluo-3 AM, we found that FIP-fve induces a rapid elevation in calcium concentration. ELISA, RT-PCR and Western blot assays demonstrated significant increases in the production and mRNA expression of IFN-gamma and protein kinase C-alpha (PKC-alpha) activation in activated PBMCs, which were abolished by EGTA, nifedipine and GO6976. In conclusion, Ca2+ release and PKC-alpha activation are required for IFN-gamma production induced by FIP-fve in PBMCs.
Collapse
Affiliation(s)
- Chu-Chyn Ou
- School of Nutrition, Chung Shan Medical University, 110, Sec. 1, Chien-kuo N. Road, Taichung 40203, Taiwan
| | | | | | | | | | | |
Collapse
|
17
|
Choi YW, Kim HJ, Park SS, Chung JH, Lee HW, Oh SO, Kim BS, Kim JB, Chung HY, Yu BP, Kim CD, Yoon S. Inhibition of endothelial cell adhesion by the new anti-inflammatory agent α-iso-cubebene. Vascul Pharmacol 2009; 51:215-24. [DOI: 10.1016/j.vph.2009.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/22/2009] [Accepted: 05/28/2009] [Indexed: 11/29/2022]
|